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Abstract

With the growing prevalence of convolutional neural net-

works (CNNs), there is an urgent demand to explain their

behaviors. Global explanations contribute to understand-

ing model predictions on a whole category of samples, and

thus have attracted increasing interest recently. However,

existing methods overwhelmingly conduct separate input at-

tribution or rely on local approximations of models, making

them fail to offer faithful global explanations of CNNs. To

overcome such drawbacks, we propose a novel two-stage

framework, Attacking for Interpretability (AfI), which ex-

plains model decisions in terms of the importance of user-

defined concepts. AfI first conducts a feature occlusion

analysis, which resembles a process of attacking models to

derive the category-wide importance of different features.

We then map the feature importance to concept importance

through ad-hoc semantic tasks. Experimental results con-

firm the effectiveness of AfI and its superiority in providing

more accurate estimations of concept importance than ex-

isting proposals.

1. Introduction

Convolutional neural networks (CNNs) have emerged as

a cutting-edge solution to a broad spectrum of real-world

applications, such as object recognition [21], audio process-

ing [17], and natural language analysis [49]. Despite the

startling advance of these powerful computational architec-

tures, their inner workings remain a mystery. Interpreting

and understanding the behaviors of CNNs have become an

increasingly crucial topic of research. It can not only justify

decisions of CNNs to promote model trustworthiness, but

also spot their latent defects to inspire the development of

better models [12, 16, 9, 45].

Among diverse explanation techniques, attribution en-

deavors to succinctly summarize how CNNs arrive at their

final decisions [28, 10]. Under the context of image clas-
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sification, the convention is to measure the importance of

human-understandable units to model predictions, such as

pixels (i.e., input attribution) and concepts (i.e., concept at-

tribution) [19]. Concept attribution can overcome the am-

biguity of input attribution and thus have attracted growing

attention recently [19, 10, 52].

There are two explanation interfaces of concept attribu-

tion studied in the literature: local explanations [52] and

global ones [19], and we focus on the latter in this work,

which is imperative but under-explored. Local explanations

investigate the rationale of model predictions on individual

data points, which are helpful when we only care about a

specific instance. In contrast, global explanations center on

mining generic decision modes that apply to an entire class

of examples. For instance, global explanations can answer

to what extent the banded texture is related to a zebra class

in model cognition. Therefore, such global explanations are

conducive to summarize the model knowledge succinctly

and understand the model as a whole [19].

In general, existing concept attribution methods implic-

itly follow a two-stage procedure [19, 10, 52]. First, since

the model decisions are built upon a cornucopia of feature

detectors, they conduct feature attribution to quantify the

importance of individual feature detectors to model predic-

tions1. In this step, current attempts simply employ back-

propagated gradients as the estimation of feature impor-

tance. Second, they achieve concept attribution by trans-

lating feature importance into concept importance. Most

turn to first settle the embedding of a concept in the model

feature space (i.e., the concept vector), and then measure

the alignment between this concept vector and the vector of

feature importance. As for works that focus on global ex-

planations, they just analyze individual predictions in iso-

lation with the above procedure and then return summary

statistics [19, 10].

It is doubtful whether such a strategy to obtain global ex-

planations indeed sees “globally”. The deficiency primar-

1To avoid confusion, we consistently use the term “feature” to refer to

the visual patterns detected by feature filters of CNNs (e.g., the banded

texture), rather than the input pixels.
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Figure 1: The workflow of our framework: Attacking for Interpretability (AfI).

ily originates from the process of feature attribution with

backpropagated gradients, which implicitly builds upon a

local linear approximation of CNNs. Unfortunately, such

an approximation holds merely when we deal with the

proximity of individual instances or the last linear layer of

CNNs. Worse still, inspecting individual predictions sep-

arately with respective gradients ignores the connections

among examples of the same class, and may not be able

to capture the generic properties of the class embedded in

model knowledge.

To surmount the pitfalls of existing proposals, we pro-

pose a novel concept attribution framework for global ex-

planations of CNNs. It explicitly builds upon the two-

stage prototype of prior efforts. As such, we systematize

the process to model explanations in that we make each

step grounded and propose to evaluate intermediate results.

More crucially, we thoughtfully extend the methodology of

input occlusion to feature occlusion, which enables learn-

ing a global explanation and delving into model internals

for layer-wise inspections (Section 4.4).

Figure 1 outlines the workflow of our framework: At-

tacking for Interpretability (AfI). In the first stage, we con-

duct feature attribution through a thoughtful feature occlu-

sion analysis. Based on an opposite view of attribution, and

the fact that feature detectors in CNNs can be depressed by

structured patterns [33], we proceed by learning such a fea-

ture occluder in the input space for an entire category of im-

ages. The feature occluder is applied to undermine critical

feature filters of the class so that models will deviate from

their original predictions. Such a feature occlusion proce-

dure coincides with that of attacking CNNs to fool their de-

cisions (attacking). We then record the resultant activation

alterations of feature detectors, and score the importance of

different features accordingly.

In the second stage, we accomplish concept attribution

via directly anchoring feature importance to concept impor-

tance (interpretability). We first directly combine feature

detectors as per their importance scores to obtain a class-

specific meta-detector, and then run semantic tests for a con-

cept of interest. As such, higher performance of the meta-

detector in the semantic test implies greater importance of

the investigated concept to the class.

In summary, the main contributions of this work are:

• We propose a novel concept attribution framework for

global explanations of CNNs. Our framework explic-

itly builds upon a two-stage procedure and employs a

novel feature occlusion methodology to learn a global

interpretation. As such, we systematize the process to

model explanations.

• We overcome the deficiencies of most existing global

explanation techniques that bank on a local approxima-

tion of CNNs. Experimental results validate the effec-

tiveness of our approach and showcase its superiority

to previous efforts.

• With the global explanations our framework affords,

we demonstrate its use cases in providing insights into

CNNs, like grounding model decisions and revealing

biases in model cognition.

2. Related Work

2.1. Attribution

Under the context of image classification, attribution

aims to quantify the importance of human-readable units

to model decisions [28, 10]. Based on the unit to which it

attributes model predictions, there are two attribution tech-

niques: input and concept attribution.

Input attribution explains model behaviors in terms of

the importance of different input pixels. The outcome of

input attribution, coined saliency maps, can highlight the

most responsible parts of input images for model decisions.

There is a vast body of work under this track, such as

the gradient-based [36, 39, 35, 41, 38, 34, 28], structure-

based [1, 24, 46, 51], proxy model-based [30, 23], and

decision-based approach [8, 5, 53, 31, 6, 48, 46].

Unfortunately, despite being intuitive, input attribution

also suffers from confining itself to input space. The pri-

mary culprit is that the semantic meanings of image pixels
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are highly dependent on others and diverse. Consequently,

the saliency maps returned by input attribution are subject to

human perceptions before they become a human-readable

interpretation. Unfortunately, human judgments are error-

prone and can lead to contradicting conclusions [19].

Concept attribution attempts to address this issue by di-

rectly measuring the importance of human-understandable

concepts to model decisions. It affords two interpretation

interfaces: local explanations that work for individual pre-

dictions [52, 28] and global ones that apply for a whole cat-

egory of examples [19, 10].

Both lines of concept attribution overwhelmingly follow

an implicit two-stage procedure. They first conduct feature

attribution to derive feature importance, and then translate

it to concept importance to accomplish concept attribution.

In the feature attribution step, prior schemes coincidentally

employ backpropagated gradients as the estimation of the

importance of individual features to a class (the feature im-

portance vector). In the concept attribution phase, they usu-

ally exploit concept classification to derive the embedding

of a concept in hidden layers of CNNs (the concept vector).

Such a concept vector denotes the combinations of feature

filters that can best detect the concept. They then project the

feature importance vector along the direction of the con-

cept vector to gauge the importance of the corresponding

concept to model decisions [52, 19, 10]. For a global ex-

planation, they simply run the above routine for individual

samples in isolation and report the average concept impor-

tance [19, 10].

Our concept attribution framework defeats the pitfalls of

both local approximations of models and separate investiga-

tions of samples in existing global explanation approaches.

During feature attribution, we devise a novel feature oc-

clusion analysis. It abandons local model approximations,

and learns a global interpretation that considers the exten-

sive connections among samples of the same class in model

cognition. Motivated by the prior art [26, 19, 7, 3, 52], our

concept attribution scheme directly combines feature filters

as per their importance and estimates their representation

capacity of a concept of interest to measure concept impor-

tance. Consequently, compared with current attempts, our

concept attribution procedure is more general, which also

offers the opportunity to integrate prior model visualization

techniques [26, 50] into concept attribution.

Like us, a few efforts also aim to overcome the above

shortcomings in existing global explanation methods [47,

13]. However, they possess less general applicability than

us. [13] proposes to perform a direct concept occlusion

analysis, whereas they assume access to the generation pro-

cess of natural images for given concepts. [47] counts on an

inherently more interpretable model, where each feature fil-

ter independently and exclusively responds to one concept.

In contrast, our technology widely applies to post-training

CNN image classifiers, without the need for the data gener-

ation mechanism or model modification.

2.2. Adversarial Susceptibility

The functional units of CNNs are surprisingly sensitive

to adversarial patterns, namely, the so-called adversarial

perturbations. [43] first uncovers that despite imperceptible

to humans, they can deviate CNNs from correct decisions

when attached to clean images. [33] further reveals that

such purposeful distortions can mislead the feature filters

of CNNs. Therefore, they can manipulate the hidden rep-

resentations of legitimate images. Successor studies, such

as [25, 4], discover that adversarial noise can be extremely

effective and universal for image groups. Based on these

findings, we propose a novel feature attribution scheme,

where we conduct feature occlusion from the image space,

and employ it to learn a global interpretation.

3. Method

In this section, we will detail the design of our frame-

work. As illustrated in Figure 1, our two-stage approach

proceeds by tackling the following tasks sequentially: (a)

how to learn a feature occluder to perform feature occlu-

sion (Section 3.1.1), (b) how to complete feature attribu-

tion with feature occluders (Section 3.1.2), and (c) how to

achieve concept attribution via aligning feature importance

with concept importance (Section 3.2).

We first set up some notations. We regard an input im-

age as a vector x ∈ R
n with label prediction y ∈ Y, where

Y := {1, ...,K} is a categorical set of interest. By conven-

tion, images will be normalized such that x stays within the

range of [−1, 1]n with zero mean before feeding into mod-

els. In a CNN classifier with L layers, the lth layer with m

neurons learns a mapping from inputs to hidden representa-

tions fl : R
n → R

m. In particular, the final layer computes

a logit vector Z(x) ∈ R
K and then yields a probability

vector fL(x) after softmax normalization. The yth entry

fL(x)[y] corresponds to the probability of x belonging to

class y. A CNN classifier will output label predictions in

the end, and thus its decision function is f : Rn → Y.

3.1. Feature Attribution

For feature attribution, we propose to extend the method-

ology of input occlusion to feature occlusion. The general

procedure of input occlusion is to occlude some input pix-

els and regard the resultant alterations of model output as

their importance score [46]. Unfortunately, a straightfor-

ward adaptation scarcely applies to feature occlusion. In

modern CNN architectures, there are innumerous neurons

that work in close collaboration [7]. Therefore, separately

occluding individual neurons ignores their intensive inter-

connections, while exhausting all possible combinations is

prohibitively expensive.
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We circumvent this difficulty via an opposite view of at-

tribution via occlusion. Given an image x and its prediction

y, the fundamental problem in attribution is to explain how

a model discriminates class y from all the others. Further-

more, in the form of feature attribution, we can summarize

the reasoning process of a model in this binary classification

task as:

the features of class y in image x are more prominent

⇐⇒ the label prediction for image x is y. (1)

Consequently, it reduces to spot supporting features for

model decisions. To this end, we first transform the forward

reasoning of (1) into its logic equivalence:

the label prediction for image x is not y −→

the features of class y in image x are less prominent. (2)

Then by combining with the backward reasoning of (1):

the label prediction for image x is y −→

the features of class y in image x are more prominent,

(3)

it leads us to an opposite procedure for attribution with oc-

clusion. Specifically, we can conservatively undermine fea-

ture filters of a model until it is forced to abandon its orig-

inal decisions. As such, the resultant variations of neuron

activations represent their importance to model predictions.

Moreover, since feature filters of CNNs are susceptible

to structured noise [33], such an opposite view empow-

ers us to perform feature occlusion from the input space.

Specifically, we can first learn such a malicious perturba-

tion to “subtract” minimal image features, which suffice to

flip model predictions. We coin such perturbations feature

occluders, which effectively work by disturbing responsible

feature detectors [33, 2]. Therefore, it means that feature

occluders need not destroy images in a human-recognizable

manner, or align with actual regions where filters extract

features. Then we examine the change of neuron outputs to

rate their importance.

3.1.1 Global Feature Occluder

As we seek a global explanation of samples under the same

category, we start by crafting a global feature occluder

for them. Formally, given image collection {xi : i =
1, . . . , N} with identical classification y, we define their

global feature occluder δ∗ as:

δ∗ = argmin D(δ)

such that f(xi − δ) 6= y

f(t(xi − δ)) 6= y i = 1, . . . , N

f(t(xi)) = f(xi) = y

xi − δ ∈ [−1, 1]n. (4)

We elucidate the definition as follows.

In the object function of (4), distance function D mea-

sures the magnitude of δ. As such, we aim to search for

minimal perturbations, which reflects the appeal of disturb-

ing minimal feature filters so that we can identify the most

critical features of the class. In light of the sliding-window

scheme in CNNs [11], we implement D via l1 distance.

The first condition of (4) further requires that a global

feature occluder is the minimal noise needed to flip the

model predictions on all the given instances simultaneously.

Therefore, it will prefer to impede decisive feature detec-

tors common to images of the same class, which takes into

account the relations among samples embedded in model

memory. Therefore, our approach conducts a sort of re-

verse engineering of the model training process, which is

conducive to expose a more global picture of model logic.

The second condition of (4) conducts regularization,

where t denotes image transformations, like random nois-

ing. We suppose that purely learning deceptive distortion

may end up spoiling some fragile filters less relevant to es-

sential image features. To eliminate such artifacts, we ad-

ditionally require that a global feature occluder should re-

main effective when applied to the transformed versions of

original images. We expect that the outputs of supporting

feature filters can maintain relatively unchanged compared

to the others when inputting transformed images. Conse-

quently, such a requirement can make feature occluders fo-

cus on dimming critical features rather than arrive at the

cheapest structure.

Besides, to constitute an effective regularization, we en-

sure that t will not harm the judgment of the model on clean

images (the third condition). The last condition of (4) guar-

antees that occluded images are still valid inputs for models.

As CNNs are involved, directly solving (4) is intractable.

We instead obtain an approximation by employing Adam

optimizer [20] to minimize the following object function

iteratively:

1

N
ΣN

i=1
(Z(xi − δ)[y]+Z(t(xi − δ))[y]) + λ ·D(δ). (5)

Our algorithm terminates once the occluder satisfies all the

constraints in (4), or when we exceed preset maximum iter-

ations.

3.1.2 Feature Importance Score

Now we can calculate feature importance scores with the

obtained global feature occluder for class y. Specifically,

the importance score of the feature that the jth neuron in

the lth layer detects is:

s
j
l =

1

N
ΣN

i=1
(fl(xi)[j]− fl(xi − δ∗)[j]). (6)
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The sign of the importance score differentiates two

sorts of features related to model decisions. Neurons with

positive scores account for supporting features, while the

ones with negative scores vote for antagonistic counter-

parts [50, 34]. Similar to conventional practice, we focus

on features and concepts that have positive contributions to

model decisions [34, 52]. Therefore, we zero out negative

importance scores in s
j
l to obtain the final feature impor-

tance score (FIS) we adopt:

s
′j
l = max(sjl , 0). (7)

3.2. Concept Attribution

This step communicates feature importance in terms of

the importance of semantic notions readily accessible to hu-

mans. Some prior proposals first examine CNN units sep-

arately to work out their concept labels. They then read

the importance scores of these concepts from the feature

importance scores of corresponding units [28, 47]. How-

ever, such strategies overlook concepts with entangled en-

codings in CNNs [3, 7]. To surmount this defect, we pro-

pose a two-step procedure. We first combine CNN units as

per their importance scores, which leads to a class-specific

meta-detector. Then we estimate the representation capac-

ity of the meta-detector for a concept of interest through

carefully designed semantic tasks, where higher represen-

tation power signifies greater importance of the concept to

the investigated class.

Specifically, in the first step, to acquire a class-specific

meta-detector, we also regard feature maps as basis CNN

units like the prior art [7, 3]. We denote the cth feature map

in layer l as Ac
l . Therefore, for class y, we normalize the

total importance scores of neurons within Ac
l as its channel

importance score (CIS):

wc
l =

1

B
Σj∈P c

l
s
′j
l . (8)

Here P c
l is the index set of neurons in Ac

l , and B is a nor-

malizing constant such that wc
l ∈ [0, 1]. We view the fully

connected layers with C neurons as C feature maps with

a spatial resolution of 1 × 1. Subsequently, we combine

feature maps in layer l with CIS to get the meta-detector:

f
′

l = Σcw
c
l ·A

c
l . (9)

It encodes the relevance of various concepts to class y in

model cognition.

In the second step, inspired by the work [26, 19, 7, 3, 52],

we propose two kinds of semantic tasks to evaluate the rep-

resentation power of the meta-detector. They are tailored

for qualitative and quantitative concept attribution, respec-

tively.

For qualitative concept attribution, we devise a genera-

tion task. Specifically, we adapt the technology of model vi-

sualization [26] to synthesize images, which can maximize

the total activation of the meta-detector for class y. The

crafted image corresponds to a class impression. It quali-

tatively depicts the most distinct characteristics of the class

concept y in the memory of the model.

For quantitative concept attribution, we reify it as a con-

cept classification task, where we gauge the capability of the

meta-detector to distinguish different concepts, and rank the

importance of these concepts accordingly. Specifically, we

resort to probe datasets with concept labels as in [19, 10].

For each probe image, we first obtain the outputs from the

meta-detector as its new representation. Then for a concept

of interest, we compute the discrepancy of its samples to

the benchmark ones with irrelevant concept tags. The dis-

crepancy quantifies the discriminative power of the meta-

detector regarding this concept. We adopt the Maximum

Mean Discrepancy (MMD) as the discrepancy metric [14].

Therefore, we sum the MMD values calculated in all the

middle layers, and view the normalized results as the im-

portance score of the corresponding concept.

4. Experiments

We first report the intermediate attacking results in Sec-

tion 4.1. Then we evaluate our feature and concept attribu-

tion results in Section 4.2 and Section 4.3, respectively. Fi-

nally, we present some qualitative and quantitative explana-

tions we obtain in Section 4.4 and Section 4.5, respectively,

which showcase the use cases of our framework.

We demonstrate the effectiveness of our framework with

three CNNs trained for ImageNet (ILSVRC2012) classifi-

cation: ResNet-50, GoogLeNet, and VGG-16 [15, 42, 37,

32]. These models cover representative sorts of models

for image classification and have wide application in prac-

tice [29]. Therefore, such a model choice can confirm the

general applicability of our approach. Besides, we focus on

the ImageNet dataset since it is a widely recognized dataset

for evaluating explanation techniques [36, 10] and diverse

pre-trained models for ImageNet classification are publicly

available. Accordingly, such a dataset choice facilitates fair

comparisons with the existing efforts [19, 10].

We adopt the training set of ImageNet to learn global

feature occluders so that we can work on the same page as

models. Parameters are settled experimentally. The trans-

formation function t is a composition of: (1) applying uni-

form random noise within [−0.04, 0.04]n and (2) random

rotation within [−5◦, 5◦]. λ is set to balance the contribu-

tion of each term in (5).

4.1. Attacking Results

As experimental demonstrations, we first randomly se-

lect 100 classes from all the 1000 classes in the ImageNet

dataset [32], and fix these classes for our experiments. We

then learn one global feature occluder for each class. To ex-

amine the attack success rates of the resultant global feature
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Model Clean Perturbed

ResNet-50 0.8771 0.0973

GoogLeNet 0.8115 0.0907

VGG-16 0.8095 0.1001

Table 1: Average top-1 accuracy of different models on

clean images and the counterparts perturbed with corre-

sponding global feature occluders.

Teacher Model
Gradient-

based

AfI 

(Without t )
AfI

ResNet-50 0.8899 0.8918 0.9592

GoogLeNet 0.8383 0.8896 0.9826

VGG-16 0.8531 0.8679 0.9468

Table 2: The average accuracy of student models derived

from different approaches.

occluders, we perturb the images with the corresponding

global feature occluders and calculate the average top-1 ac-

curacy of the model on these samples. Table 1 reports the

results. We can see that our global feature occluders can

severely undermine the model performance on perturbed

images. Therefore, it is feasible to learn global feature oc-

cluders with our approach.

Besides, based on our preliminary experiments, we note

that we can obtain fairly accurate global attribution results

as long as the attack success rates are high enough (not nec-

essarily 100%). It may be because that global concept at-

tribution should spot concepts that are frequently important

for a class in model cognition (e.g., leaves for trees though

some trees may not have leaves at present), and have to

pay less attention to unrepresentative samples. On the other

hand, if occluders fail to achieve high success rates, the per-

formance of our global explanation approach will degen-

erate. Consequently, we mitigate it by class-specific fine-

tuning in our experiments.

4.2. Evaluation of the Feature Attribution Results

To examine our feature attribution results—feature im-

portance scores, we propose a distillation test similar to

that in [44, 22]. We regard a model we aim to explain as

a teacher model. If for class y, the teacher model owns

outstanding accuracy, and our feature importance scores are

correct, the derived meta-detector should also possess high

discriminative competence for the class concept y. In other

words, given the activation of the meta-detector as inputs,

a compact student model can differentiate class y from the

others. Higher performance of the student model indicates

that the feature attribution results are more precise.

Therefore, we implement the distillation test as binary

classification tasks in ImageNet. For each class, we first

randomly sample a balanced dataset, which consists of the

same number of instances from the class and complement

ones. We also make sure that the teacher model can cor-

rectly recognize all the included images. Then for each

sample, we compute the outputs from the meta-detectors of

the teacher model, which are flattened as the representation

of the image. Finally, we train student models to conduct

binary classification on the resultant data as per the original

training-validation partition of ImageNet.

For comparison, we also conduct the same distillation

test based on the feature attribution results from the state-of-

the-art baseline - TCAV [19, 10]. Specifically, TCAV pro-

poses to perform feature attribution for individual samples

with backpropagated gradients. Since TCAV does not ac-

quire a global feature importance score (FIS) for a class, we

average its feature attribution results over the whole class of

examples as the FIS to test.

Table 2 reports the average accuracy of student models

over 100 classes. All the student models we exploit are neu-

ral networks with three fully connected layers, where there

are 32, 16, and 2 neurons, respectively. Student models de-

rived from our method (AfI) can obtain remarkable accu-

racy, exceeding the gradient-based baseline (TCAV) by a

significant margin. It validates the effectiveness of our fea-

ture attribution mechanism and its superiority to the state-

of-the-art benchmark. Besides, we run an ablation study

to verify the contribution of the transformation function t,

where we remove it from (5) when learning feature occlud-

ers. The performance degradation of the resultant student

models confirms the regularization efficacy of t.

Moreover, under our method, student models of

GoogLeNet manifest the best performance compared to the

other teacher models. Since we obtain student models via

global explanations of model decisions, it may indicate that

GoogLeNet relies on more consistent combinations of fea-

tures to identify samples from the same class, and thus

adopts more category-generic decision modes than the other

models.

4.3. Evaluation of the Concept Attribution Results

We follow [10] to evaluate our concept attribution

results—concept importance scores, since [10] can conduct

extensive quantitative assessments with high efficiency.

Specifically, [10] regards semantic image segments as con-

cept data. It leads to two metrics: the smallest suffi-

cient concepts (SSCs) and the smallest destroying concepts

(SDCs). SSCs are the smallest set of concepts sufficing for

models to predict the target class, while SDCs are the small-

est concept collections whose absence will incur wrong pre-

dictions. More accurate concept importance scores can lead

to a more precise estimation of SSCs and SDCs.

Therefore, given a class, we first segment images of the

class and cluster similar segments. Each cluster represents

8657



0 1 2 3 4 5

0

20

40

60

Number of Added Concepts

P
re
d
ic
ti
o
n
A
cc
u
ra
cy

ResNet-50

AfI
TCAV

Random

0 1 2 3 4 5

0

20

40

60

Number of Added Concepts
P
re
d
ic
ti
o
n
A
cc
u
ra
cy

GoogLeNet

AfI
TCAV

Random

0 1 2 3 4 5

0

20

40

60

Number of Added Concepts

P
re
d
ic
ti
o
n
A
cc
u
ra
cy

VGG-16

AfI
TCAV

Random

(a) SSC

0 1 2 3 4 5

50

60

70

80

90

Number of Deleted Concepts

P
re
d
ic
ti
o
n
A
cc
u
ra
cy

ResNet-50

AfI
TCAV

Random

0 1 2 3 4 5

50

60

70

80

Number of Deleted Concepts

P
re
d
ic
ti
o
n
A
cc
u
ra
cy

GoogLeNet

AfI
TCAV

Random

0 1 2 3 4 5

40

50

60

70

80

Number of Deleted Concepts
P
re
d
ic
ti
o
n
A
cc
u
ra
cy

VGG-16

AfI
TCAV

Random

(b) SDC

Figure 2: Model accuracy variation when we start editing the most important SSCs/SDCs estimated by different approaches.

For our method (AfI), the top-5 SSCs are enough to recover over 74% of the original accuracy across all models, while

removing the top-5 SDCs can result in a degradation of over 45% of the original accuracy across all models. We also plot the

effect of editing concepts in random order for comparison. The concept importance scores derived by our method (AfI) are

consistently more accurate than the benchmark (TCAV), since the change of model accuracy is more drastic for our approach.

Chickadee 

Tarantula 

ResNet-50 GoogLeNet VGG-16 Example Image 

Figure 3: Class concepts captured by different models. Ex-

ample images of the corresponding class are exhibited for

better comparison.

examples for one concept. With these concept data, we then

calculate the importance score of each concept, and curate

the most important concepts as SSCs and SDCs. Finally, we

sequentially add SSCs to a blank image or remove SDCs

from the source image as per their importance order. We

record the change of model accuracy to examine the con-

cept importance scores we derive. We also test the state-of-

the-art baseline (TCAV) under the same setup for compari-

son [10, 19].

Figure 2 exhibits the average result over 100 classes. It

confirms that our estimation of SSCs and SDCs is remark-

ably more accurate than TCAV, as the change of model

accuracy during concept adding/removing is more dras-

tic. Therefore, our estimated concept importance scores are

more precise than the state-of-the-art benchmark.

4.4. Class Concept Visualization

With our qualitative concept attribution strategy, we vi-

sualize class concepts captured by a model. Specifically,

for a random class, we first separately generate images that

can highly activate the meta-detector in each middle layer.
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Figure 4: Importance scores of different concepts to classification results. Error bars indicate the standard deviation.

Model Layer Name
Original Output 

Shape

ResNet-50 ResBlock_4c 7 x 7 x 2048

GoogLeNet Mixed_5b 7 x 7 x 832

VGG-16 Fc_6 1 x 1 x 4096

Table 3: The layer selected to craft class impressions and

its original output shape (spatial resolution × channel num-

ber).

We then spot the first layer where class concepts emerge

through visual investigation. The visualization of class con-

cepts from this layer is regarded as class impressions. Dur-

ing the generation of class impressions, except for the total

variation penalization, we do not resort to any other natural

image priors, such as a generative network [27]. Accord-

ingly, it ensures that the class impressions are only born of

the knowledge of the model under inspection.

Figure 3 displays some class impressions we obtain,

along with example images of the corresponding classes for

better comparison. It illustrates that CNNs can capture the

most prominent characteristics of image classes, for exam-

ple, the texture for the tarantula class. Additionally, ResNet-

50 appears to better capture and exploit the color property

of images than the other models, because the class impres-

sions of ResNet-50 are more similar to raw images of the

corresponding classes in terms of their color.

Table 3 reports the layer we choose to craft class im-

pressions for each model. We note that in the middle lay-

ers, it is non-trivial to infer the links of copious neurons to

image categories. Because unlike the last logit layer, their

mappings are not specified during training. Consequently,

the competence to uncover class concept embeddings in the

middle layers of CNNs further verifies the effectiveness of

our framework.

4.5. Userdefined Concept Attribution

With our quantitative concept attribution scheme, we

measure the importance of user-defined concepts to clas-

sification. We center on explaining widely-used ResNet-

50, which has been less covered in the literature. As ex-

perimental examples, we gauge the importance of concepts

from three representative groups (i.e., texture, gender, and

race) to three classes, respectively. We follow [19] to curate

probe concept data [32, 3, 18]. Concretely, for each pair

of the concept type and image class, we first randomly se-

lect the same number of images as the concept data for each

concept. Then we fix a random benchmark set of the same

size. We finally compute concept importance scores with

the probe data.

Figure 4 reports the average result over 100 runs. It vali-

dates that CNNs can extract rational grounds for their de-

cisions, like the banded texture for the zebra. However,

consistent with the findings of [40], we discover that they

also sometimes learn undesirable stereotypes about some

classes, such as the relatively stronger positive connections

of women to the apron and Asians to the ping-pong ball.

Therefore, it demonstrates the use case of our framework in

model confirmation and bias revelation.

5. Conclusion

We propose a novel two-step framework for global ex-

planations of CNNs. It first derives feature importance via

a novel feature occlusion analysis, and then communicates

such information in terms of the importance of human-

comprehensible concepts. Empirical results corroborate the

effectiveness and superiority of our technique in explaining

model behaviors. More crucially, we demonstrate that we

can achieve concept attribution via two semantic tasks. It

showcases the exciting opportunity to integrate prior feature

visualization efforts into our framework, which is a promis-

ing direction for future work.
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