
Multi-Domain Learning for Accurate and Few-Shot Color Constancy

Jin Xiao1,∗

1The Hong Kong Polytechnic University

csjxiao@comp.polyu.edu.hk

Shuhang Gu2,∗

2CVL, ETH Zürich

shuhanggu@gmail.com

Lei Zhang1,3,†

3DAMO Academy, Alibaba Group

cslzhang@comp.polyu.edu.hk

Abstract

Color constancy is an important process in camera

pipeline to remove the color bias of captured image caused

by scene illumination. Recently, significant improvements

in color constancy accuracy have been achieved by using

deep neural networks (DNNs). However, existing DNN-

based color constancy methods learn distinct mappings

for different cameras, which require a costly data acqui-

sition process for each camera device. In this paper, we

start a pioneer work to introduce multi-domain learning

to color constancy area. For different camera devices,

we train a branch of networks which share the same fea-

ture extractor and illuminant estimator, and only employ a

camera-specific channel re-weighting module to adapt to

the camera-specific characteristics. Such a multi-domain

learning strategy enables us to take benefit from cross-

device training data. The proposed multi-domain learning

color constancy method achieved state-of-the-art perfor-

mance on three commonly used benchmark datasets. Fur-

thermore, we also validate the proposed method in a few-

shot color constancy setting. Given a new unseen device

with limited number of training samples, our method is

capable of delivering accurate color constancy by merely

learning the camera-specific parameters from the few-shot

dataset. Our project page is publicly available at https:

//github.com/msxiaojin/MDLCC.

1. Introduction

Human vision system naturally has the ability to com-

pensate for different illuminants to a scene, named color

constancy. The color of images captured by cameras, how-

ever are easily affected by different illuminants, and might

appear “blueish” under sunlight and “yellowish” under in-

door incandescent light. Aiming at estimating the scene il-

luminant from the captured image, color constancy is an

important unit in camera pipeline to correct the color of cap-

∗The first two authors contribute equally to this work.
†Corresponding author. This work is supported by China NSFC grant

(no. 61672446) and Hong Kong RGC RIF grant (R5001-18).

Figure 1. Overview of our proposed multi-domain learning color

constancy method. We train color constancy networks for different

devices simultaneously. Different networks share the same feature

extractor and illuminant estimator with shared parameter θ0, and

only have their individual channel re-weighting module with pa-

rameters θA, θB and θK , respectively.

tured images.

Classical color constancy methods utilize image statis-

tics or physical properties to estimate illuminant of the

scene. The performance of these approaches is highly de-

pendent on the assumptions and these methods falter in

cases where assumptions fail to hold [31]. In the last

decade, another category of methods, i.e., the learning-

based methods, have become more popular. Early learning-

based methods [20, 15] adopt hand-crafted features and

only learn the estimating function from the training data.

Inspired by the success of deep neural networks (DNN) in

other low-level vision tasks [25, 24, 16, 38], recently pro-

posed DNN based approaches [9, 37, 26] learn image rep-

resentation as well as the estimating function jointly, and

have achieved state-of-the-art estimation accuracy.

DNN-based methods directly learn a mapping function

between the input image and ground truth illuminant label.

Given enough training data, they are able to use highly com-

plex nonlinear function to capture the relationship between

input images and the corresponding illuminants. However,

the acquisition of data for training color constancy network

is often costly: firstly, images, each contains the physical

calibration objects, in a large variety of scenes under var-

ious illuminants must be collected; and then, ground-truth

illuminant in each image needs to be estimated through the

3258

corresponding calibration object. In addition, as raw data

from different cameras exhibit distinct distributions, exist-

ing DNN-based color constancy approaches assume each

camera has an independent network, and therefore require

a large amount of labelled images for each camera. Due

to the above reasons, the capacity of existing DNN-based

color constancy methods are largely limited by the scale of

training dataset. Great attempts have been made to improve

the performance of color constancy models under insuffi-

cient training data.

In this paper, we proposed a multi-domain learning color

constancy (MDLCC) method to leverage labelled color con-

stancy data from different datasets and devices. Inspired

by conventional imaging pipelines, which employ camera-

specific estimation functions to estimate the illuminant from

common low-level features, MDLCC adopts the same fea-

ture extractor to extract low-level features from input raw

data, and use a camera-specific channel re-weighting mod-

ule to transform device-specific features to a common fea-

ture space for adapting to different cameras. The common

feature extractor is trained using data from different devices,

and we train device-specific channel re-weighting module

with data from different domains for domain adaptation.

Such a strategy enables us to address the CSS difference

among different cameras while leveraging different datasets

to train a more powerful deep feature extractor. The pro-

posed MDLCC framework learns most of the network pa-

rameters in each network with a much larger dataset, which

significantly improves the color constancy accuracy of each

camera.

Besides improving the color constancy performance of

well established devices which already have a considerable

amount of labelled data, our multi-domain network archi-

tecture also enables us to adapt our network to new cam-

eras easily. Given insufficient number of labelled samples

from a new camera device, MDLCC only needs to learn the

device-specific parameters, and most of the network param-

eters are inherited from the meta-model which was trained

on large scale dataset. Such a few-shot color constancy

problem has been investigated in a recent paper [31]. Mc-

Donagh et al. [31] utilized the meta-learning technique [19]

to learn a color constancy network which is easier to adapt

to new cameras. However, as [31] still needs to fine-tune

all the network parameters on the few-shot dataset, it has

only achieved limited illuminant estimation performance in

the few-shot setting. In contrast, the proposed MDLCC ap-

proach only needs to learn a small number of parameters

from the few-show dataset, and is able to achieve higher

few-shot estimation accuracy.

Our main contributions are summarized as follows:

1. This paper starts a pioneer work to leverage the multi-

domain learning idea to improve the color constancy

performance.

2. We propose a device-specific channel re-weighting

module to adapt the features from different domains

to a common estimator. This allows us to use the same

feature extraction and illuminant estimation modules

for different cameras.

3. The proposed MDLCC achieved state-of-the-art color

constancy performance on benchmark datasets [36],

[14] and [3], in both the standard and few-shot settings.

2. Related Work

In this section, we firstly provide an overview of color

constancy and then introduce previous work of handling in-

sufficient training data. Lastly, we present a brief introduc-

tion to the multi-domain methods, which is closely related

to our contributions.

2.1. Color Constancy: An Overview

Existing color constancy methods can be divided into

two categories: the statistics-based methods [12, 11, 18, 40]

and the learning-based methods [15, 20, 8, 37, 26, 6, 7].

Based on different priors of the ’true’ white-balanced im-

age, statistics-based methods use statistics of the observed

image to estimate the illuminant. Despite its fast estimating

speed, the simple assumptions adopted in these approaches

may not fit well the complex scenes, and thus limited the es-

timation performance of the statistics-based methods. The

learning-based methods learn color constancy models from

training data. Early works along this branch used handcraft

features, followed by decision tree [15] or support vector

regression approach [20] to regress the scene illuminants.

To take full advantage of training data, recent works have

started to learn features from data for color constancy. In

[8], Bianco et al. used a 3 layer convolutional network to

estimate local illuminants for image patches. Shi et al.

[37] designed two sub-networks to adapt to the ambigu-

ity of local estimates. In [26], Hu et al. proposed the FC4

approach which introduced a confidence-weighted pooling

layer in a fully convolutional network to estimate illumi-

nants from images with arbitrary sizes. Besides extracting

features from the raw image, [6, 7] constructed histograms

in log-chromatic space, and then apply a learned conv fil-

ter to the histograms to estimate illuminant. In spite of the

strong performances, learning-based color constancy meth-

ods often require a large amount of training data and have

limited generalization capacity to new devices.

2.2. Color constancy with insufficient training data

Since the construction of large scale datasets with

enough variety and manual annotations is often laborious

and costly, a large number of approaches have been pro-

posed to remedy the insufficiency of training data.

3259

Data augmentation Data augmentation is a commonly

used strategy for training models with insufficient data.

Currently, most of the learning-based color constancy

works have utilized the data augmentation strategy for im-

proving the estimation accuracy. Specifically, random crop-

ping [26] and image relighting [26, 9] are the most com-

monly used data augmentation schemes. However, as such

simple augmentation schemes can not increase the diver-

sity of scenes, they can only bring marginal improvement

to the learned color constancy model. Recently, Banić et

al. [2] designed a image generator to simulate images under

various illuminants which however, is faced with the gap

between synthetic and real data.

Pre-training Besides data augmentation, another strat-

egy for improving color constancy performance is pre-

training. FC4 [26] started with the AlexNet, which is pre-

trained on ImageNet dataset as feature extractor. A smaller

learning rate is then used to fine-tune these parameters.

Weakly supervised learning Several works also resorted

to unsupervised learning methods. In [39], Tieu et al. pro-

posed to learn a linear statistical model on a single device

from video frame observations. Banić et al. [3] utilize sta-

tistical approach to approximate the unknown ground-truth

illumination of the training images, and learn color con-

stancy model from approximated illumination values. Cur-

rently, the unsupervised learning approach has achieved bet-

ter performance than conventional statistical-based meth-

ods, but is still not on par with supervised state-of-the-arts.

Inter-camera transformation Due to the distinction

among raw images by different devices, large scale dataset

needs to be collected for each device. Several work also

focused on reducing the workload of constructing camera-

specific dataset. Gao et al. [21] attempt to discount the vari-

ation among different devices by learning a transformation

matrix based on camera spectral sensitivity. Banić et al.

[3] proposed to learn transformation matrix among ground

truth distributions of two cameras, before inter-camera ex-

periments. The existing inter-camera approaches only study

pairs of sensors and there has not been any works which

could leverage data from a large number of devices.

Few-shot learning Recently, McDonagh et al. [31]

have formulated the color constancy of different cameras

and color temperature as a few-shot learning problem.

The model-agnostic meta-learning method [19] has been

adopted to learn a meta model which is capable of adapting

to new cameras using only a small number of training sam-

ples. However, as McDonagh et al. did not exploit domain

knowledge of color constancy and only rely on the adapta-

tion capacity of MAML algorithm [31], only achieved lim-

ited performance in the few-shot setting.

2.3. Multidomain Learning

Multi-domain learning aims to improve the performance

for the same tasks with inputs from multiple domains, by

exploiting correlation among the multi-domain datasets.

In the last decade, a large amount of works [28, 33, 34,

35] have comprehensively shown that by jointly learn-

ing from multiple domains brings significant performance

gains compared with individually learning for each domain.

These methods usually incorporate an adaptation model,

e.g., the domain-specific conv [34, 35] and batch normaliza-

tion [10], to adapt to inputs from different domains. In this

paper, we start from the commonality of different devices’

color constancy problems, and design a camera-specific

channel re-weighting layer for handling multi-device color

constancy problem.

3. Multi-domain Learning Color Constancy

In this section, we introduce our proposed multi-domain

learning color constancy (MDLCC) method. We start with

the formulation of color constancy problem and the target

of our MDLCC model. Then, we introduce the network

architecture of MDLCC as well as how MDLCC could be

utilized to solve the few-shot color constancy problem.

3.1. Problem Formulation

We focus on the single illuminant color constancy prob-

lem which assumes the scene illuminant is global and uni-

form. Under the Lambertian assumption, the image forma-

tion can be simplified as:

Yc = ΣN
n=1

Cc(λn)I(λn)R(λn), c ∈ {r, g, b} (1)

where Y is the observed raw image. λn for n = 1, 2, ...N
represents the discrete sample of wavelength λ. Cc(λn)
represents the camera spectral sensitivity (CSS) of color

channel c. I(λn) is the spectral power distribution of illu-

minant, and R(λn) denotes the surface reflectance of the

scene. Color constancy aims to estimate the illuminant

L = [Lr, Lg, Lb] given the observed image Y. The latent

’white-balanced’ image W can then be derived according to

the von Kries model [41] by

Wc = Yc/Lc, c ∈ {r, g, b}. (2)

Since different cameras use distinct CSS, raw image

Y by different camera occupies different color subspaces.

Existing learning based methods generally train indepen-

dent model for each device. In this work we combine raw

images by different devices to jointly learn a color con-

stancy model. Denote the training data from device k as

Dk = {Yk,i,Lk,i}
Nk

i=1
, where the superscript k, i denote

the device index and sample index, respectively, and Nk is

the number of samples for Dk. The proposed multi-domain

3260

Figure 2. The proposed multi-domain color constancy network architecture. We used shared layers among multiple devices for feature

extraction. A camera-specific channel re-weighting module was then used to adapt to each device. The illuminant estimation stage finally

predicted the scene illuminant.

learning color constancy aims to learn a branch of networks

which take raw images from different domains as inputs to

estimate the illuminant of the scene:

{θ∗
0
, θ∗k} = arg min

θ0,θk

K∑

k=1

Nk∑

i=1

L (Lk,i, f(Yk,i; θ0, θk)) ,

(3)

where the same network architecture f(·) is adopted for all

the devices, and θ0 and θk are the shared and device-specific

parameters in the networks, respectively. L is the loss func-

tion which measures the difference between ground truth

and estimated illuminants.

3.2. Network Architecture of MDLCC

As introduced in the previous section, we proposed to

utilize the same network architecture and only use partial

device-specific parameters to adapt to different devices. In

order to validate our idea of using multi-domain learning to

improve color constancy performance for different devices,

we do not investigate new network architecture and utilize

FC4 (SqueezeNet model) as our backbone. Specifically,

we assume FC4 can be divided into two stages: 1) the first

10 layers of network, which gradually reduce the spatial res-

olution of feature maps, constitute a low-level feature ex-

tractor; 2) the last 2 layers of network constitute an estima-

tor which summarizes the extracted feature to estimate the

illuminant. Inspired by previous inter-camera approaches

[21] which proposed to learn a transformation matrix to cor-

relate different cameras, we propose a device-specific chan-

nel re-weighting module and apply different transforms, in

the high dimensional feature space, for features extracted

from different devices.

An illustration of our network architecture is presented

in Fig. 2. For different devices, we employ the same fea-

ture extraction module to extract features from input im-

ages; and then use the device-specific channel re-weighting

module to transform the features; finally, the same estimator

is utilized to generate the final illuminant estimation. The

details of the feature extraction, channel re-weighting and

illuminant estimation modules are introduced as follows.

Feature extraction. We use the first 10 layers in FC4 as

our feature extractor. For the first layer, stride 2 convolution

with 64 filters of size 3 × 3 is used to generate 64 feature

maps. Then, 3 blocks, each consists of a max pooling layer

and two fire blocks [27] are followed to increase receptive

field and further reduce the spatial resolution of feature map

by factor 8. The channel dimension of feature maps after

each block is 128, 256 and 384 respectively. The ReLU [32]

is used as activation function following each conv layer.

Channel re-weighting module. In order to adapt the low-

level features from different domains to a common space,

we propose a device-specific channel re-weighting module

to transform features. Concretely, we derive the scaling fac-

tors from statistic of extracted features and device-specific

parameters. Denote the output of feature extractor for im-

age Yk,i as Fk,i, we use a global average pooling layer to

calculate the mean values for each channel of Fk,i. Then,

the channel-wise scaling vector ωk,i can be obtained by:

ωk,i = gsigmoid(Wk,b ∗ gReLU (Wk,a ∗ zk,i)), (4)

where zk,i is the mean values of Fk,i, {Wk,a,Wk,b} are

device-specific parameters, ∗ is the convolution operator,

gReLU and gsigmoid are the ReLU and sigmoid functions,

respectively. Eq. (4) utilizes two device-specific fully con-

nected layers to generate the channel scaling factors from

the statistics of input feature map. Having ωk,i, the trans-

formed feature Gk,i can be obtained by:

Gk,i = ωk,i ⊗ Fk,i, (5)

where ⊗ represents the channel-wise multiplication.

3261

Illuminant estimation. With the transformed feature Gk,i,

we utilize two convolution layers to estimate local illumi-

nants and the final global illuminant value L̂k,i is achieved

by a subsequent global average pooling layer.

During the training phase, all the training samples con-

tribute to the training of feature extraction and illuminant

estimation modules, while only the samples from device k
affect the device-specific parameters {Wk,a,Wk,b} in the

channel re-weighting module.

3.3. MDLCC for fewshot color constancy

MDLCC learns shared and device-specific parameters

to leverage the labelled data from different devices. Most

of the parameters are shared by different devices and only

a small portion (6.7%) of parameters are device-specific.

Such a property of MDLCC makes it an ideal architecture

for few-shot color constancy. Specifically, given limited

number of training samples from a new unseen device, we

only need to learn the device-specific parameters from these

samples and the shared parameters can be inherited from ex-

isting MDLCC models. More details of our few-shot color

constancy settings will be introduced in section 4.2.

4. Experiments

4.1. Datasets

We evaluate our proposed method using three widely-

used color constancy datasets: the reprocessed [36] Gehler-

Shi dataset [22], the NUS 8-camera dataset [14] and the

Cube+ dataset [3]. The Gehler-Shi dataset was collected

using two cameras, i.e., Canon 1D and Canon 5D. It con-

tains both indoor and outdoor scenes, and comprises 568

scenes in total. The NUS dataset contains 1,736 images

which were collected using 8 cameras in about 260 scenes.

While the Cube+ dataset is a recently released large scale

color constancy dataset. It contains 1,365 outdoor scenes

and 342 indoor scenes. And all the images were captured by

a Canon 550D camera. For each dataset, we follow previ-

ous work [6, 7, 26] to use the linear RGB images for exper-

iments. The linear RGB images were obtained by applying

a simple down-sample de-mosaicking operation to the raw

images, followed by black-level subtraction and saturation

pixel removal.

We follow previous works [7, 26, 14] to use 3-fold cross

validation for each dataset. Specifically, for the Gehler-Shi

dataset, we used the cross validation splits provided in the

author’s homepage. The subsets for each camera in NUS

dataset contain images from the same scene. To ensure that

the same scene would not be in both training and testing

sets when combining multiple subsets in the NUS dataset,

we split the training and testing set for NUS dataset accord-

ing to scene content. As for the cube+, we randomly split

the testing set into 3 folds for cross validation. We use the

angular error in degree as quantitative measure, which has

been utilized in previous methods [6, 7, 26, 14]. In all of our

experiments, we report 5 metrics of the angular errors, i.e.,

the mean, median, tri-mean of all errors, mean of the lowest

25% of errors, and mean of the highest 25% of errors.

4.2. Implementing Details

We train our networks with the angular loss:

L(L, L̂) = cos−1(
L̂ ⊙ L

||L̂|| × ||L||
), (6)

where ⊙ represents the inner product, and cos−1(·) is the

inverse of cosine function.

Our framework is implemented based on TensorFlow [1]

with CUDA support. For both the multi-domain setting and

few-shot setting, we train our networks with inputs of size

384 × 384 × 3. Image random cropping and relighting

[26] are used as data augmentations. We employ the Adam

solver [30] as optimizer and set the learning rate as 1×10−4.

The weight decay value is set as 0.0001 and momentum is

set as 0.9. For the experiments with all the training sam-

ples, we train our model for 750,000 iterations with batch

size 8. While for few-shot experiments, we train our model

for 15,000 iterations with batch size 8.

For the multi-domain setting, we train all the parame-

ters from scratch and initialize them with normal distribu-

tion. For the few-shot setting, the shareable weights are di-

rectly inherited from the meta-model (more details of meta

model will be introduced in section 4.5) and we only train

camera-specific parameters. The camera-specific parame-

ters are initialized with normal distribution.

4.3. Ablation Study and Analysis

In this section, we carry out ablation study to evaluate

the effectiveness of multi-domain learning as well as our

proposed camera-specific channel re-weighting module.

To validate the effectiveness of multi-domain color con-

stancy, we implement two variants: 1) single device color

constancy and 2) multi-device combination model. Con-

cretely, the single device color constancy model utilizes our

network architecture and trains independently network for

each device; the multi-device combination method collects

training data from all devices and trains a unique network

to process images from different devices. For fair compar-

ison, all the hyper parameters are kept the same as in our

MDLCC approach. Furthermore, in order to analyze the ef-

fect of device number for our multi-domain learning model,

we present 4 groups of experiments which utilize images

from different numbers of cameras for training. The details

of the combined cameras are listed in Table 1. In the last

group, we combine all the cameras from Gehler-Shi, NUS

and Cube+ dataset, which contain 11 different cameras in

total. The quantitative performances are listed in Table 1.

3262

Table 1. Ablation study by comparing Single Device model, Multi-device Combination model and our proposed MDLCC model, under

different combinations of cameras. The best is shown in red.

Dataset

Method
Single Device Color Constancy Multi-device Combination MDLCC

Mean Med. Tri.
Best
25%

Worst
25% Mean Med. Tri.

Best
25%

Worst
25% Mean Med. Tri.

Best
25%

Worst
25%

Gehler-Shi 1.66 1.14 1.24 0.38 3.86 1.91 1.34 1.41 0.42 4.47 1.62 1.10 1.17 0.36 3.79

NUS-C600D 1.97 1.39 1.54 0.47 4.37 1.92 1.34 1.47 0.44 4.26 1.82 1.26 1.39 0.44 4.15

Gehler-Shi 1.66 1.14 1.24 0.38 3.86 1.89 1.35 1.46 0.41 4.45 1.61 0.99 1.11 0.37 3.79

NUS-C1 2.04 1.45 1.60 0.50 4.55 1.98 1.42 1.54 0.48 4.35 1.87 1.33 1.48 0.46 4.19

Cube+ 1.35 0.95 1.02 0.32 3.04 1.35 0.93 1.00 0.31 3.10 1.24 0.83 0.96 0.26 2.97

NUS-Fuj. 2.08 1.59 1.73 0.50 4.45 2.04 1.54 1.66 0.49 4.32 1.97 1.39 1.51 0.45 4.43

NUS-N52 2.33 1.65 1.82 0.50 5.34 2.21 1.53 1.73 0.45 4.89 2.00 1.47 1.53 0.45 4.59

Cube+ 1.35 0.95 1.02 0.32 3.04 1.35 0.92 1.01 0.31 3.08 1.26 0.84 0.94 0.25 2.97

Gehler-Shi 1.66 1.14 1.24 0.38 3.86 1.87 1.33 1.46 0.43 4.40 1.59 0.95 1.11 0.37 3.77

NUS-C1 2.04 1.45 1.60 0.50 4.55 2.00 1.43 1.55 0.45 4.39 1.86 1.35 1.49 0.46 4.11

NUS-C600D 1.97 1.39 1.54 0.47 4.37 1.93 1.35 1.45 0.44 4.33 1.65 1.16 1.29 0.35 3.73

NUS-Fuj. 2.08 1.59 1.73 0.50 4.45 2.03 1.55 1.67 0.47 4.36 1.87 1.37 1.48 0.45 4.18

NUS-N52 2.33 1.65 1.82 0.50 5.34 2.25 1.66 1.79 0.44 5.01 1.96 1.38 1.52 0.44 4.54

NUS-Oly. 1.86 1.37 1.51 0.47 4.08 1.80 1.34 1.48 0.46 3.97 1.68 1.15 1.30 0.34 3.85

NUS-Pan. 1.98 1.41 1.48 0.41 4.52 1.90 1.38 1.46 0.42 4.37 1.69 1.20 1.33 0.45 3.73

NUS-Sam. 2.18 1.66 1.75 0.54 4.79 2.13 1.52 1.69 0.52 4.62 1.78 1.33 1.42 0.41 3.95

NUS-Son. 1.91 1.51 1.56 0.55 4.05 1.86 1.47 1.54 0.53 3.89 1.74 1.36 1.44 0.46 3.70

Cube+ 1.35 0.95 1.02 0.32 3.04 1.36 0.92 1.05 0.33 3.15 1.24 0.84 0.95 0.27 2.95

Input from Gehler-Shi Single device (6.04◦) MD-combination (8.80◦) MDLCC (3.39◦) GT

Input from Cube Single device (6.19◦) MD-combination (10.62◦) MDLCC (5.25◦) GT

Figure 3. Visualization of color constancy results by single device color constancy model, multiple device combination model, and our

proposed MDLCC model. Images are converted to sRGB for visualization.

Multi-domain learning Compared with single device

approach which learns distinct network on each dataset, our

method achieves better performance on all the sub-datasets.

Even for the large scale Cube+ dataset which contains 1707

training samples, data from related domains is beneficial.

This clearly demonstrates the effectiveness of multi-domain

learning in the color constancy area.

Camera-specific channel re-weighting module By

comparing single device results and multi-device combi-

nation results, we found that directly combining several

datasets without the camera-specific module can not con-

stantly improve the color constancy performance. It might

lead to improved performance for one camera but degrades

severely for the others. For example, when combining

Gehler-Shi with NUS-C600D, the performance on Gehler-

Shi dataset degrades dramatically from 1.66 to 1.91 in mean

error. This reveals that directly combining multiple dataset

without device-specific module can not take full advantage

of the cross-device training data. While, by adopting the

camera-specific channel re-weighting module, our MDLCC

approach significantly outperforms the multi-device combi-

nation baseline.

Number of devices From Table 1 we also observed that

by increasing the number of devices in MDLCC, the per-

formance can be further improved. This is because more

training samples comprise more scenes and illuminants, and

are beneficial for learning more generalized representations.

For example, the mean error of MDLCC on NUS-600D is

3263

Table 2. Color constancy results by different methods on reprocessed Gehler-Shi [36], NUS [14] and Cube+ dataset [3]. The best and

second metric is shown in red and blue respectively.

Method

Dataset Gehler-Shi NUS Cube+

Mean Med. Tri.
Best
25%

Worst
25% Mean Med. Tri.

Best
25%

Worst
25% Mean Med. Tri.

Best
25%

Worst
25%

White-Patch [11] 7.55 5.68 6.35 1.45 16.12 9.91 7.44 8.78 1.44 21.27 6.80 3.85 5.21 0.68 16.93

Grey-world [12] 6.36 6.28 6.28 2.33 10.58 4.59 3.46 3.81 1.16 9.85 3.52 2.55 2.82 0.60 7.98

Edge-based Gamut [4] 6.52 5.04 5.43 1.90 13.58 4.40 3.30 3.45 0.99 9.83 – – – – –

1st-order Gray-Edge [40] 5.33 4.52 4.73 1.86 10.03 3.35 2.58 2.76 0.79 7.18 3.06 2.05 2.32 0.55 7.22

2nd-order Gray-Edge [40] 5.13 4.44 4.62 2.11 9.26 3.36 2.70 2.80 0.89 7.14 3.28 2.34 2.58 0.66 7.44

Shades-of-Gray [18] 4.93 4.01 4.23 1.14 10.20 3.67 2.94 3.03 0.98 7.75 3.22 2.12 2.44 0.43 7.77

Bayesian [22] 4.82 3.46 3.88 1.26 10.49 3.50 2.36 2.57 0.78 8.02 – – – – –

General Gray-World [5] 4.66 3.48 3.81 1.00 10.09 3.20 2.56 2.68 0.85 6.68 – – – – –

Natural Image Statistics [23] 4.19 3.13 3.45 1.00 9.22 3.45 2.88 2.95 0.83 7.18 – – – – –

Spatio-spectral Statistics [13] 3.59 2.96 3.10 0.95 7.61 3.06 2.58 2.74 0.87 6.17 – – – – –

Intersection-based Gamut [4] 4.20 2.39 2.93 0.51 10.70 – – – – – – – – – –

Pixels-based Gamut [4] 4.20 2.33 2.91 0.50 10.72 5.27 4.26 4.45 1.28 11.16 – – – – –

Cheng 2014 [14] 3.52 2.14 2.47 0.50 8.74 2.18 1.48 1.64 0.46 5.03 – – – – –

Exemplar-based [29] 2.89 2.27 2.42 0.82 5.97 – – – – – – – – – –

Corrected-Moment [17] 2.86 2.04 2.22 0.70 6.34 2.95 2.05 2.16 0.59 6.89 – – – – –

Regression Tree [15] 2.42 1.65 1.75 0.38 5.87 – – – – – – – – – –

CCC [6] 1.95 1.22 1.38 0.35 4.76 2.38 1.48 1.69 0.45 5.85 – – – – –

DS-Net (HypNet+SelNet) [37] 1.90 1.12 1.33 0.31 4.84 2.24 1.46 1.68 0.48 6.08 – – – – –

FC4 (SqueezeNet-FC
4) [26] 1.65 1.18 1.27 0.38 3.78 2.23 1.57 1.72 0.47 5.15 1.35 0.93 1.01 0.30 3.24

FFCC (model J) [7] 1.80 0.95 1.18 0.27 4.65 1.99 1.31 1.43 0.35 4.75 1.38 0.74 0.89 0.19 3.67

FFCC+metadata+semantics [7] 1.61 0.86 1.02 0.23 4.27 – – – – – – – – – –

MDLCC 1.58 0.95 1.11 0.37 3.77 1.78 1.29 1.40 0.42 3.97 1.24 0.83 0.92 0.26 2.91

1.82 when combining with Gehler-Shi, which can be further

decreased to 1.65 when combining with all the other cam-

eras. This also demonstrates the effectiveness of our pro-

posed camera-specific channel re-weighting module. Our

model is still effective in handling 11 devices.

4.4. Comparison with Stateoftheart

In this section, we compare our proposed multi-domain

color constancy approach with other color constancy algo-

rithms. We compare our approach with competing methods

on the Gehler-Shi [36], NUS [14] and Cube+ [3] datasets.

For the NUS dataset, we follow previous work [7, 26] and

take the geometric mean of each metric over 8 cameras. We

train our model by combining all the devices in the three

datasets. The results of comparison methods on the Gehler-

Shi dataset and NUS dataset are collected from [7, 26].

While, for the Cube+ dataset, we present the results us-

ing open source codes from the authors’ webpages. We

retrain the FFCC [7] and FC4 [26] models on the Cube+

dataset, and the hyper-parameters have been carefully tuned

to achieve the best performance.

The experimental results are listed in Table 2. Except the

state-of-the-art FFCC approach, the proposed MDLCC out-

performs all competing approaches in all metrics. Specif-

ically, our model constantly outperforms our backbone ar-

chitecture, i.e., the FC4 approach, this clearly validates the

effectiveness of multi-domain learning for color constancy.

Compared to the FFCC approach, our model generally out-

performs the base FFCC model which only exploits image

content for color constancy, and is comparable to the full

FFCC model which additionally takes the camera metadata

(exposure setting and camera info) and semantic informa-

tion as inputs. Concretely, our model shows better perfor-

mance in terms of mean error and the worst 25% of mean

errors, while inferior performances in the other three met-

rics. A possible reason is that our loss function has the ten-

dency to reduce the average error over all training samples,

which better fits the mean error and worst 25% metrics.

4.5. Fewshot Evaluations

In this section, we conduct experiments to validate the

capacity of the proposed model for few-shot color con-

stancy problem. We used the Gehler-Shi, Cube dataset and

one subset from NUS (NUS-C1) as the few-shot testing

datasets. Note that Cube dataset is a subset from Cube+

which contains only the outdoor scenes. We choose Cube

instead of Cube+ for the purpose of directly comparing

our method with the recently proposed Few-shot Meta-

Learning Color Constancy method (FMLCC) [31]. For

training our model, we use the remaining 7 datasets, i.e.,

7 subsets from NUS dataset, as the training set and only

finetune those device-specific parameters on the few-shot

dataset. Specifically, we vary the number of few-shot sam-

ple K as 1, 5, 10 and 20 respectively, for thoroughly validat-

3264

Table 3. Comparison of few-shot color constancy models.

Method

Test set
NUS-C1 Cube Gehler-Shi

Mean Med. Tri.
Best
25%

Worst
25% Mean Med. Tri.

Best
25%

Worst
25% Mean Med. Tri.

Best
25%

Worst
25%

Single device 2.04 1.45 1.60 0.50 4.55 1.21 0.85 0.90 0.23 2.85 1.66 1.14 1.24 0.38 3.86

FMLCC [31]
K=10 – – – – – 1.63 1.08 1.20 0.31 3.89 2.66 1.91 1.99 0.49 6.20

K=20 – – – – – 1.59 1.02 1.15 0.30 3.85 2.57 1.84 1.94 0.47 6.11

MDLCC

K=1 2.93 2.27 2.40 0.95 6.05 2.02 1.75 1.83 0.85 3.67 3.00 2.32 2.49 0.88 6.24

K=5 2.36 1.72 1.87 0.60 5.08 1.63 1.20 1.30 0.50 3.46 2.43 1.76 1.94 0.59 5.33

K=10 2.27 1.61 1.81 0.57 4.97 1.56 1.14 1.24 0.43 3.33 2.32 1.68 1.83 0.57 5.17

K=20 2.18 1.59 1.75 0.51 4.80 1.47 1.06 1.14 0.39 3.27 2.26 1.60 1.75 0.56 5.08

Input from Cube K = 1 (1.68◦) K = 5 (0.64◦) K = 10 (0.48◦) K = 20 (0.31◦) GT

Input from Gehler-Shi K = 1 (3.83◦) K = 5 (0.93◦) K = 10 (0.54◦) K = 20 (0.39◦) GT

Figure 4. Visualization of few-shot color constancy results. Images are converted to sRGB for visualization. The two input images are

taken from Cube and Gehler-Shi dataset respectively. We present the few-shot color constancy results with different training sample K.

The angular error in degree is also given.

ing our method. We split each test dataset into three folds.

For each fold, we randomly chose K samples from the re-

maining folds to construct the training samples, which were

used to learn the camera-specific parameters. To avoid the

randomness and disturbance by the selection of K training

samples, we repeated the few-shot experiments for 10 times,

each with different random choices of K images. We then

present the average of each metric over 10 runs. The few-

shot performances are listed in Table 3. We choose FMLCC

[31] for comparison and the results of FMLCC are copied

from the original paper [31]. The performance of the single

device color constancy, which used the whole dataset for

training, is also provided for reference.

Compared with previous few-shot color constancy ap-

proach FMLCC [31], our model achieved much better re-

sults in most of metrics. In addition, as FMLCC needs to

fine-tune all the network weights, they might not be able to

deliver good results for extreme few-shot cases, for exam-

ple K = 1. While, as our model only requires retraining the

camera-specific weights, we can still obtain good color con-

stancy performance. From Table 3 and Table 2, one can see

that with only single shot (K = 1), our model outperforms

most of statistical-based approaches. Moreover, when us-

ing K = 20 training samples, our model achieves compara-

ble performance with single device model, which used the

whole dataset for training. Some visual examples of our few

shot color constancy results are provided in Fig. 4.

5. Conclusions

Deep networks can largely improve the color constancy

accuracy with large scale annotated dataset. However, the

acquisition of such dataset is laborious and costly, espe-

cially for color constancy problem which requires indepen-

dent dataset for each camera due to the distinction in de-

vices. In this paper, we start a pioneer work to leverage the

multi-domain learning method for color constancy problem.

Specifically, we utilized training data by different devices

to train a single model, to learn complementary representa-

tions and improve generalization capability. Experimental

results show that with the proposed shareable modules and

camera-specific module, our model achieves much better re-

sults than training independent model for each device, and

also achieves state-of-the-art performance on three bench-

mark datasets. We also tested the color constancy perfor-

mances under few-shot setting. Experimental results show

that the proposed model can effectively adapt to a new de-

vice with only a few, e.g., 20, training samples.

3265

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementa-

tion ({OSDI} 16), pages 265–283, 2016.

[2] Nikola Banić, Karlo Koščević, Marko Subašić, and Sven

Lončarić. Crop: Color constancy benchmark dataset gen-

erator. arXiv preprint arXiv:1903.12581, 2019.

[3] Nikola Banić and Sven Lončarić. Unsupervised learning for

color constancy. arXiv preprint arXiv:1712.00436, 2017.

[4] Kobus Barnard. Improvements to gamut mapping colour

constancy algorithms. In European conference on computer

vision, pages 390–403. Springer, 2000.

[5] Kobus Barnard, Vlad Cardei, and Brian Funt. A comparison

of computational color constancy algorithms. i: Methodol-

ogy and experiments with synthesized data. IEEE transac-

tions on Image Processing, 11(9):972–984, 2002.

[6] Jonathan T Barron. Convolutional color constancy. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 379–387, 2015.

[7] Jonathan T Barron and Yun-Ta Tsai. Fast fourier color con-

stancy. In IEEE Conf. Comput. Vis. Pattern Recognit, 2017.

[8] Simone Bianco, Claudio Cusano, and Raimondo Schettini.

Color constancy using cnns. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Workshops, pages 81–89, 2015.

[9] Simone Bianco, Claudio Cusano, and Raimondo Schettini.

Single and multiple illuminant estimation using convolu-

tional neural networks. IEEE Transactions on Image Pro-

cessing, 26(9):4347–4362, 2017.

[10] Hakan Bilen and Andrea Vedaldi. Universal representations:

The missing link between faces, text, planktons, and cat

breeds. arXiv preprint arXiv:1701.07275, 2017.

[11] David H Brainard and Brian A Wandell. Analysis of the

retinex theory of color vision. JOSA A, 3(10):1651–1661,

1986.

[12] Gershon Buchsbaum. A spatial processor model for ob-

ject colour perception. Journal of the Franklin institute,

310(1):1–26, 1980.

[13] Ayan Chakrabarti, Keigo Hirakawa, and Todd Zickler. Color

constancy with spatio-spectral statistics. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 34(8):1509–

1519, 2012.

[14] Dongliang Cheng, Dilip K Prasad, and Michael S Brown. Il-

luminant estimation for color constancy: why spatial-domain

methods work and the role of the color distribution. JOSA A,

31(5):1049–1058, 2014.

[15] Dongliang Cheng, Brian Price, Scott Cohen, and Michael S

Brown. Effective learning-based illuminant estimation us-

ing simple features. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1000–

1008, 2015.

[16] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE transactions on pattern analysis and machine

intelligence, 38(2):295–307, 2015.

[17] Graham D Finlayson. Corrected-moment illuminant estima-

tion. In Computer Vision (ICCV), 2013 IEEE International

Conference on, pages 1904–1911. IEEE, 2013.

[18] Graham D Finlayson and Elisabetta Trezzi. Shades of gray

and colour constancy. In Color and Imaging Conference,

volume 2004, pages 37–41. Society for Imaging Science and

Technology, 2004.

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pages 1126–1135. JMLR. org,

2017.

[20] Brian Funt and Weihua Xiong. Estimating illumination chro-

maticity via support vector regression. In Color and Imaging

Conference, volume 2004, pages 47–52. Society for Imaging

Science and Technology, 2004.

[21] Shao-Bing Gao, Ming Zhang, Chao-Yi Li, and Yong-Jie Li.

Improving color constancy by discounting the variation of

camera spectral sensitivity. JOSA A, 34(8):1448–1462, 2017.

[22] Peter Vincent Gehler, Carsten Rother, Andrew Blake, Tom

Minka, and Toby Sharp. Bayesian color constancy revisited.

In 2008 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2008.

[23] Arjan Gijsenij and Theo Gevers. Color constancy using natu-

ral image statistics and scene semantics. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 33(4):687–

698, 2011.

[24] Shuhang Gu, Shi Guo, Wangmeng Zuo, Yunjin Chen, Radu

Timofte, Luc Van Gool, and Lei Zhang. Learned dynamic

guidance for depth image reconstruction. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2019.

[25] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.

Self-guided network for fast image denoising. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 2511–2520, 2019.

[26] Yuanming Hu, Baoyuan Wang, and Stephen Lin. Fc

4: Fully convolutional color constancy with confidence-

weighted pooling. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4085–

4094, 2017.

[27] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[28] Mahesh Joshi, William W Cohen, Mark Dredze, and Car-

olyn P Rosé. Multi-domain learning: when do domains mat-

ter? In Proceedings of the 2012 Joint Conference on Em-

pirical Methods in Natural Language Processing and Com-

putational Natural Language Learning, pages 1302–1312.

Association for Computational Linguistics, 2012.

[29] Hamid Reza Vaezi Joze and Mark S Drew. Exemplar-

based color constancy and multiple illumination. IEEE

transactions on pattern analysis and machine intelligence,

36(5):860–873, 2014.

3266

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[31] Steven McDonagh, Sarah Parisot, Zhenguo Li, and Gregory

Slabaugh. Meta-learning for few-shot camera-adaptive color

constancy. arXiv preprint arXiv:1811.11788, 2018.

[32] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proceedings of the

27th international conference on machine learning (ICML-

10), pages 807–814, 2010.

[33] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Learning multiple visual domains with residual adapters. In

Advances in Neural Information Processing Systems, pages

506–516, 2017.

[34] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Learning multiple visual domains with residual adapters. In

Advances in Neural Information Processing Systems, pages

506–516, 2017.

[35] Amir Rosenfeld and John K Tsotsos. Incremental learning

through deep adaptation. IEEE transactions on pattern anal-

ysis and machine intelligence, 2018.

[36] Lilong Shi. Re-processed version of the gehler color con-

stancy dataset of 568 images. http://www. cs. sfu. ca/˜

color/data/, 2000.

[37] Wu Shi, Chen Change Loy, and Xiaoou Tang. Deep special-

ized network for illuminant estimation. In European Confer-

ence on Computer Vision, pages 371–387. Springer, 2016.

[38] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8174–8182, 2018.

[39] Kinh Tieu and Erik G Miller. Unsupervised color constancy.

In Advances in neural information processing systems, pages

1327–1334, 2003.

[40] Joost Van De Weijer, Theo Gevers, and Arjan Gijsenij. Edge-

based color constancy. IEEE Transactions on image process-

ing, 16(9):2207–2214, 2007.

[41] J von Kries. Chromatic adaptation, festschrift der albercht-

ludwig-universität, 1902.

3267

