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Abstract

Beyond depth estimation from a single image, the monoc-

ular cue is useful in a broader range of depth inference

applications and settings—such as when one can leverage

other available depth cues for improved accuracy. Cur-

rently, different applications, with different inference tasks

and combinations of depth cues, are solved via different

specialized networks—trained separately for each applica-

tion. Instead, we propose a versatile task-agnostic monocu-

lar model that outputs a probability distribution over scene

depth given an input color image, as a sample approxima-

tion of outputs from a patch-wise conditional VAE. We show

that this distributional output can be used to enable a vari-

ety of inference tasks in different settings, without needing

to retrain for each application. Across a diverse set of ap-

plications (depth completion, user guided estimation, etc.),

our common model yields results with high accuracy—

comparable to or surpassing that of state-of-the-art meth-

ods dependent on application-specific networks.

1. Introduction

Monocular depth estimation methods—that predict

scene depth from only a single color image—have achieved

surprising success through the use of deep neural net-

works [2, 7, 9, 22, 46]. This success confirms that even a

single view contains considerable information about scene

geometry. Purely monocular depth map estimates, however,

are far from being precisely accurate given the ill-posed na-

ture of the task. Fortunately, many practical systems are

able to rely on other (yet also imperfect) sources of depth

information—limited measurements from depth sensors, in-

teractive user guidance, consistency across frames or views,

etc. And so, it is desirable to combine these other sources

with the monocular cue to extract depth estimates that are

more accurate than possible from one source alone.

Although the monocular cue is useful for augmenting

other depth cues, the same isn’t true for monocular estima-

tors that simply output a depth map, a form which can not be

directly combined with additional depth cues. Instead, re-

searchers have treated depth estimation using different com-

binations of cues as different applications in their own right

(e.g., depth up-sampling [4], estimation from sparse [34]

and line [28] measurements, etc.), and solved each by learn-

ing separate estimators that take their corresponding set of

cues, in addition to the color image, as input. This re-

quires, for each application, determining the types of inputs

that will be available, constructing a corresponding training

set, choosing an appropriate network architecture, and then

training that application-specific network—a process that is

redundant and often onerous.

In this paper, we introduce a universal and versatile net-

work to leverage the monocular depth cue in multiple appli-

cation settings without re-training. Our network is trained

in an application-agnostic way on image-depth pairs, but

can be utilized for inference in different applications and

combined with different external depth cues as illustrated

in Fig. 1. Rather than producing a depth map estimate, our

monocular network outputs a probability distribution over

scene depth given an input color image. This distribution

faithfully encodes both the information and ambiguity of

depth values and their spatial dependencies based on the

monocular input, and is produced in a form that can be

combined with other depth cues during inference. Thus,

our approach enables a modular approach to leveraging the

monocular depth cue, with a common task-agnostic model

that can be used in different applications.

Our contributions are as follows:

• We propose a novel approach to produce a probability

distribution over scene depth conditioned on a given in-

put image. Our distributional output is formed using

patch-wise depth samples generated by a conditional

VAE [18], and is thus able to express arbitrary condi-

tional spatial dependencies over scene depth.

• We demonstrate the practical utility of our probabilistic

outputs by considering their use in a variety of inference

tasks: we describe an estimation framework that effi-

ciently combines our image-conditional densities with

other available information sources (e.g., sensors or user

input), as well as approaches for other application set-

tings (e.g., predicting pairwise depth).
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Figure 1. Overview of our approach. Given an input color image, we use a common task-agnostic network to output a joint probability

distribution p(Z|I) over the depth map—formed as a sample approximation using outputs of a conditional VAE that generates plausible

estimates for depth in overlapping patches. The mean of this distribution represents a standard monocular depth estimate, but the distribu-

tion itself can be used to solve a variety of inference tasks in different application settings—including leveraging additional depth cues to

yield improved estimates. All these applications are enabled by a common model, that is trained only once.

• We carry out extensive experiments on the NYUv2

dataset [44] our approach on a diverse variety of appli-

cations. All applications are enabled by our method us-

ing the same network that is trained only once, and yet

delivers accuracy comparable to or surpassing state-of-

the-art methods dependent on task-specific models.

2. Related Work

Monocular Depth Estimation. First attempted by Saxena

et al. [40], early work in estimating scene depth from a sin-

gle color image relied on hand-crafted features [21, 37, 41,

42], use of graphical models [33, 41, 52], and databases

of exemplars [16, 19]. More recently, Eigen et al. [8]

showed that, given a large enough database of image-depth

pairs [44], convolutional neural networks could be trained to

achieve significantly more reliable depth estimates. Since

then, there have been steady gains in accuracy through

the development of improved neural network-based meth-

ods [2, 7, 9, 13, 23, 26, 30, 39, 48, 51], as well as strategies

for unsupervised an semi-supervised learning [3, 10, 20].

Beyond estimating absolute depth, some works have also

looked at pairwise ordinal depth relations between pair of

points in the scene from a input color image [3, 53].

Probabilistic Outputs. Monocular depth estimators com-

monly output a single estimate of the depth value at each

pixel, hindering their use in different estimation settings.

Some existing methods do produce distributional outputs,

but as per-pixel variance maps [13, 17] or per-pixel prob-

ability distributions [29]. Note that depth values at differ-

ent locations are not statistically independent, i.e., differ-

ent values at different locations may be plausible indepen-

dently, but not in combination. Thus, per-pixel distributions

provide only a limited characterization that, while useful in

some applications, can not be used more generally, e.g., to

spatially propagate information from sparse measurements.

Beyond per-pixel distributions, Chakrabarti et al. [2]

train a network to produce independent distributions for dif-

ferent local depth derivatives. They describe a method to

use these derivative distributions to generate a better esti-

mate of global depth, but do not provide a way to solve

other tasks. Also, since their network output is restricted to

uni-variate distributions for hand-chosen derivatives, it can

not express the general spatial dependencies in a joint dis-

tribution over depth that we seek to encode for inference.

Depth from Partial Measurement. Since making dense

depth measurements is slow and expensive, it is useful to be

able to recover a high-quality dense depth map from a small

number of direct measurements by exploiting the monocu-

lar cues in a color image. A popular way of combining color

information with partial measurements is by requiring color

and depth edges to co-occur: this approach is often success-

ful for “depth inpainting”, i.e., filling in gaps of missing

measurements in a depth map (common in measurements

from structured light sensors). A notable and commonly-

used example is the colorization method of Levin et al. [25].

Other methods along this line include [6, 14, 31, 32, 35],

while Zhang and Funkhouser [50] used a neural network to

predict normals and occlusion boundaries to aid inpainting.

However, when working with a very small number of

measurements, the task is significantly more challenging

(see discussion in [4]) and requires relying more heavily

on the monocular cue. In this regime, the solution has been

to train a network that takes the color image and the pro-

vided sparse samples as input. Various works have adopted

this approach for measurements along a single horizon-

tal line from a line sensor [28], random sparse measure-

ments [15, 34, 43, 45], and sub-sampled measurements on

a regular grid [4, 12, 27]. Note that several of these meth-

ods also train separate networks even for different settings

of the same application, such as for different sparsity lev-
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els [34] and different resolution grids [4].

An exception here is the depth completion method of

Wang et al. [47] who use a pre-trained monocular depth

network, and provide a way to improve its monocular pre-

dictions when given sparse depth measurements. They it-

eratively back-propagate errors between measurements and

the network output to update activations of an intermediate

layer (but not the network weights), leading to an improved

depth map output. Thus, their method uses the monocular

network’s output as an initialization, and its internal rep-

resentation as a structured way to spatially propagate mea-

surement information. In contrast, our method outputs an

explicit probabilistic representation which can be used for

depth completion as well as for other inference tasks, and

as our experiments show, yields more accurate results.

Networks for Generating Samples. In this work, we form

a conditional joint distribution of depth values by training

our network to generate samples of multiple plausible depth

values. In particular, we follow the approach of [18] to train

a conditional VAE and use its outputs to form a sample

approximation to the joint distribution. Note that instead

of generating samples of a global map (like in [18]), we

train the VAE to produce samples for individual overlapping

patches independently. We also conduct ablation experi-

ments using a conditional GAN [11, 36] to produce these

samples, and while the VAE formulation performs better,

our results with the GAN are also reasonable. This suggests

our approach is able to exploit any neural network-based

method for generating conditional samples, and can benefit

from future advances in this direction.

3. Proposed Method

Given the RGB image I of a scene, our goal is to reason

about its corresponding depth map Z ∈ R
N , represented as

a vector containing depth values for all N pixels in the im-

age. Rather than predict a single estimate for Z, we seek to

output a distribution p(Z|I), to more generally characterize

depth information and ambiguity present in the image. In

this section, we describe our approach for generating this

distributional output, and equally importantly, for exploit-

ing it for inference in various applications.

3.1. Probabilistic Monocular Depth

We form the distribution p(Z|I) as a product of functions

defined on individual overlapping patches as

p(Z|I) ∝
∏

i

ψi(PiZ|I), (1)

where ψi(·) is a potential function for the ith patch, and Pi

a sparse matrix that crops out that patch from Z (for patches

of size K ×K, each Pi is a K2×N matrix). Note that this

is a Markov Random Field withK×K patches as maximal

Figure 2. Generating samples with a conditional VAE. Our net-

work generates samples for depth independently in each overlap-

ping patch, and we run it multiple times to generate multiple plau-

sible samples per-patch. The input to the VAE comes from pre-

trained feature extraction layers from a state-of-the-art monocu-

lar model [9]. Samples generated for different patches (including

those that overlap) are kept statistically independent—after condi-

tioning on the image—by using separate per-patch latent vectors.

cliques, and since these patches overlap, depth values at all

pixels—not just those in the same patch—are statistically

inter-dependent (see discussion in supplementary).

Generating Samples. To form the per-patch potentials

ψi(·), we train a network that produces samples of depth

given the image input, and run it multiple times during in-

ference to generate multiple plausible samples. A crucial

aspect of this network is that, instead of sampling the global

depth map, it generates separate samples independently for

the depth PiZ of every patch i. This ensures that depth val-

ues within each sample represent a plausible estimate for the

corresponding patch, but that samples of different patches

are conditionally independent given the image. Limiting

the dimensionality of each sample allows us to approximate

the per-patch potential ψi(·) with a reasonable number of

samples, while enforcing independence between samples of

different patches ensures that the overall distribution p(Z|I)
in (1) sufficiently captures the global ambiguity in depth.

We adopt the conditional VAE framework proposed in

[18] for generating samples—that features a “prior-net” to

predict distribution over values of a latent vector from the

image, with an encoder-decoder network that predicts depth

values from the image and a sample from this latent distri-

bution. To reduce complexity, we bootstrap our network by

taking a pre-trained state-of-the-art monocular depth esti-

mation network (DORN [9]), removing the last two convo-

lution layers, and treating the remaining layers as a “feature

extractor”. These features, rather than the image itself, are

provided as input to the conditional VAE.

We achieve patch independent sampling by having a sep-

arate latent vector for each patch. We set up the architec-

ture of the decoder in the encoder-decoder network to pro-

duces an estimate of the depth of each overlapping patch

using only its own latent vector, and not those of overlap-
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ping patches. The prior-net is also setup to predict separate

distributions for the latent vector of each patch (as is the

posterior-net during training). At test time, we draw mul-

tiple samples independently from the latent space for each

patch, which the encoder-decoder network uses to gener-

ate correspondingly independent per-patch depth samples.

A more detailed description of the VAE architecture and

training approach is included in the supplementary.

Sample Approximation. Next, given a set Si of samples

{xs
i
} for each patch i, we define its potential ψi(·) as

ψi(PiZ|I) =
1

|Si|

∑

xi∈Si

exp

(

−
‖PiZ− xi‖

2

2h2

)

. (2)

This can be interpreted as forming a kernel density estimate

from the depth samples in Si using a Gaussian kernel, were

the Gaussian bandwidth h is a scalar hyper-parameter.

Unlike independent per-pixel [13, 17, 29] or per-

derivative [2] distributions, the samples {Si} enable the

patch potentials ψi(·) to express complex spatial depen-

dencies between depth values in local regions. Moreover,

our joint distribution p(Z|I) is defined in terms of overlap-

ping patches, and thus models dependencies across the en-

tire depth map. During inference, this enables information

propagation across the entire scene, and reasoning about the

global plausibility of scene depth estimates.

Note that the distribution p(Z|I) can be used to recover a

monocular depth map estimate as the mean over p(Z|I) by

computing the average estimate of depth at each pixel from

all samples from all patches that include that pixel. But the

real utility of our distributional output comes from enabling

a variety of inference tasks, as we describe next.

3.2. Depth Estimation with Additional Information

In several applications, a system has access to additional

sources beyond the monocular image that provide some par-

tial information about depth. Our distributional output al-

lows us to combine the monocular cue with these sources,

and derive a more accurate scene depth estimate than pos-

sible from either source alone. Specifically, we assume the

additional depth information is provided in the form of a

cost C(Z), and combine it with our distribution p(Z|I) to

derive a depth estimate Ẑ as:

Ẑ = argmin
Z

− log p(Z|I) + C(Z),

log p(Z|I) =
∑

i

log
∑

xi∈Si

exp

(

−
‖PiZ− xi‖

2

2h2

)

. (3)

With some abuse of terminology, this can be thought of as

computing the maximum a posteriori (MAP)1 estimate of

1Note that we output an image-conditional distribution p(Z|I)—not a

likelihood p(I|Z). So, (3) can be thought of as a MAP estimate since the

C-VAE is expected to learn to implicitly account for the prior distribution

of Z, without needing to add an explicit prior (like, for example, in [5]).

Z, where C(Z) is interpreted as a “likelihood” from the ad-

ditional depth information source.

The log-likelihood of our distribution in (3) can be sim-

plified with a standard approximation of replacing the sum-

mation over exponentials with a maximum (since PiZ is

high-dimensional, the largest term typically dominates as

discussed in the supplementary):

Ẑ ≈ argmin
Z

−
∑

i

log max
xi∈Si

exp

(

−
‖PiZ− xi‖

2

2h2

)

+ C(Z)

= argmin
Z

min
{xi∈Si}

∑

i

‖PiZ− xi‖
2 + 2h2 C(Z). (4)

Note that this expression now involves a minimization over

both Z and selections of samples xi ∈ Si for every patch.

We will use two forms of the external cost C(Z) to en-

code available information in various applications. The first

is simply a generic global cost that we denote by CG(Z),
and the other is one that can be expressed as a summation

over the depth values of individual patches
∑

i
Ci(PiZ).

Including both these possible forms in (4), we arrive at the

following optimization task:

min
Z

min
{xi∈Si}

∑

i

‖PiZ−xi‖
2+

∑

i

Ci(xi) + CG(Z)

︸ ︷︷ ︸

Possible forms of C(Z)

, (5)

where the factor 2h2 is absorbed in the definitions of the

costs, and the per-patch costs Ci(PiZ) are approximated as

Ci(xi) to act on samples instead of crops of Z (we assume

this will roughly be equivalent at convergence).

We use a simple iterative algorithm to carry out this op-

timization. The global depth Z is initialized to the mean

per-pixel depth from p(Z|I), and the following updates are

applied alternatingly to {xi} and Z till convergence:

xi ← arg min
xi∈Si

‖PiZ− xi‖
2 + Ci(xi), ∀i. (6)

Z ← argmin
Z

‖PiZ− xi‖
2 + CG(Z). (7)

The updates to patch estimates xi can be done indepen-

dently, and in parallel, for different patches. The cost in (6)

is the sum of the squared distance from corresponding crop

PiZ of the current global estimate, and the per-patch cost

Ci(·) when available. We can compute these costs for all

samples in Si, and select the one with the lowest cost. Note

that the cost Ci(·) on all samples need only be computed

once at the start of optimization.

The update to the global map Z in (7) depends on the

form of the global cost CG(·). If no such cost is present,

Z is given by simply the overlap-average of the currently

selected samples xi for each patch. For applications that do

feature a global cost, we find it sufficient to solve (7) by first
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initializing Z to the overlap-average, and then carrying out

a small number of gradient descent steps as

Z← Z− γ∇ZC
G(Z), (8)

where the scalar step-size γ is a hyper-parameter.

We now discuss concrete examples of our inference ap-

proach by considering specific applications, and describe

associated choices of the costs CG(·) and Ci(·).

3.2.1 Depth Completion

Dense Depth from Sparse Measurements. We consider

the task of estimating the depth map Z when an input sparse

set F of depth measurements at isolated points in the scene

is available, along with a color image. We use the measure-

ments F to define a global cost CG(·) in (5) as

CG(Z) = λ‖Z ↓ −F‖2, (9)

where ↓ represents sampling Z at the measured locations.

Based on this, we define the gradients to be applied in (8)

for computing the global depth updates as

∇ZC
G(Z) = λ(Z ↓ −F) ↑, (10)

where ↑ represents the transpose of the sampling operation.

Since both the weight λ and the step-size γ in (8) are hyper-

parameters, we simply set λ = 1, and set the step-size γ (as

well as number of gradient steps) based on a validation set.

We consider two kinds of sparse inputs. The first are

at arbitrary random locations like in [15, 34, 43, 45, 47],

where we use nearest neighbor interpolation for the trans-

pose sampling operation ↑ in (10). The other case is depth

up-sampling, where measurements are on a regular lower-

resolution grid. Given their regularity, we are able to use

bi-linear interpolation for the transpose operation ↑.
Depth Un-cropping. We next consider applications where

the available measurements are dense in a contiguous (but

small) portion of the image—such as from a sensor with a

smaller field-of-view (FOV), or alone a single line [28]. In

this case, we define F and W are set to measured values

and one at measured locations, and zero elsewhere. We use

these to define a per-patch cost Ci(·) for use in (5) as

Ci(xi) = λ‖PiW ◦ (PiZ− PiF)‖
2, (11)

where the weight λ is determined on a validation set.

3.2.2 Incorporating User Guidance

Depth estimates are often useful in interactive image editing

and graphics applications. We consider a couple of settings

where our estimation method can be used to include feed-

back from a user in the loop for improved depth accuracy.

Diverse Estimates for User Selection. We use Batra et

al.’s approach [1] to derive multiple diverse global esti-

mates {Z1, . . .ZM} of the depth map Z from our distri-

bution p(Z|I), and propose presenting these as alternatives

to the user. We set the first estimate Z
1 to our mean esti-

mate, generate every subsequent estimate Z
m+1 by finding

a mode using (5) with per-patch costs Ci(·) defined as

Ci(xi) = −λ/m
m∑

m′=1

‖PiZ
m

′

− xi‖
2. (12)

This introduces a preference for samples that are different

from corresponding patches in previous estimates, weighted

by a scalar hyper-paramter λ (set on a validation set).

Using Annotations of Erroneous Regions. As a simple

extension, we consider also getting annotations of regions

with high error from the user, in each estimate Z
m. Note

that we only get the locations of these regions, not their

correct depth values. Given this annotation, we define a

mask W
M that is one within the region and zero elsewhere,

and now recover each Z
m+1, with a modified cost Ci(·):

Ci(xi) = −λ/m

m∑

m′=1

‖(PiW
m

′

)◦(PiZ
m

′

−xi)‖
2, (13)

where ◦ denotes element-wise multiplication, and the masks

focuses the cost on regions marked as erroneous.

3.3. Other Inference Tasks

Our distributional output is versatile and can be used to

perform general inference tasks, not just estimate per-pixel

depth. We describe two such applications below.

Confidence-guided Sampling. We can use p(Z|I) to com-

pute a per-pixel variance map, as the variance of each

pixel’s depth value across patches and samples in {Si}
(which differs from the actual variance under p(Z|I) by

a constant h2). This gives us spatial map of the relative

monocular ambiguity in depth at different locations. When

seeking to estimate depth from arbitrary sparse measure-

ments, we can use this map to select where to make mea-

surements (assuming the depth sensor provides such con-

trol). Specifically, given a budget on the total number of

measurements, we propose choosing an optimal set of mea-

surement points as local maxima of the variance map.

Pair-wise Depth. A useful monocular depth inference task,

introduced in [53], is to predict the ordinal relative depth of

pairs of nearby points in the scene: whether the points are

at similar depths (within some threshold), and if not, which

point is nearer. We use our distributional output to solve

this task, by looking at the relative depth in all samples in

all patches that contain a pair of queried points, outputting

the ordinal relation that is most frequent. We find this leads

to more accurate ordinal estimates, in comparison to simply

using the ordering of the individual depth value pairs in a

monocular depth map estimate (as done in [3, 53]).
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Setting Method
lower is better higher is better

rms m-rms rel δ1 δ2 δ3

Monocular Depth Estimation

Lee [24] 0.538 0.470 0.131 83.7 97.1 99.4

DORN [9] 0.545 0.462 0.114 85.8 96.2 98.7

Ours 0.512 0.433 0.116 86.1 96.9 99.1

Depth Un-cropping (Setting = measurement FOV)

Liao [28] 0.442 - 0.104 87.8 96.4 98.9

Horiz. Levin [25] 1.003 0.852 0.281 63.8 83.2 92.3

Line Wang [47] 0.482 0.394 0.089 90.7 97.3 99.1

Ours 0.431 0.356 0.088 91.1 98.1 99.5
∗120 Levin [25] 1.104 0.953 0.348 57.5 79.2 90.0

x Wang [47] 0.493 0.409 0.097 89.1 96.9 98.9

160 Ours 0.447 0.374 0.097 89.5 97.7 99.3
∗240 Levin [25] 0.664 0.578 0.196 74.2 91.8 96.7

x Wang [47] 0.416 0.342 0.081 91.5 97.7 99.2

320 Ours 0.363 0.298 0.076 92.5 98.3 99.5
∗ Metrics computed only on filled-in regions.

Depth Up-sampling (Setting = ↑ factor)

Chen [4] 0.318 - 0.061 94.2 98.9 99.8

96x
Levin [25] 0.512 0.443 0.120 85.9 97.1 99.4

Wang [47] 0.367 0.296 0.057 95.4 98.7 99.6

Ours 0.313 0.259 0.056 95.7 99.2 99.8

Chen [4] 0.193 - 0.032 98.3 99.7 99.9

48x
Levin [25] 0.319 0.275 0.065 95.4 99.1 99.8

Wang [47] 0.318 0.256 0.048 96.7 99.2 99.8

Ours 0.235 0.195 0.035 97.7 99.6 99.9

Setting Method
lower is better higher is better

rms m-rms rel δ1 δ2 δ3

Arbitrary Sparse Measurements (Setting = #measurements)

Ma [34] - 0.351 0.078 92.8 98.4 99.6

20
Levin [25] 0.703 0.602 0.175 75.5 93.0 97.9

Wang [47] 0.399 0.322 0.065 94.2 98.4 99.5

Ours 0.359 0.298 0.068 94.1 98.8 99.7

Ma [34] - 0.281 0.059 95.5 99.0 99.7

50
Levin [25] 0.507 0.436 0.117 86.4 97.1 99.3

Wang [47] 0.364 0.291 0.056 95.5 98.8 99.6

Ours 0.320 0.262 0.056 95.6 99.1 99.8

100

Levin [25] 0.396 0.340 0.085 92.2 98.5 99.6

Wang [47] 0.336 0.271 0.052 96.2 99.0 99.7

Ours 0.279 0.231 0.046 96.6 99.4 99.9

Ma [34] - 0.230 0.044 97.1 99.4 99.8

200
Levin [25] 0.305 0.264 0.061 95.7 99.2 99.8

Wang [47] 0.316 0.254 0.048 96.6 99.2 99.6

Ours 0.246 0.203 0.039 97.4 99.5 99.9

User Selection (Setting = #choices)

5 Ours 0.471 0.406 0.113 87.1 97.4 99.3

10 Ours 0.457 0.394 0.109 87.9 97.6 99.4

15 Ours 0.447 0.385 0.108 88.3 97.8 99.4

User Selection with Annotation (Setting = #choices)

5 Ours 0.398 0.342 0.098 90.4 98.2 99.6

10 Ours 0.372 0.322 0.093 91.5 98.5 99.7

15 Ours 0.364 0.315 0.090 91.9 98.7 99.7

Table 1. Results for various applications on the NYUv2 test set. We use distributional outputs from our common model to generate depth

estimates in a diverse variety of application settings: from standard monocular estimation to several applications when different forms of

additional depth cues are available. We compare to other methods for these applications, including those (shaded background) dependent

on task-specific networks trained separately for each setting. Our network, in contrast, is task-agnostic and trained only once.

4. Experiments

We now evaluate our approach on the NYUv2

dataset [44] by training a common task-agnostic distribu-

tional monocular model and applying it to solve a diverse

range of inference tasks in various application settings.

Preliminaries. We use raw frames from scenes in the

official train split for NYUv2 [44] to construct train and

val sets, and report performance on the official test set.

We use feature extraction layers from a pre-trained DORN

model [9], and since it operates on inputs and outputs

rescaled to a lower resolution (to 257×353 from 640×480),

we do the same for our VAE. However, our outputs are

rescaled back to the orginal full resolution to compute er-

rors. Input depth measurements, if any, are also provided

at full resolution (see supplementary). We use overlapping

patches of size 33 × 33 with stride four, and generate 100

samples per-patch to construct {Si}. Generating samples

takes 5.8s on a 1080Ti GPU for each image, while infer-

ence from these samples is faster (see supplementary). Our

code is available at https://projects.ayanc.org/prdepth/.

4.1. Performance on Various Inference Tasks

We evaluate depth estimation using our common model

for several applications, and report performance in terms

of standard error metrics on the official NYUv2 test set

(see [7])2 in Table 1. We report performances on standard

monocular estimation, as well for the different depth com-

pletion and user guided applications described in Sec. 3.2.

We simulate user-guidance using ground-truth depth—

selection of a global depth map is done automatically based

on lowest error, and annotation by choosing 50 × 50 win-

dows with the highest error against the ground truth and no

more than 50% overlap with previously marked regions.

Not only does our method perform well in the monoc-

ular setting—outperforming the DORN [9] whose features

it uses—it is able to improve upon this monocular estimate

with different available depth cues in the various applica-

tions. We find sparse measurements are most complemen-

tary to the monocular cue, and that user annotation is more

2Some papers interpret RMSE as mean of per-image RMSE values. We

report the standard definition as rms, and this per-image version as m-rms.
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useful than selection alone. Figure 3 shows example depth

reconstructions by our method for several applications.

Table 1 provides comparisons to a number of other depth

completion methods. Two of these do not require task-

specific training—Levin et al.’s colorization method [25],

and Wang et al.’s [47] approach to back-propagating errors

from measurements. As Wang et al.’s own results were with

older monocular networks, for a fairer comparison, we de-

rive improved results by applying their method on the same

DORN [9] model as used by our network (finding optimal

settings on a val set). As seen in Table 1, our approach is

more accurate than both these methods.

We also compare to application-specific approaches that

train specialized networks separately for each application

(and each setting). For depth completion from sparse mea-

surements, we compare to the work of Chen et al. [4] for

measurements on a regular grid, and of Ma et al. [34]3 for

those at random locations. For estimation from horizontal

line measurements, we show comparisons to the method by

Liao et al. [28]4. We find that our results—from a common

task-agnostic network model—are comparable, and indeed

often better, than these application-specific methods.

Next, we evaluate the efficacy of our approach to en-

abling applications beyond those that estimate depth maps.

In Table 2, we report results for making sparse depth mea-

surements guided by the color image using our approach

for different budgets on the number of measurements. Our

guided measurements lead to better dense depth estimates

than those at random locations (given measurements, we

use our depth estimation algorithm in both cases).

Finally, we evaluate using our distribution to predict

pairwise depth ordering in Table 3, comparing it to three

methods that specifically target this task: [3, 49, 53]. Re-

sults are reported in terms of the WKDR error metrics, on a

standard set of point pairs on the NYUv2 test set (see [53]).

We find that using our method leads to better predictions

than from these methods, and that using our distributional

output is crucial—since the accuracy of simply using the or-

derings from our monocular mean estimate is much lower.

4.2. Analysis and Ablation

We visualize the diversity of depth hypotheses in our dis-

tribution in Fig. 4. We choose one sample for each patch—

based on its rank among samples for that patch in terms of

accuracy relative to ground-truth. We vary this rank from

3[34] uses a non-standard resolution and crop to evaluate their method

and report errors. We report our performance with official settings here

be consistent with the benchmark and the other applications. Our perfor-

mance under [34]’s settings is similar, and reported in the supplementary.
4[28] uses measurements along a line simulated to be horizontal in 3D,

leading to different y image co-ordinates for each x. Lacking exact details

for replicating their setting, we use the same number of measurements but

from a line that is horizontal simply in the image plane.

Measurements 20 50 100 200

Random 0.359 0.320 0.279 0.246

Guided 0.331 0.286 0.253 0.227

Table 2. RMS error for depth estimation from different numbers

of sparse measurements, when making measurements at random

locations vs. with guidance from our distribution. Given the mea-

surements, we use our depth completion approach in both cases.

Method WKDR WKDR= WKDR6=

Zoran [53] 43.5% 44.2% 41.4%

Chen [3] 28.3% 30.6% 28.6%

Xian [49] 29.1% 29.5% 29.7%

Ours: mean 30.2% 29.9% 30.5%

Ours (distribution) 27.1% 26.0% 27.8%

Table 3. Error rates for pairwise ordinal depth ordering from our

common model, compared to other methods that used accurate or-

dering as an objective during training. We also report baseline

errors from predictions just based on our mean depth estimate.

best to worse, form a global depth map for each rank by

overlap-average, and plot the resulting accuracies. Given

the ambiguity of the monocular cue, these span a diverse

range—from a very accurate estimate when an oracle allows

ideal selection, to higher errors when adversarially choosing

the worst samples in every patch.

Figure 4 also overlays the performance of several our in-

ference tasks from Table 1. As expected, the accuracy of

pure monocular estimation is roughly at the center of the di-

stirbution range. But when additional depth cues are avail-

able, we see that our results begin to shift to have higher

accuracy—by different amounts for different applications.

This shows that our inference method is successful in incor-

porating the information present in these depth cues.

We also study different variations to our approach for

generating samples for our distribution p(Z|I) in Table 4—

measuring performance, on a validation set, in terms of ac-

curacy for a ground truth-based oracle as described above,

and more realistically, accuracy at monocular estimation

and depth completion (from 100 measurements).

First, we evaluate using a conditional GAN [36] in-

stead of a VAE (see supplementary for architecture details).

While the VAE performs better, results with the GAN are

also reasonable—suggesting that our approach is compati-

ble with different network-based sampling approaches.

Then, we consider varying the size of our patches (and

proportionally, the stride). We find smaller patches actu-

ally helps oracle performance, since with the same num-

ber of samples, it is easier to generate a sample close to

the ground-truth in a lower-dimensional space. However,

smaller patches do not accurately capture the spatial de-

pendencies within a patch, leading to poorer performance

71



Figure 3. Example depth estimates for different applications. We show outputs from our method for both the pure monocular setting, as

well as the improved estimates we obtain combining our distributional output with additional depth information—such as different kinds

of partial measurements, and user guidance with annotation and selection.

Oracle Mean S→D

C-GAN p=33,s=4 0.384 0.597 0.428

C-VAE p=17,s=2 0.263 0.518 0.413

C-VAE p=33,s=4 0.323 0.516 0.377

C-VAE p=65,s=8 0.474 0.522 0.389

C-VAE
S→D

p=33

s=8 0.396

s=16 0.405

s=32 0.436

Table 4. Ablation study on validation set. We evaluate different

ways of generating samples: using a GAN instead of a VAE, and

using different patch-sizes p (with proportional strides s). For

each case, we compare achievable accuracy of individual samples

via the “oracle” estimate (see Fig. 4), vs. their utility for actual

inference—in the pure monocular case and with random sparse

measurements (#100). We also evaluate the importance of patch

overlap by considering larger strides for our chosen model.

for actual inference. Conversely, while a higher patch size

could allow encoding longer range spatial dependencies,

doing so is harder via approximation from a reasonable

number of samples—leading to lower accuracy both with

the oracle and during inference.

For our chosen patch-size, we also evaluate higher

strides, and thus lower overlap. This leads to lower per-

formance (on depth completion), highlighting the utility of

patch-overlap in the global distribution p(Z|I), and in prop-

agating information during inference.

5. Conclusion

With distributional monocular outputs, our approach en-

ables a variety of applications without the need for repeated

training. While we considered tasks directly focused on

scene geometry in this paper, we are interested in exploring

Figure 4. Analysis of distributional output and inference method

on the test set. Our distribution allows for many possible global

depth explanations, visualized here by choosing one of the gener-

ated samples in each patch based on the rank of its accuracy go-

ing from best (oracle) to worst (adversary), and computing global

depth by overlap-average. These solutions span a large range in ac-

curacy, and without any additional information, the mean monoc-

ular estimate lies in the middle of this range. But when additional

cues are available, they can be effectively exploited by our MAP

estimation method to extract better solutions from our distribution.

how our distributional outputs can be used to manage ambi-

guity in downstream processing—such as for re-rendering

or path planning—in future work. We also believe prob-

abilistic predictions can be useful for other low- and mid-

level scene properties, like motion and reflectance.
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