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Abstract

Adversarial examples are commonly viewed as a threat

to ConvNets. Here we present an opposite perspective: ad-

versarial examples can be used to improve image recogni-

tion models if harnessed in the right manner. We propose

AdvProp, an enhanced adversarial training scheme which

treats adversarial examples as additional examples, to pre-

vent overfitting. Key to our method is the usage of a sepa-

rate auxiliary batch norm for adversarial examples, as they

have different underlying distributions to normal examples.

We show that AdvProp improves a wide range of models

on various image recognition tasks and performs better

when the models are bigger. For instance, by applying

AdvProp to the latest EfficientNet-B7 [41] on ImageNet, we

achieve significant improvements on ImageNet (+0.7%),

ImageNet-C (+6.5%), ImageNet-A (+7.0%) and Stylized-

ImageNet (+4.8%). With an enhanced EfficientNet-B8,

our method achieves the state-of-the-art 85.5% ImageNet

top-1 accuracy without extra data. This result even

surpasses the best model in [24] which is trained with

3.5B Instagram images (∼3000× more than ImageNet)

and ∼9.4× more parameters. Models are available at

https://github.com/tensorflow/tpu/tree/

master/models/official/efficientnet.

1. Introduction

Adversarial examples crafted by adding imperceptible

perturbations to images, can lead Convolutional Neural Net-

works (ConvNets) to make wrong predictions. The exis-

tence of adversarial examples not only reveals the limited

generalization ability of ConvNets, but also poses security

threats on the real-world deployment of these models. Since

the first discovery of the vulnerability of ConvNets to adver-

sarial attacks [40], many efforts [2, 7, 15, 16, 18, 23, 29, 36,

42, 45, 50] have been made to improve network robustness.

In this paper, rather than focusing on defending against

adversarial examples, we shift our attention to leverag-

ing adversarial examples to improve accuracy. Previous

works show that training with adversarial examples can
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ImageNet-A Acc. ↑

EfficientNet-B7               37.7%

+AdvProp (ours)      44.7% (+7.0%)

ImageNet-C mCE ↓

EfficientNet-B7               59.4%

+AdvProp (ours)      52.9% (-6.5%)

ImageNet Acc. ↑

EfficientNet-B7                  84.5%

+AdvProp (ours)      85.2% (+0.7%)

Stylized-ImageNet Acc. ↑

EfficientNet-B7                   21.8%

+AdvProp (ours)          26.6% (+4.8%)

Figure 1. AdvProp improves image recognition. By train-

ing models on ImageNet, AdvProp helps EfficientNet-B7 [41] to

achieve 85.2% accuracy on ImageNet [33], 52.9% mCE (mean

corruption error, lower is better) on ImageNet-C [9], 44.7% ac-

curacy on ImageNet-A [10] and 26.6% accuracy on Stylized-

ImageNet [6], beating its vanilla counterpart by 0.7%, 6.5%, 7.0%

and 4.8%, respectively. Theses sample images are randomly se-

lected from the category “goldfinch”.

enhance model generalization but are restricted to certain

situations—the improvement is only observed either on

small datasets (e.g., MNIST) in the fully-supervised setting

[7, 20], or on larger datasets but in the semi-supervised set-

ting [26, 30]. Meanwhile, recent works [18, 16, 45] also

suggest that training with adversarial examples on large

datasets, e.g., ImageNet [33], with supervised learning re-

sults in performance degradation on clean images. To sum-

marize, it remains an open question of how adversarial ex-

amples can be used effectively to help vision models.
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We observe all previous methods jointly train over clean

images and adversarial examples without distinction even

though they should be drawn from different underlying dis-

tributions. We hypothesize this distribution mismatch be-

tween clean examples and adversarial examples is a key

factor that causes the performance degradation in previous

works [16, 18, 45].

In this paper, we propose AdvProp, short for Adversar-

ial Propagation, a new training scheme that bridges the dis-

tribution mismatch with a simple yet highly effective two-

batchnorm approach. Specifically, we propose to use two

batch norm statistics, one for clean images and one auxil-

iary for adversarial examples. The two batchnorms prop-

erly disentangle the two distributions at normalization lay-

ers for accurate statistics estimation. We show this distri-

bution disentangling is crucial, enabling us to successfully

improve, rather than degrade, model performance with ad-

versarial examples.

To our best knowledge, our work is the first to show

adversarial examples can improve model performance in

the fully-supervised setting on the large-scale ImageNet

dataset. For example, an EfficientNet-B7 [41] trained with

AdvProp achieves 85.2% top-1 accuracy, beating its vanilla

counterpart by 0.8%. The improvement by AdvProp is more

notable when testing models on distorted images. As shown

in Fig. 1, AdvProp helps EfficientNet-B7 to gain an absolute

improvement of 9.0%, 7.0% and 5.0% on ImageNet-C [9],

ImageNet-A [10] and Stylized-ImageNet [6], respectively.

As AdvProp effectively prevents overfitting and per-

forms better with larger networks, we develop a larger net-

work, named EfficientNet-B8, by following similar com-

pound scaling rules in [41]. With our proposed AdvProp,

EfficientNet-B8 achieves the state-of-the-art 85.5% top-1

accuracy on ImageNet without any extra data. This result

even surpasses the best model reported in [24], which is

pretrained on 3.5B extra Instagram images (∼3000× more

than ImageNet) and requires ∼9.4× more parameters than

our EfficientNet-B8.

2. Related Work

Adversarial Training. Adversarial training, which trains

networks with adversarial examples, constitutes the current

foundation of state-of-the-arts for defending against adver-

sarial attacks [7, 18, 23, 45]. Although adversarial train-

ing significantly improves model robustness, how to im-

prove clean image accuracy with adversarial training is still

under-explored. VAT [26] and deep co-training [30] attempt

to utilize adversarial examples in semi-supervised settings,

but they require enormous extra unlabeled images. Un-

der supervised learning settings, adversarial training is typ-

ically considered hurting accuracy on clean images [32],

e.g., ∼10% drop on CIFAR-10 [23] and ∼15% drop on Im-

ageNet [45]. Tsipras et al. [43] argue that the performance

tradeoff between adversarial robustness and standard accu-

racy is provably inevitable, and attribute this phenomenon

as a consequence of robust classifiers learning fundamen-

tally different feature representations than standard classi-

fiers. Other works try to explain this tradeoff phenomenon

from the perspective of the increased sample complexity of

adversary [37, 25, 28], the limited amount of training data

[1, 27, 34, 44, 48], or network overparameterization [31].

This paper focuses on standard supervised learning with-

out extra data. Although using similar adversarial training

techniques, we stand on an opposite perspective to previous

works—we aim at using adversarial examples to improve

clean image recognition accuracy.

Benefits of Learning Adversarial Features. Many works

corroborate that training with adversarial examples brings

additional features to ConvNets. For example, compared

with clean images, adversarial examples make network rep-

resentations align better with salient data characteristics and

human perception [43]. Moreover, such trained models are

much more robust to high frequency noise [47]. Zhang et

al. [51] further suggest these adversarially learned feature

representations are less sensitive to texture distortions and

focus more on shape information.

Our proposed AdvProp can be characterized as a train-

ing paradigm which fully exploits the complementarity be-

tween clean images and their corresponding adversarial ex-

amples. The results further suggest that adversarial fea-

tures are indeed beneficial for recognition models, which

agree with the conclusions drawn from these aforemen-

tioned studies.

Data augmentation. Data augmentation, which applies a

set of label-preserving transformations to images, serves as

an important and effective role to prevent networks from

overfitting [17, 35, 8]. Besides traditional methods like hor-

izontal flipping and random cropping, different augmenta-

tion techniques have been proposed, e.g., applying mask-

ing out [5] or adding Gaussian noise [22] to regions in im-

ages, or mixing up pairs of images and their labels in a

convex manner [49]. Recent works also demonstrate that

it is possible to learn data augmentation policies automati-

cally for achieving better performance on image classifica-

tion [3, 4, 19, 21, 52] and object detection [53, 4].

Our work can be regarded as one type of data augmenta-

tion: creating additional training samples by injecting noise.

However, all previous attempts, by augmenting either with

random noise (e.g., Tab. 5 in [18] shows the result of train-

ing with random normal perturbations) or adversarial noise

[16, 18, 42], fail to improve accuracy on clean images.

3. A Preliminary Way to Boost Performance

Madry et al. [23] formulate adversarial training as a

min-max game and train models exclusively on adversar-
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Figure 2. Two take-home messages from the experiments on Ima-

geNet: (1) training exclusively on adversarial examples results in

performance degradation; and (2) simply training with adversarial

examples and clean images in turn can improve network perfor-

mance on clean images. Fine-tuning details: we train networks

with adversarial examples in the first 175 epochs, and then fine-

tune with clean images in the rest epochs.

ial examples to effectively boost model robustness. How-

ever, such trained models usually cannot generalize well

to clean images as shown in [23, 45]. We validate this

result by training a medium-scale model (EfficientNet-B3)

and a large-scale model (EfficientNet-B7) on ImageNet us-

ing PGD attacker1 [23]—both adversarially trained models

obtain much lower accuracy on clean images compared to

their vanilla counterparts. For instance, such adversarially

trained EfficientNet-B3 only obtains an accuracy of 78.2%

on the clean images, whereas vanilla trained EfficientNet-

B3 achieves 81.7% (see Fig. 2).

We hypothesize such performance degradation is mainly

caused by distribution mismatch—adversarial examples

and clean images are drawn from two different domains

therefore training exclusively on one domain cannot well

transfer to the other. If this distribution mismatch can be

properly bridged, then performance degradation on clean

images should be mitigated even if adversarial examples are

used for training. To validate our hypothesis, we hereby ex-

amine a simple strategy—pre-train networks with adversar-

ial examples first, and then fine-tune with clean images.

The results are summarized in Fig. 2. As expected, this

simple fine-tuning strategy (marked in light orange) always

yields much higher accuracy than Madry’s adversarial train-

ing baseline (marked in grey), e.g., it increases accuracy by

3.3% for EfficientNet-B3. Interestingly, while compared to

the standard vanilla training setting where only clean im-

ages are used (marked in blue), this fine-tuning strategy

sometimes even help networks to achieve superior perfor-

mance, e.g., it increases EfficientNet-B7 accuracy by 0.3%,

achieving 84.8% top-1 accuracy on ImageNet.

The observation above delivers a promising signal—

adversarial examples can be beneficial for model perfor-

mance if harnessed properly. Nonetheless, we note that

1For PGD attacker, we set the maximum perturbation per pixel ǫ=4, the

step size α=1 and the number of attack iteration n = 5.

this approach fails to improve performance in general, e.g.,

though such trained EfficientNet-B3 significantly outper-

forms the Madry’s adversarial training baseline, it is still

slightly below (-0.2%) the vanilla training setting. There-

fore, a natural question arises: is it possible to distill valu-

able features from adversarial examples in a more effective

manner and boost model performance further generally?

4. Methodology

The results in Sec. 3 suggest that properly integrating

information from both adversarial examples and clean im-

ages even in a simple manner improves model performance.

However, such fine-tuning strategy may partially override

features learned from adversarial examples, leading to a

sub-optimal solution. To address this issue, we propose a

more elegant approach, named AdvProp, to jointly learn

from clean images and adversarial examples. Our method

handles the issue of distribution mismatch via explicitly de-

coupling batch statistics on normalization layers, and thus

enabling a better absorption from both adversarial and clean

features. In this section, we first revisit the adversarial train-

ing regime in Sec. 4.1, and then introduce how to enable

disentangled learning for a mixture of distributions via aux-

iliary BNs in Sec. 4.2. Finally, we summarize the training

and testing pipeline in Sec. 4.3.

4.1. Adversarial Training

We first recall the vanilla training setting, and the objec-

tive function is

argmin
θ

E(x,y)∼D

[

L(θ, x, y)
]

, (1)

where D is the underlying data distribution, L(·, ·, ·) is the

loss function, θ is the network parameter, and x is training

sample with ground-truth label y.

Consider Madry’s adversarial training framework [23],

instead of training with original samples, it trains networks

with maliciously perturbed samples,

argmin
θ

E(x,y)∼D

[

max
ǫ∈S

L(θ, x+ ǫ, y)
]

, (2)

where ǫ is a adversarial perturbation, S is the allowed per-

turbation range. Though such trained models have several

nice properties as described in [51, 47, 43], they cannot gen-

eralize well to clean images [23, 45].

Unlike Madry’s adversarial training, our main goal is to

improve network performance on clean images by lever-

aging the regularization power of adversarial examples.

Therefore we treat adversarial images as additional training

samples and train networks with a mixture of adversarial

examples and clean images, as suggested in [7, 18],

argmin
θ

[

E(x,y)∼D

(

L(θ, x, y) + max
ǫ∈S

L(θ, x+ ǫ, y)
)

]

.

(3)
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Ideally, such trained models should enjoy the benefits from

both adversarial and clean domains. However, as observed

in former studies [7, 18], directly optimizing Eq. (3) gener-

ally yields lower performance than the vanilla training set-

ting on clean images. We hypothesize that the distribution

mismatch between adversarial examples and clean images

prevents networks from accurately and effectively distilling

valuable features from both domains. Next, we will intro-

duce how to properly disentangle different distributions via

our auxiliary batch norm design.

4.2. Disentangled Learning via An Auxiliary BN

Batch normalization (BN) [14] serves as an essential

component for many state-of-the-art computer vision mod-

els [8, 12, 39]. Specifically, BN normalizes input features

by the mean and variance computed within each mini-batch.

One intrinsic assumption of utilizing BN is that the input

features should come from a single or similar distributions.

This normalization behavior could be problematic if the

mini-batch contains data from different distributions, there-

fore resulting in inaccurate statistics estimation.
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Figure 3. Comparison between (a) traditional BN usage and (b)

the utilization of auxiliary BN. The left and right panels illustrate

the information flow in the corresponding network architectures

and the estimated normalization statistics when facing a mixture

of adversarial and clean images, respectively.

We argue that adversarial examples and clean images

have different underlying distributions, and the adversarial

training framework in Eq. (3) essentially involves a two-

component mixture distribution. To disentangle this mix-

ture distribution into two simpler ones respectively for the

clean and adversarial images, we hereby propose an aux-

iliary BN to guarantee its normalization statistics are ex-

clusively preformed on the adversarial examples. Specifi-

cally, as illustrated in Fig. 3(b), our proposed auxiliary BN

helps to disentangle the mixed distributions by keeping sep-

arate BNs to features that belong to different domains. Oth-

erwise, as illustrated in Fig. 3(a), simply maintaining one

set of BN statistics results in incorrect statistics estimation,

which could possibly lead to performance degradation.

Note that we can generalize this concept to multiple aux-

iliary BNs, where the number of auxiliary BNs is deter-

mined by the number of training sample sources. For exam-

ple, if training data contains clean images, distorted images

and adversarial images, then two auxiliary BNs should be

maintained. Ablation studies in Sec. 5.4 demonstrates that

such fine-grained disentangled learning with multiple BNs

can improve performance further. A more general usage of

multiple BNs will be further explored in future works.

4.3. AdvProp

We formally propose AdvProp in Algorithm 1 to accu-

rately acquire clean and adversarial features during train-

ing. For each clean mini-batch, we first attack the network

using the auxiliary BNs to generate its adversarial counter-

part; next we feed the clean mini-batch and the adversar-

ial mini-batch to the same network but applied with differ-

ent BNs for loss calculation, i.e., use the main BNs for the

clean mini-batch and use the auxiliary BNs for the adver-

sarial mini-batch; finally we minimize the total loss w.r.t.

the network parameter for gradient updates. In other words,

except BNs, convolutional and other layers are jointly opti-

mized for both adversarial examples and clean images.

Note the introduction of auxiliary BN in AdvProp only

increases a negligible amount of extra parameters for net-

work training, e.g., 0.5% more parameters than the baseline

on EfficientNet-B7. At test time, these extra auxiliary BNs

are all dropped, and we only use the main BNs for inference.

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;

Result: Network parameter θ;

for each training step do
Sample a clean image mini-batch xc with label y;

Generate the corresponding adversarial mini-batch xa

using the auxiliary BNs;

Compute loss Lc(θ, xc, y) on clean mini-batch xc

using the main BNs;

Compute loss La(θ, xa, y) on adversarial mini-batch

xa using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter

argmin
θ

La(θ, xa, y) + Lc(θ, xc, y).

end

return θ

Experiments show that such disentangled learning

framework enables networks to get much stronger perfor-

mance than the adversarial training baseline [7, 18]. Be-

sides, compared to the fine-tuning strategy in Sec. 3, Ad-

vProp also demonstrates superior performance as it enables

networks to jointly learn useful feature from adversarial ex-

amples and clean examples at the same time.
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5. Experiments

5.1. Experiments Setup

Architectures. We choose EfficientNets [41] at different

computation regimes as our default architectures, rang-

ing from the light-weight EfficientNet-B0 to the large

EfficientNet-B7. Compared to other ConvNets, Efficient-

Net achieves much better accuracy and efficiency. We fol-

low the settings in [41] to train these networks: RMSProp

optimizer with decay 0.9 and momentum 0.9; batch norm

momentum 0.99; weight decay 1e-5; initial learning rate

0.256 that decays by 0.97 every 2.4 epochs; a fixed Au-

toAugment policy [3] is applied to augment training images.

Adversarial Attackers. We train networks with a mixture

of adversarial examples and clean images as in Eq. (3). We

choose Projected Gradient Descent (PGD) [23] under L∞

norm as the default attacker for generating adversarial ex-

amples on-the-fly. We try PGD attackers with different per-

turbation size ǫ, ranging from 1 to 4. We set the number

iteration for the attackers n=ǫ+1, except for the case ǫ=1

where n is set to 1. The attack step size is fixed to α=1.

Datasets. We use the standard ImageNet dataset [33] to

train all models. In addition to reporting performance on

the original ImageNet validation set, we go beyond by test-

ing the models on the following test sets:

• ImageNet-C [9]. The ImageNet-C dataset is designed

for measuring the network robustness to common image

corruptions. It consists of 15 diverse corruption types and

each type of corruption has five levels of severity, result-

ing in 75 distinct corruptions.

• ImageNet-A [10]. The ImageNet-A dataset adversarially

collects 7,500 natural, unmodified but “hard” real-world

images. These images are drawn from some challenging

scenarios (e.g., occlusion and fog scene) which are diffi-

cult for recognition.

• Stylized-ImageNet [6]. The Stylized-ImageNet dataset

is created by removing local texture cues while retaining

global shape information on natural images via AdaIN

style transfer [13]. As suggested in [6], networks are re-

quired to learn more shape-based representations to im-

prove accuracy on Stylized-ImageNet.

Compared to ImageNet, images from ImageNet-C,

ImageNet-A and Stylized-ImageNet are much more chal-

lenging, even for human observers.

5.2. ImageNet Results and Beyond

ImageNet Results. Fig. 4 shows the results on the Ima-

geNet validation set. We compare our method with the

vanilla training setting. The family of EfficientNets pro-

vides a strong baseline, e.g., EfficientNet-B7’s 84.5% top-1

accuracy is the prior art on ImageNet [41].
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Figure 4. AdvProp boosts model performance over the vanilla

training baseline on ImageNet. This improvement becomes more

significant if trained with larger networks. Our strongest result is

reported by the EfficientNet-B7 trained with AdvProp, i.e., 85.2%

top-1 accuracy on ImageNet.

As different networks favor different attacker strengths

when trained with AdvProp (which we ablate next), we first

report the best result in Fig. 4. Our proposed AdvProp sub-

stantially outperforms the vanilla training baseline on all

networks. This performance improvement is proportional

to the network capacity and larger networks tend to perform

better if they are trained with AdvProp. For example, the

performance gain is at most 0.4% for networks smaller than

EfficientNet-B4, but is at least 0.6% for networks larger

than EfficientNet-B4.

Compared to the prior art, i.e., 84.5% top-1 accuracy,

an EfficientNet-B6 trained with AdvProp (with ∼2× less

FLOPs than EfficientNet-B7) already surpasses it by 0.3%.

Our strongest result is obtained by the EfficientNet-B7

trained with AdvProp which achieves 85.2% top-1 accuracy

on ImageNet, beating the prior art by 0.7%.

Generalization on Distorted ImageNet Datasets. Next,

we evaluate models on distorted ImageNet datasets, which

are much more difficult than the original ImageNet. For

instance, though ResNet-50 demonstrates reasonable per-

formance on ImageNet (76.7% accuracy), it only achieves

74.8% mCE (mean corruption error, lower is better) on

ImageNet-C, 3.1% top-1 accuracy on ImageNet-A and

8.0% top-1 accuracy on Stylized-ImageNet.

The results are summarized in Tab. 1. Again, our pro-

posed AdvProp consistently outperforms the vanilla train-

ing baseline for all models on all distorted datasets. The

improvement here is much more significant than that on
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Model
ImageNet-C* [9] ImageNet-A [10] Stylized-ImageNet* [6]

mCE ↓ Top-1 Acc. ↑ Top-1 Acc. ↑

ResNet-50 74.8 3.1 8.0

EfficientNet-B0 70.7 6.7 13.1

+ AdvProp (ours) 66.2 (-4.5) 7.1 (+0.4) 14.6 (+1.5)

EfficientNet-B1 65.1 9.0 15.0

+ AdvProp (ours) 60.2 (-4.9) 10.1 (+1.1) 16.7 (+1.7)

EfficientNet-B2 64.1 10.8 16.8

+ AdvProp (ours) 61.4 (-2.7) 11.8 (+1.0) 17.8 (+1.0)

EfficientNet-B3 62.9 17.9 17.8

+ AdvProp (ours) 57.8 (-5.1) 18.0 (+0.1) 21.4 (+3.6)

EfficientNet-B4 60.7 26.4 20.2

+ AdvProp (ours) 58.6 (-2.1) 27.9 (+1.5) 22.5 (+1.7)

EfficientNet-B5 62.3 29.4 20.8

+ AdvProp (ours) 56.2 (-6.1) 34.4 (+5.0) 24.4 (+3.6)

EfficientNet-B6 60.6 34.5 20.9

+ AdvProp (ours) 53.6 (-7.0) 40.6 (+6.1) 25.9 (+4.0)

EfficientNet-B7 59.4 37.7 21.8

+ AdvProp (ours) 52.9 (-6.5) 44.7 (+7.0) 26.6 (+4.8)

Table 1. AdvProp significantly boost models’ generalization abil-

ity on ImageNet-C, ImageNet-A and Stylized-ImageNet. The

highest result on each dataset is 52.9%, 44.7% and 26.6% re-

spectively, all achieved by the EfficientNet-B7 trained with Ad-

vProp. *For ImageNet-C and Stylized-ImageNet, as distortions

are specifically designed for images of the size 224×224×3, so

we follow the previous setup [6, 9] to always fix the testing image

size at the scale of 224×224×3 for a fair comparison.

the original ImageNet. For example, AdvProp improves

EfficientNet-B3 by 0.2% on ImageNet, and substantially

boosts the performance by 5.1% on ImageNet-C and 3.6%

on Stylized-ImageNet.

The EfficientNet-B7 trained with AdvProp reports the

strongest results on these datasets—it obtains 52.9% mCE

on ImageNet-C, 44.7% top-1 accuracy on ImageNet-A and

26.6% top-1 accuracy on Stylized-ImageNet. These are the

best results so far if models are not allowed to train with

corresponding distortions [6] or extra data [24, 46].

To summarize, the results suggest that AdvProp signif-

icantly boosts the generalization ability by allowing mod-

els to learn much richer internal representations than the

vanilla training. The richer representations not only provide

models with global shape information for better classifying

Stylized-ImageNet dataset, but also increase model robust-

ness against common image corruptions.

Ablation on Adversarial Attacker Strength. We now ab-

late the effects of attacker strength used in AdvProp on net-

work performance. Specifically, the attacker strength here

is determined by perturbation size ǫ, where larger perturba-

tion size indicates stronger attacker. We try with different ǫ

ranging from 1 to 4, and report the corresponding accuracy

on the ImageNet validation set in Tab. 2.

B0 B1 B2 B3 B4 B5 B6 B7

PGD5 (ǫ=4) 77.1 79.2 80.3 81.8 83.3 84.3 84.8 85.2

PGD4 (ǫ=3) 77.3 79.4 80.4 81.9 83.3 84.3 84.7 85.1

PGD3 (ǫ=2) 77.4 79.4 80.4 81.9 83.1 84.3 84.7 85.0

PGD1 (ǫ=1) 77.6 79.6 80.5 81.8 83.1 84.3 84.6 85.0

Table 2. ImageNet performance of models trained with AdvProp

and different attack strength. In general, smaller networks favor

weaker attackers, while larger networks favor stronger attackers.

With AdvProp, we observe that smaller networks gen-

erally favor weaker attackers. For example, the light-

weight EfficientNet-B0 achieves the best performance by

using 1-step PGD attacker with perturbation size 1 (denoted

as PGD1 (ǫ=1)), significantly outperforms the counterpart

which trained with 5-step PGD attacker with perturbation

size 4 (denoted as PGD5 (ǫ=4)), i.e., 77.6% v.s. 77.1%.

This phenomenon is possibly due to that small networks are

limited by their capacity to effectively distill information

from strong adversarial examples, even the mixture distri-

butions are well disentangled via auxiliary BNs.

Meanwhile, networks with enough capacity tend to fa-

vor stronger attackers. By increasing attacker strength from

PGD1 (ǫ=1) to PGD5 (ǫ=4), AdvProp boosts EfficientNet-

B7’s accuracy by 0.2%. This observation motivate our later

ablation on keeping increasing attackers strength to fully

exploit the potential of large networks.

5.3. Comparisons to Adversarial Training

As shown in Fig. 4 and Tab. 1, AdvProp improves mod-

els for better recognition than the vanilla training baseline.

These results contradict previous conclusions [18, 42, 16]

that the performance degradation is always observed if ad-

versarial examples are used for training. We hereby pro-

vide a set of ablations for explaining this inconsistency. We

choose the PGD5 (ǫ=4) as the default attacker to generate

adversarial examples during training.
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Figure 5. AdvProp substantially outperforms adversarial training

[7] on ImageNet, especially for small models.

Comparison Results. We compare AdvProp to traditional

adversarial training [7], and report evaluation results on Im-

ageNet validation set in Fig. 5. Compared to the traditional

adversarial training, our method consistently achieves better

accuracy on all models. This result suggests that carefully

handling BN statistics estimation is important for training

better models with adversarial examples.

The biggest improvement is observed when using

EfficientNet-B0 where our method beats the traditional ad-

versarial training by 0.9%. While by using larger models,

this improvement becomes smaller—it stays at ∼0.5% un-

til scaling to EfficientNet-B5, but then drops to 0.3% for

EfficientNet-B6 and 0.1% for EfficientNet-B7, respectively.
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Quantifying Domain Differences. One possible hypothe-

sis for the observation above is that more powerful networks

have stronger ability to learn a unified internal representa-

tions on the mixed distributions, therefore mitigate the issue

of distribution mismatch at normalization layers even with-

out the help of auxiliary BNs. To support this hypothesis,

we take models trained with AdvProp, and compare the per-

formance difference between the settings that use either the

main BNs or the auxiliary BNs. As such resulted networks

share all other layers except BNs, the corresponding perfor-

mance gap empirically captures the degree of distribution

mismatch between adversarial examples and clean images.

We use ImageNet validation set for evaluation, and summa-

rize the results in Tab. 3.
B0 B1 B2 B3 B4 B5 B6 B7

BN 77.1 79.2 80.3 81.8 83.3 84.3 84.8 85.2

Auxiliary BN 73.7 75.9 77.0 78.6 80.5 82.1 82.7 83.3

△ +3.4 +3.3 +3.3 +3.2 +2.8 +2.2 +2.1 +1.9

Table 3. Performance comparison between settings that use either

the main BNs and auxiliary BNs on ImageNet. This performance

difference captures the degree of distribution mismatch between

adversarial examples and clean images.

By training with larger networks, we observe this perfor-

mance difference gets smaller. Such gap for EfficientNet-

B0 is 3.4%, but then is reduced to 1.9% for EfficientNet-

B7. It suggests that the internal representations of adver-

sarial examples and clean images learned on large networks

are much more similar than that learned on small networks.

Therefore, with a strong enough network, it is possible to

accurately and effectively learn a mixture of distributions

even without a careful handling at normalization layers.

Why AdvProp? For small networks, our comparison

shows that AdvProp substantially outperforms the adver-

sarial training baseline. We attribute this performance im-

provement mainly to the successful disentangled learning

via auxiliary BNs.

For larger networks, though the improvement is rela-

tively small on ImageNet, AdvProp consistently outper-

forms the adversarial training baseline by a large margin

on distorted ImageNet datasets. As shown in Tab. 4, Ad-

vProp improves EfficientNet-B7 by 3.1% on ImageNet-C,

4.3% on ImageNet-A and 1.5% on Stylized-ImageNet over

the adversarial training baseline.

Model
ImageNet-C [9] ImageNet-A [10] Stylized-ImageNet [6]

mCE ↓ Top-1 Acc. ↑ Top-1 Acc. ↑

B6 + Adv. Training 55.8 37.0 24.7

B6 + AdvProp (ours) 53.6 40.6 25.9

B7 + Adv. Training 56.0 40.4 25.1

B7 + AdvProp (ours) 52.9 44.7 26.6

Table 4. AdvProp demonstrates much stronger generalization abil-

ity on distorted ImageNet datasets (e.g., ImageNet-C) than the ad-

versarial training baseline for larger models.

Moreover, AdvProp enables large networks to perform

better if trained with stronger attackers. For example,

by slightly increasing attacker strength from PGD5 (ǫ=4)

to PGD7 (ǫ=6), AdvProp further helps EfficientNet-B7 to

achieve 85.3% top-1 accuracy on ImageNet. Conversely,

applying such attacker to traditional adversarial training de-

creases EfficientNet-B7’s accuracy to 85.0%, possibly due

to a more severe distribution mismatch between adversarial

examples and clean images.

In summary, AdvProp enables networks to enjoy the

benefits of adversarial examples even with limited capacity.

For networks with enough capacity, compared to adversar-

ial training, AdvProp demonstrates much stronger general-

ization ability and better at exploiting model capacity for

improving performance further.

Missing Pieces in Traditional Adversarial Training. In

our reproduced adversarial training, we note it is already

better than the vanilla training setting on large networks.

For example, our adversarially trained EfficientNet-B7 has

85.1% top-1 accuracy on ImageNet, which beats the vanilla

training baseline by 0.6%. However, previous works [18,

16] show adversarial training always degrades performance.

Compared to [18, 16], we make two changes in our re-

implementation: (1) using stronger networks; and (2) train-

ing with weaker attackers. For examples, previous works

use networks like Inception or ResNet for training, and set

the perturbation size ǫ=16; while we use much stronger Ef-

ficientNet for training, and limit the perturbation size to a

much smaller value ǫ=4. Intuitively, weaker attackers push

the distribution of adversarial examples less away from the

distribution of clean images, and larger networks are better

at bridging domain differences. Both factors mitigate the

issue of distribution mismatch, thus making networks much

easier to learn valuable feature from both domains.

5.4. Ablations

Fine-grained Disentangled Learning via Multiple Aux-

iliary BNs. Following [41], our networks are trained with

AutoAugment [3] by default, which include operations like

rotation and shearing. We hypothesize these operations

(slightly) shift the original data distribution and propose to

add an extra auxiliary BN to disentangle these augmented

data further for fine-grained learning. In total, we keep one

main BN for clean images without AutoAugment, and two

auxiliary BNs for clean images with AutoAugment and ad-

versarial examples, respectively.

We try PGD attackers with perturbation size ranging

from 1 to 4, and report the best result on ImageNet in Tab. 5.

Compared to the default AdvProp, this fine grained strat-

egy further improves performance. It helps EfficientNet-

B0 to achieve 77.9% accuracy with just 5.3M parameters,

which is the state-of-the-art performance for mobile net-

works. As a comparison, MobileNetv3 has 5.4M param-

eters with 75.2% accuracy [11]. These results encourage

the future investigation on more fine-grained disentangled

learning with mixture distributions in general, not just for

adversarial training.
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B0 B1 B2 B3 B4 B5 B6 B7

AdvProp 77.6 79.6 80.5 81.9 83.3 84.3 84.8 85.2

Fine-Grained AdvProp 77.9 79.8 80.7 82.0 83.5 84.4 84.8 85.2

Table 5. Fine-grained AdvProp substantially boosts model accu-

racy on ImageNet, especially for small models. We perform fine-

grained disentangled learning by keeping an additional auxiliary

BN for AutoAugment images.

Comparison to AutoAugment. Training with adversarial

examples is a form of data augmentation. We choose

the standard Inception-style pre-processing [38] as base-

line, and compare the benefits of additionally applying Au-

toAugment or AdvProp. We train networks with PGD5

(ǫ=4) and evaluate performance on ImageNet.

Results are summarized in Tab. 6. For small models,

AutoAugment is slightly better than AdvProp although we

argue this gap can be addressed by adjusting the attacker

strength. For large models, AdvProp significantly outper-

forms AutoAugment. Training with AutoAugment and Ad-

vProp in combination is better than using AdvProp alone.

B0 B1 B2 B3 B4 B5 B6 B7

Inception Pre-process [38] 76.8 78.8 79.8 81.0 82.6 83.2 83.7 84.0

+ AutoAugment [3] +0.5 +0.4 +0.5 +0.7 +0.4 +0.5 +0.5 +0.5

+ AdvProp (ours) +0.3 +0.3 +0.2 +0.4 +0.3 +0.8 +0.9 +0.9

+ Both (ours) +0.3 +0.4 +0.5 +0.8 +0.7 +1.1 +1.1 +1.2

Table 6. Both AutoAugment and AdvProp improves model per-

formance over the Inception-style pre-processing baseline on Ima-

geNet. Large Models generally perform better with AdvProp than

AutoAugment. Training with a combination of both is better than

using AdvProp alone on all networks

Attackers Other Than PGD. We hereby study the effects

of applying different attackers in AdvProp on model per-

formance. Specifically, we try two different modifications

on PGD: (1) we no longer limit the perturbation size to be

within the ǫ-ball, and name this attacker to Gradient Descent

(GD) as it removes the projection step in PGD; or (2) we

skip the random noise initialization step in PGD, turn it to I-

FGSM [18]. Other attack hyper-parameters are unchanged:

the maximum perturbation size ǫ=4 (if applicable), number

of attack iteration n=5 and attack step size α=1.0.

For simplicity, we only experiment with EfficientNet-

B3, EfficientNet-B5 and EfficientNet-B7, and report the Im-

ageNet performance in Tab. 7. We observe that all attackers

substantially improve model performance over the vanilla

training baseline. This result suggests that our AdvProp is

not designed for a specific attacker (e.g., PGD), but a gen-

eral mechanism for improving image recognition models

with different adversarial attacker.

B3 B5 B7

Vanilla Training 81.7 83.7 84.5

PGD [23] 81.8 84.3 85.2

I-FGSM [18] 81.9 84.3 85.2

GD 81.7 84.3 85.3

Table 7. ImageNet performance when trained with different attack-

ers. With AdvProp, all attackers successfully improve model per-

formance over the vanilla training baseline.

ResNet Results. Besides EfficientNets, we also experi-

ment with ResNet [8]. We compare AdvProp against two

baselines: vanilla training and adversarial training. We ap-

ply PGD5 (ǫ=4) to generate adversarial examples, and fol-

low the settings in [8] to train all networks.

We report model performance on ImageNet in Tab. 8.

Compared to vanilla training, adversarial training always

degrades model performance while AdvProp consistently

leads to better accuracy on all ResNet models. Take

ResNet-152 for example, adversarial training decreases the

baseline performance by 2.0%, but our AdvProp further

boosts the baseline performance by 0.8%.
ResNet-50 ResNet-101 ResNet-152 ResNet-200

Vanilla Training 76.7 78.3 79.0 79.3

Adversarial Training -3.2 -1.8 -2.0 -1.4

AdvProp (ours) +0.4 +0.6 +0.8 +0.8

Table 8. Performance comparison among vanilla training, adver-

sarial training and AdvProp on ImageNet. AdvProp reports the

best result on all ResNet models.

In Sec. 5.3, we show that adversarial training can im-

prove performance if large EfficientNets are used for train-

ing. However, this phenomenon is not observed on ResNet,

e.g., adversarial training still leads to inferior accuracy even

trained with the large ResNet-200. It may suggest that ar-

chitecture design also plays an important role when training

with adversarial example, and we leave it as a future work.

Pushing The Envelope with a Larger Model. Previous

results suggest AdvProp performs better with larger net-

works. To push the envelope, we train a larger network,

EfficientNet-B8, by scaling up EfficientNet-B7 further ac-

cording to the compound scaling rule in [41].

Our AdvProp improves the accuracy of EfficientNet-B8

from 84.8% to 85.5%, achieving a new state-of-the-art ac-

curacy on ImageNet without using extra data. This result

even surpasses the best model reported in [24], which is pre-

trained on 3.5B extra Instagram images (∼3000× more than

ImageNet) and requires ∼9.4× more parameters (829M vs.

88M) than our EfficientNet-B8.

6. Conclusion

Previous works commonly view adversarial examples as

a threat to ConvNets, and suggest training with adversarial

examples lead to accuracy drop on clean images. Here we

offer a different perspective: to use adversarial examples for

improving accuracy of ConvNets. As adversarial examples

have different underlying distributions to normal examples,

we propose to use an auxiliary batch norm for disentangled

learning by processing adversarial examples and clean im-

ages separately at normalization layers. Our method, Ad-

vProp, significantly improves accuracy of all ConvNets in

our experiments. Our best model reports the state-of-the-art

85.5% top-1 accuracy on ImageNet without any extra data.
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