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Abstract

We present a simple self-training method that achieves

88.4% top-1 accuracy on ImageNet, which is 2.0% better

than the state-of-the-art model that requires 3.5B weakly la-

beled Instagram images. On robustness test sets, it improves

ImageNet-A top-1 accuracy from 61.0% to 83.7%, reduces

ImageNet-C mean corruption error from 45.7 to 28.3, and

reduces ImageNet-P mean flip rate from 27.8 to 12.2.

To achieve this result, we first train an EfficientNet model

on labeled ImageNet images and use it as a teacher to gen-

erate pseudo labels on 300M unlabeled images. We then

train a larger EfficientNet as a student model on the com-

bination of labeled and pseudo labeled images. We iterate

this process by putting back the student as the teacher. Dur-

ing the generation of the pseudo labels, the teacher is not

noised so that the pseudo labels are as accurate as possi-

ble. However, during the learning of the student, we inject

noise such as dropout, stochastic depth and data augmen-

tation via RandAugment to the student so that the student

generalizes better than the teacher. 1

1. Introduction

Deep learning has shown remarkable successes in image

recognition in recent years [45, 79, 74, 30, 82]. However

state-of-the-art (SOTA) vision models are still trained with

supervised learning which requires a large corpus of labeled

images to work well. By showing the models only labeled

images, we limit ourselves from making use of unlabeled

images available in much larger quantities to improve accu-

racy and robustness of SOTA models.

Here we use unlabeled images to improve the SOTA Im-

ageNet accuracy and show that the accuracy gain has an out-

sized impact on robustness (out-of-distribution generaliza-

tion). For this purpose, we use a much larger corpus of un-

∗ This work was conducted at Google.
1Models are available at https://github.com/tensorflow/

tpu/tree/master/models/official/efficientnet. Code

is available at https://github.com/google-research/

noisystudent.

labeled images, where a large fraction of images do not be-

long to ImageNet training set distribution (i.e., they do not

belong to any category in ImageNet). We train our model

using the self-training framework [70] which has three main

steps: 1) train a teacher model on labeled images, 2) use the

teacher to generate pseudo labels on unlabeled images, and

3) train a student model on the combination of labeled im-

ages and pseudo labeled images. We iterate this algorithm a

few times by treating the student as a teacher to relabel the

unlabeled data and training a new student.

Our experiments show that an important element for this

method to work well at scale is that the student model

should be noised during its training while the teacher should

not be noised during the generation of pseudo labels. This

way, the pseudo labels are as accurate as possible, and the

noised student is forced to learn harder from the pseudo la-

bels. To noise the student, we use RandAugment data aug-

mentation [18], dropout [75] and stochastic depth [37] dur-

ing its training. We call the method NoisyStudent to em-

phasize the role that noise plays in the method and results.

Using NoisyStudent, together with 300M unlabeled im-

ages, we improve EfficientNet’s [82] ImageNet top-1 accu-

racy to 88.4%. This accuracy is 2.0% better than the previ-

ous SOTA ImageNet accuracy which requires 3.5B weakly

labeled Instagram images. Not only our method improves

standard ImageNet accuracy, it also improves classifica-

tion robustness on much harder test sets by large margins:

ImageNet-A [32] top-1 accuracy from 61.0% to 83.7%,

ImageNet-C [31] mean corruption error (mCE) from 45.7 to

28.3 and ImageNet-P [31] mean flip rate (mFR) from 27.8

to 12.2. Our main results are shown in Table 1.

ImageNet ImageNet-A ImageNet-C ImageNet-P

top-1 acc. top-1 acc. mCE mFR

Prev. SOTA 86.4% 61.0% 45.7 27.8

NoisyStudent 88.4% 83.7% 28.3 12.2

Table 1: Summary of key results compared to previous

state-of-the-art models [84, 55]. Lower is better for mean

corruption error (mCE) and mean flip rate (mFR).
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2. NoisyStudent: Iterative Self-training with

Noise

Algorithm 1 gives an overview of NoisyStudent. The in-

puts to the algorithm are both labeled and unlabeled images.

We use the labeled images to train a teacher model using the

standard cross entropy loss. We then use the teacher model

to generate pseudo labels on unlabeled images. The pseudo

labels can be soft (a continuous distribution) or hard (a one-

hot distribution). We then train a student model which min-

imizes the combined cross entropy loss on both labeled im-

ages and unlabeled images. Finally, we iterate the process

by putting back the student as a teacher to generate new

pseudo labels and train a new student. The algorithm is also

illustrated in Figure 1.

Require: Labeled images {(x1, y1), (x2, y2), ..., (xn, yn)} and

unlabeled images {x̃1, x̃2, ..., x̃m}.

1: Learn teacher model ✓t
∗

which minimizes the cross entropy

loss on labeled images

1

n

nX

i=1

`(yi, f
noised(xi, ✓

t))

2: Use an unnoised teacher model to generate soft or hard

pseudo labels for unlabeled images

ỹi = f(x̃i, ✓
t

∗
), ∀i = 1, · · · ,m

3: Learn an equal-or-larger student model ✓s
∗

which minimizes

the cross entropy loss on labeled images and unlabeled

images with noise added to the student model

1

n

nX

i=1

`(yi, f
noised(xi, ✓

s)) +
1

m

mX

i=1

`(ỹi, f
noised(x̃i, ✓

s))

4: Iterative training: Use the student as a teacher and go back to

step 2.

Algorithm 1: NoisyStudent method.

Train equal-or-

larger student model 

with combined data 

and noise injected

Data augmentation

Stochastic depth

Dropout

… …

steel arch bridge canoe

Make the student a 

new teacher

Train teacher model 

with labeled data

Infer pseudo-labels 

on unlabeled data

Figure 1: Illustration of the NoisyStudent method. (All

shown images are from ImageNet.)

The algorithm is fundamentally self-training, a standard

method in semi-supervised learning (e.g., [70, 94]). More

discussions on how our method is related to prior works are

included in Section 5. Our key differences lie in adding

more sources of noise to the student and using student

models that are as large as (if not larger than) the teacher.

This makes our method different from Knowledge Distil-

lation [33] where adding noise is not the core concern and

a small model is often used as a student to be faster than

the teacher. One can think of our method as Knowledge

Expansion in which we want the student to be better than

the teacher by giving the student model more capacity and

difficult environments in terms of noise to learn through.

Noising Student – When the student is deliberately

noised it is actually trained to be consistent to the more

powerful teacher that is not noised when it generates pseudo

labels. In our experiments, we use two types of noise: input

noise and model noise. For input noise, we use data aug-

mentation with RandAugment [18]. For model noise, we

use dropout [75] and stochastic depth [37].

When applied to unlabeled data, noise has a compound

benefit of enforcing local smoothness in the decision func-

tion on both labeled and unlabeled data. Different kinds of

noise have different effects. With data augmentation noise,

the student must ensure that an image, when translated for

example, should have the same category as a non-translated

image. This invariant constraint encourages the student

model to learn beyond the teacher to make predictions with

more difficult images. When dropout and stochastic depth

function are used as noise, the teacher behaves like an en-

semble at inference time (during which it generates pseudo

labels), whereas the student behaves like a single model. In

other words, the student is forced to mimic a more power-

ful ensemble model. We present an ablation study on the

effects of noise in Section 4.

Other Techniques – NoisyStudent also works better

with an additional trick: data filtering and balancing.

Specifically, we filter images that the teacher model has low

confidences on since they are usually out-of-domain im-

ages. To ensure that the distribution of the unlabeled images

match that of the training set, we also need to balance the

number of unlabeled images for each class, as all classes in

ImageNet have a similar number of labeled images. For this

purpose, we duplicate images in classes where there are not

enough images. For classes where we have too many im-

ages, we take the images with the highest confidence. 2

Finally, in the above, we say that the pseudo labels can be

soft or hard. We observe that both soft and hard pseudo la-

bels work well in our experiments. In particular, soft pseudo

labels work slightly better for out of domain unlabeled data.

2The benefits of data balancing is significant for small models while

less significant for larger models. See Study #5 in Appendix A.3 for more

details.
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Thus in the following, for consistency, we report results

with soft pseudo labels unless otherwise indicated.

3. Experiments

In this section, we will first describe our experiment de-

tails. We will then present our ImageNet results compared

with those of state-of-the-art models. Lastly, we demon-

strate the surprising improvements of our models on robust-

ness datasets (such as ImageNet-A, C and P) as well as un-

der adversarial attacks.

3.1. Experiment Details

Labeled dataset. We conduct experiments on ImageNet

2012 ILSVRC challenge prediction task since it has been

considered one of the most heavily benchmarked datasets in

computer vision and that improvements on ImageNet trans-

fer to other datasets [44, 66].

Unlabeled dataset. We obtain unlabeled images from the

JFT dataset [33, 15], which has around 300M images. Al-

though the images in the dataset have labels, we ignore the

labels and treat them as unlabeled data. We filter the Ima-

geNet validation set images from the dataset (see [58]).

We then perform data filtering and balancing on this

corpus. First, we run an EfficientNet-B0 trained on Ima-

geNet [82] over the JFT dataset [33, 15] to predict a label

for each image. We then select images that have confidence

of the label higher than 0.3. For each class, we select at most

130K images that have the highest confidence. Finally, for

classes that have less than 130K images, we duplicate some

images at random so that each class can have 130K images.

Hence the total number of images that we use for training a

student model is 130M (with some duplicated images). Due

to duplications, there are only 81M unique images among

these 130M images. We do not tune these hyperparameters

extensively since our method is highly robust to them.

Architecture. We use EfficientNets [82] as our baseline

models because they provide better capacity for more data.

In our experiments, we also further scale up EfficientNet-

B7 and obtain EfficientNet-L2. EfficientNet-L2 is wider

and deeper than EfficientNet-B7 but uses a lower resolution,

which gives it more parameters to fit a large number of unla-

beled images. Due to the large model size, the training time

of EfficientNet-L2 is approximately five times the train-

ing time of EfficientNet-B7. For more information about

EfficientNet-L2, please refer to Table 7 in Appendix A.1.

Training details. For labeled images, we use a batch size

of 2048 by default and reduce the batch size when we could

not fit the model into the memory. We find that using a batch

size of 512, 1024, and 2048 leads to the same performance.

We determine the number of training steps and the learning

rate schedule by the batch size for labeled images. Specifi-

cally, we train the student model for 350 epochs for models

larger than EfficientNet-B4, including EfficientNet-L2 and

train smaller student models for 700 epochs. The learning

rate starts at 0.128 for labeled batch size 2048 and decays

by 0.97 every 2.4 epochs if trained for 350 epochs or every

4.8 epochs if trained for 700 epochs.

We use a large batch size for unlabeled images, espe-

cially for large models, to make full use of large quantities

of available unlabeled images. Labeled images and unla-

beled images are concatenated together to compute the av-

erage cross entropy loss.

Lastly, we apply the recently proposed technique to fix

train-test resolution discrepancy [84] for EfficientNet-L2.

We first perform normal training with a smaller resolution

for 350 epochs. Then we finetune the model with a larger

resolution for 1.5 epochs on unaugmented labeled images.

Similar to [84], we fix the shallow layers during finetuning.

Our largest model, EfficientNet-L2, needs to be trained

for 6 days on a Cloud TPU v3 Pod, which has 2048 cores,

if the unlabeled batch size is 14x the labeled batch size.

Noise. We use stochastic depth [37], dropout [75], and

RandAugment [18] to noise the student. The hyperparame-

ters for these noise functions are the same for EfficientNet-

B7 and L2. In particular, we set the survival probability

in stochastic depth to 0.8 for the final layer and follow the

linear decay rule for other layers. We apply dropout to the

final layer with a dropout rate of 0.5. For RandAugment,

we apply two random operations with magnitude set to 27.

Iterative training. The best model in our experiments is

a result of three iterations of putting back the student as the

new teacher. We first trained an EfficientNet-B7 on Ima-

geNet as the teacher model. Then by using the B7 model

as the teacher, we trained an EfficientNet-L2 model with

the unlabeled batch size set to 14 times the labeled batch

size. Then, we trained a new EfficientNet-L2 model with

the EfficientNet-L2 model as the teacher. Lastly, we iter-

ated again and used an unlabeled batch size of 28 times the

labeled batch size. The detailed results of the three itera-

tions are available in Section A.2.

3.2. ImageNet Results

We first report the validation set accuracy on the Im-

ageNet 2012 ILSVRC challenge prediction task as com-

monly done in literature [45, 79, 30, 82] (see also [66]).

As shown in Table 2, NoisyStudent with EfficientNet-L2

achieves 88.4% top-1 accuracy which is significantly better

than the best reported accuracy on EfficientNet of 85.0%.

The total gain of 3.4% comes from two sources: by making

the model larger (+0.5%) and by NoisyStudent (+2.9%). In

10689



Method # Params Extra Data Top-1 Acc. Top-5 Acc.

ResNet-50 [30] 26M - 76.0% 93.0%

ResNet-152 [30] 60M - 77.8% 93.8%

DenseNet-264 [36] 34M - 77.9% 93.9%

Inception-v3 [80] 24M - 78.8% 94.4%

Xception [15] 23M - 79.0% 94.5%

Inception-v4 [78] 48M - 80.0% 95.0%

Inception-resnet-v2 [78] 56M - 80.1% 95.1%

ResNeXt-101 [90] 84M - 80.9% 95.6%

PolyNet [98] 92M - 81.3% 95.8%

SENet [35] 146M - 82.7% 96.2%

NASNet-A [102] 89M - 82.7% 96.2%

AmoebaNet-A [65] 87M - 82.8% 96.1%

PNASNet [50] 86M - 82.9% 96.2%

AmoebaNet-C [17] 155M - 83.5% 96.5%

GPipe [38] 557M - 84.3% 97.0%

EfficientNet-B7 [82] 66M - 85.0% 97.2%

EfficientNet-L2 [82] 480M - 85.5% 97.5%

ResNet-50 Billion-scale [91] 26M

3.5B images labeled with tags

81.2% 96.0%

ResNeXt-101 Billion-scale [91] 193M 84.8% -

ResNeXt-101 WSL [55] 829M 85.4% 97.6%

FixRes ResNeXt-101 WSL [84] 829M 86.4% 98.0%

Big Transfer (BiT-L) [43]† 928M 300M weakly labeled images from JFT 87.5% 98.5%

NoisyStudent (EfficientNet-L2) 480M 300M unlabeled images from JFT 88.4% 98.7%

Table 2: Top-1 and Top-5 Accuracy of NoisyStudent and previous state-of-the-art methods on ImageNet. EfficientNets

trained with NoisyStudent have better tradeoff in terms of accuracy and model size compared to previous state-of-the-art

models. NoisyStudent (EfficientNet-L2) is the result of iterative training for multiple iterations. †: Big Transfer is a concur-

rent work that performs transfer learning from the JFT dataset.

other words, using NoisyStudent makes a much larger im-

pact on the accuracy than changing the architecture.

Further, NoisyStudent outperforms the state-of-the-art

accuracy of 86.4% by FixRes ResNeXt-101 WSL [55, 84]

that requires 3.5 Billion Instagram images labeled with tags.

As a comparison, our method only requires 300M unlabeled

images, which is perhaps more easy to collect. Our model

is also approximately twice as small in the number of pa-

rameters compared to FixRes ResNeXt-101 WSL.

Model size study: NoisyStudent for EfficientNet B0-

B7 without Iterative Training. In addition to improving

state-of-the-art results, we conduct experiments to verify if

NoisyStudent can benefit other EfficienetNet models. In

previous experiments, iterative training was used to opti-

mize the accuracy of EfficientNet-L2 but here we skip it

as it is difficult to use iterative training for many experi-

ments. We vary the model size from EfficientNet-B0 to

EfficientNet-B7 [82] and use the same model as both the

teacher and the student. We apply RandAugment to all

EfficientNet baselines, leading to more competitive base-

lines. We set the unlabeled batch size to be three times the
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Model Top-1 Acc.

EfficientNet-B0 77.3%

NoisyStudent (B0) 78.1%

EfficientNet-B2 80.0%

NoisyStudent (B2) 81.1%

EfficientNet-B5 84.0%

NoisyStudent (B5) 85.0%

EfficientNet-B7 85.0%

NoisyStudent (B7) 85.9%

B3

B4

B5

B6
NoisyStudent (EfficientNet-B7)

EfficientNet-B7

ResNet-34

Inception-v2

NASNet-A

ResNet-50

DenseNet-201
ResNet-152

Xception

Inception-resnet-v2

ResNeXt-101

SENetNASNet-A

AmoebaNet-A
AmoebaNet-C

Figure 2: NoisyStudent leads to significant improvements

across all model sizes for EfficientNet. We use the same ar-

chitecture for the teacher and the student and do not perform

iterative training.

batch size of labeled images for all model sizes except for

EfficientNet-B0. For EfficientNet-B0, we set the unlabeled

10690



batch size to be the same as the batch size of labeled im-

ages. As shown in Figure 2, NoisyStudent leads to a consis-

tent improvement of around 0.8% for all model sizes. Over-

all, EfficientNets with NoisyStudent provide a much better

tradeoff between model size and accuracy than prior works.

The results also confirm that vision models can benefit from

NoisyStudent even without iterative training.

3.3. Robustness Results on ImageNet-A, ImageNet-
C and ImageNet-P

Method Top-1 Acc. Top-5 Acc.

ResNet-101 [32] 4.7% -

ResNeXt-101 [32] (32x4d) 5.9% -

ResNet-152 [32] 6.1% -

ResNeXt-101 [32] (64x4d) 7.3% -

DPN-98 [32] 9.4% -

ResNeXt-101+SE [32] (32x4d) 14.2% -

ResNeXt-101 WSL [55, 59] 61.0% -

EfficientNet-L2 49.6% 78.6%

NoisyStudent (L2) 83.7% 95.2%

Table 3: Robustness results on ImageNet-A.

Method Res. Top-1 Acc. mCE

ResNet-50 [31] 224 39.0% 76.7

SIN [23] 224 45.2% 69.3

Patch Gaussian [51] 299 52.3% 60.4

ResNeXt-101 WSL [55, 59] 224 - 45.7

EfficientNet-L2 224 62.6% 47.5

NoisyStudent (L2) 224 76.5% 30.0

EfficientNet-L2 299 66.6% 42.5

NoisyStudent (L2) 299 77.8% 28.3

Table 4: Robustness results on ImageNet-C. mCE is the

weighted average of error rate on different corruptions, with

AlexNet’s error rate as a baseline (lower is better).

Method Res. Top-1 Acc. mFR

ResNet-50 [31] 224 - 58.0

Low Pass Filter Pooling [97] 224 - 51.2

ResNeXt-101 WSL [55, 59] 224 - 27.8

EfficientNet-L2 224 80.4% 27.2

NoisyStudent (L2) 224 85.2% 14.2

EfficientNet-L2 299 81.6% 23.7

NoisyStudent (L2) 299 86.4% 12.2

Table 5: Robustness results on ImageNet-P, where images

are generated with a sequence of perturbations. mFR mea-

sures the model’s probability of flipping predictions under

perturbations with AlexNet as a baseline (lower is better).

We evaluate the best model, that achieves 88.4% top-

1 accuracy, on three robustness test sets: ImageNet-

A, ImageNet-C and ImageNet-P. ImageNet-C and P test

sets [31] include images with common corruptions and per-

turbations such as blurring, fogging, rotation and scaling.

ImageNet-A test set [32] consists of difficult images that

cause significant drops in accuracy to state-of-the-art mod-

els. These test sets are considered as “robustness” bench-

marks because the test images are either much harder, for

ImageNet-A, or the test images are different from the train-

ing images, for ImageNet-C and P.

For ImageNet-C and ImageNet-P, we evaluate models on

two released versions with resolution 224x224 and 299x299

and resize images to the resolution EfficientNet trained on.

As shown in Table 3, 4 and 5, NoisyStudent yields sub-

stantial gains on robustness datasets compared to the pre-

vious state-of-the-art model ResNeXt-101 WSL [55, 59]

trained on 3.5B weakly labeled images. On ImageNet-A,

it improves the top-1 accuracy from 61.0% to 83.7%. On

ImageNet-C, it reduces mean corruption error (mCE) from

45.7 to 28.3. On ImageNet-P, it leads to a mean flip rate

(mFR) of 14.2 if we use a resolution of 224x224 (direct

comparison) and 12.2 if we use a resolution of 299x299.3

These significant gains in robustness in ImageNet-C and

ImageNet-P are surprising because our method was not de-

liberately optimized for robustness.4

Qualitative Analysis. To intuitively understand the sig-

nificant improvements on the three robustness benchmarks,

we show several images in Figure 3 where the predictions

of the standard model are incorrect while the predictions of

the NoisyStudent model are correct.

Figure 3a shows example images from ImageNet-A and

the predictions of our models. The model with NoisyS-

tudent can successfully predict the correct labels of these

highly difficult images. For example, without NoisyStu-

dent, the model predicts bullfrog for the image shown on

the left of the second row, which might be resulted from

the black lotus leaf on the water. With NoisyStudent, the

model correctly predicts dragonfly for the image. At the

top-left image, the model without NoisyStudent ignores the

sea lions and mistakenly recognizes a buoy as a lighthouse,

while the NoisyStudent model can recognize the sea lions.

Figure 3b shows images from ImageNet-C and the cor-

responding predictions. As can be seen from the figure,

3For EfficientNet-L2, we use the model without finetuning with a larger

test time resolution, since a larger resolution results in a discrepancy with

the resolution of data and leads to degraded performance on ImageNet-C

and ImageNet-P.
4Note that both our model and ResNeXt-101 WSL use augmentations

that have a small overlap with corruptions in ImageNet-C, which might

result in better performance. Specifically, RandAugment includes aug-

mentation Brightness, Contrast and Sharpness. ResNeXt-101 WSL uses

augmentation of Brightness and Contrast.
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lighthousesea lion submarine canoe

bullfrogdragonfly starfish wreck

hummingbird bald eagle basketball parking meter

(a) ImageNet-A

gown skipill bottletoaster

televisioncannonparking meter vacuum

swing mosquito netelectric raysnow leopard

(b) ImageNet-C

racing car fire engine

racing car car wheelmedicine chestplate rack

medicine chestplate rack

refrigeratorplate rack racing car car wheel

(c) ImageNet-P

Figure 3: Selected images from robustness benchmarks ImageNet-A, C and P. Test images from ImageNet-C underwent

artificial transformations (also known as common corruptions) that cannot be found on the ImageNet training set. Test

images on ImageNet-P underwent different scales of perturbations. On ImageNet-A, C, EfficientNet with NoisyStudent

produces correct top-1 predictions (shown in bold black texts) and EfficientNet without NoisyStudent produces incorrect

top-1 predictions (shown in red texts). On ImageNet-P, EfficientNet without NoisyStudent flips predictions frequently.

our model with NoisyStudent makes correct predictions

for images under severe corruptions and perturbations such

as snow, motion blur and fog, while the model without

NoisyStudent suffers greatly under these conditions. The

most interesting image is shown on the right of the first row.

The swing in the picture is barely recognizable by human

while the NoisyStudent model still makes the correct pre-

diction.

Figure 3c shows images from ImageNet-P and the cor-

responding predictions. As can be seen, our model with

NoisyStudent makes correct and consistent predictions as

images undergone different perturbations while the model

without NoisyStudent flips predictions frequently.

3.4. Adversarial Robustness Results

After testing our model’s robustness to common corrup-

tions and perturbations, we also study its performance on

adversarial perturbations. We evaluate our EfficientNet-L2

models with and without NoisyStudent against an FGSM

attack. This attack performs one gradient descent step on

the input image [25] with the update on each pixel set to ✏.

As shown in Figure 4, NoisyStudent leads to very signif-

icant improvements in accuracy even though the model is

Figure 4: NoisyStudent improves adversarial robustness

against an FGSM attack though the model is not optimized

for adversarial robustness. The accuracy is improved by

11% at ✏ = 2 and gets better as ✏ gets larger.

not optimized for adversarial robustness. Under a stronger

attack PGD with 10 iterations [54], at ✏ = 16, NoisyStudent

improves EfficientNet-L2’s accuracy from 1.1% to 4.4%.
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Note that these adversarial robustness results are not di-

rectly comparable to prior works since we use a large in-

put resolution of 800x800 and adversarial vulnerability can

scale with the input dimension [22, 25, 24, 73].

4. Ablation Study: The Importance of Noise in

Self-training

In this section, we study the importance of noise. The

ablation for iterative training and other components of our

method are available in Appendix A.2 and A.3.

Since we use soft pseudo labels generated from the

teacher model, when the student is trained to be exactly the

same as the teacher model, the cross entropy loss on un-

labeled data would be zero and the training signal would

vanish. Hence, a question that naturally arises is why the

student can outperform the teacher with soft pseudo labels.

As stated earlier, we hypothesize that noising the student is

needed so that it does not merely learn the teacher’s knowl-

edge. We investigate the importance of noising in two sce-

narios with different amounts of unlabeled data and dif-

ferent teacher model accuracies. In both cases, we gradu-

ally remove augmentation, stochastic depth and dropout for

unlabeled images when training the student model, while

keeping them for labeled images. This way, we can isolate

the influence of noising on unlabeled images from the in-

fluence of preventing overfitting for labeled images. In ad-

dition, we compare using a noised teacher and an unnoised

teacher to study if it is necessary to disable noise when gen-

erating pseudo labels.

Model / Unlabeled Set Size 1.3M 130M

EfficientNet-B5 83.3% 84.0%

NoisyStudent (B5) 83.9% 84.9%

student w/o Aug 83.6% 84.6%

student w/o Aug, SD, Dropout 83.2% 84.3%

teacher w. Aug, SD, Dropout 83.7% 84.4%

Table 6: Ablation study of noising. We use EfficientNet-

B5 as the teacher model and study two cases with differ-

ent numbers of unlabeled images and different augmenta-

tions. For the experiment with 1.3M unlabeled images, we

use the standard augmentation including random translation

and flipping for both the teacher and the student. For the ex-

periment with 130M unlabeled images, we use RandAug-

ment. Aug and SD denote data augmentation and stochastic

depth respectively. We remove the noise for unlabeled im-

ages while keeping them for labeled images. Here, iterative

training is not used and unlabeled batch size is set to be the

same as the labeled batch size to save training time.

Here, we show the evidence in Table 6, noise such as

stochastic depth, dropout and data augmentation plays an

important role in enabling the student model to perform bet-

ter than the teacher. The performance consistently drops

with noise function removed. However, in the case with

130M unlabeled images, when compared to the supervised

baseline, the performance is still improved to 84.3% from

84.0% with noise function removed. We hypothesize that

the improvement can be attributed to SGD, which intro-

duces stochasticity into the training process.

One might argue that the improvements from using noise

can be resulted from preventing overfitting the pseudo la-

bels on the unlabeled images. We verify that this is not

the case when we use 130M unlabeled images since the

model does not overfit the unlabeled set from the training

loss. While removing noise leads to a much lower training

loss for labeled images, removing noise leads to a smaller

drop in training loss for unlabeled images. This is probably

because it is harder to overfit the large unlabeled dataset.

Lastly, adding noise to the teacher model that generates

pseudo labels leads to lower accuracy, which shows the im-

portance of having a powerful unnoised teacher model.

5. Related works

Self-training. Our work is based on self-training

(e.g., [70, 94, 67]). Self-training first uses labeled data to

train a good teacher model, then use the teacher model to

label unlabeled data and finally use the labeled data and

unlabeled data to jointly train a student model. In typical

self-training with the teacher-student framework, noise

injection to the student is not used by default, or the role

of noise is not fully understood or justified. The main

difference between our work and prior works is that we

identify the importance of noise, and aggressively inject

noise to make the student better.

Self-training was previously used to improve ResNet-50

from 76.4% to 81.2% top-1 accuracy [91] which is still far

from the state-of-the-art accuracy. Yalniz et al. [91] also did

not show significant improvements in terms of robustness

on ImageNet-A, C and P as we did. In terms of methodol-

ogy, they proposed to first only train on unlabeled images

and then finetune their model on labeled images as the final

stage. In NoisyStudent, we combine these two steps into

one because it simplifies the algorithm and leads to better

performance in our experiments.

Data Distillation [63], which ensembles predictions for

an image with different transformations to strengthen the

teacher, is the opposite of our approach of weakening the

student. Parthasarathi et al. [61] find a small and fast speech

recognition model for deployment via knowledge distilla-

tion on unlabeled data. As noise is not used and the stu-

dent is also small, it is difficult to make the student bet-

ter than teacher. The domain adaptation framework in [68]

is related but highly optimized for videos, e.g., prediction

on which frame to use in a video. The method in [99] en-
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sembles predictions from multiple teacher models, which is

more expensive than our method.

Co-training [9] divides features into two disjoint parti-

tions and trains two models with the two sets of features

using labeled data. Their source of “noise” is the feature

partitioning such that two models do not always agree on

unlabeled data. Our method of injecting noise to the stu-

dent model also enables the teacher and the student to make

different predictions and is more suitable for ImageNet than

partitioning features.

Self-training / co-training has also been shown to work

well for a variety of other tasks including leveraging noisy

data [85], semantic segmentation [4], text classification [40,

77]. Back translation and self-training have led to signifi-

cant improvements in machine translation [71, 20, 28, 14,

88, 29].

Semi-supervised Learning. Apart from self-training, an-

other important line of work in semi-supervised learn-

ing [12, 101] is based on consistency training [5, 64, 47,

83, 56, 52, 62, 13, 16, 60, 2, 49, 86, 89, 8, 96, 46, 7]. These

works constrain model predictions to be invariant to noise

injected to the input, hidden states or model parameters.

Although they have produced promising results, in our pre-

liminary experiments, consistency regularization works less

well on ImageNet because consistency regularization in the

early phase of ImageNet training regularizes the model to-

wards high entropy predictions, and prevents it from achiev-

ing good accuracy. A common workaround is to use entropy

minimization or to ramp up the consistency loss. However,

the additional hyperparameters introduced by the ramping

up schedule and the entropy minimization make them more

difficult to use at scale. Compared to consistency train-

ing [56, 8, 89], the self-training / teacher-student framework

is better suited for ImageNet because we can train a good

teacher on ImageNet using labeled data.

Works based on pseudo label [48, 39, 72, 1] are similar

to self-training, but also suffer the same problem with con-

sistency training, since they rely on a model being trained

instead of a converged model with high accuracy to gener-

ate pseudo labels. Finally, frameworks in semi-supervised

learning also include graph-based methods [100, 87, 92,

42], methods that make use of latent variables as target vari-

ables [41, 53, 93] and methods based on low-density sep-

aration [26, 69, 19], which might provide complementary

benefits to our method.

Knowledge Distillation. As we use soft targets, our work

is also related to methods in Knowledge Distillation [10, 3,

33, 21, 6]. The main use of knowledge distillation is model

compression by making the student model smaller. The

main difference between our method and knowledge dis-

tillation is that knowledge distillation does not consider un-

labeled data and does not aim to improve the student model.

Robustness. A number of studies, e.g. [81, 31, 66, 27],

have shown that vision models lack robustness. Addressing

the lack of robustness has become an important research di-

rection in machine learning and computer vision in recent

years. Our study shows that using unlabeled data improves

accuracy and general robustness. Our finding is consistent

with arguments that using unlabeled data can improve ad-

versarial robustness [11, 76, 57, 95]. The main difference

between our work and these works is that they directly opti-

mize adversarial robustness on unlabeled data, whereas we

show that NoisyStudent improves robustness greatly even

without directly optimizing robustness.

6. Conclusion

Prior works on weakly-supervised learning required bil-

lions of weakly labeled data to improve state-of-the-art Im-

ageNet models. In this work, we showed that it is possible

to use unlabeled images to significantly advance both ac-

curacy and robustness of state-of-the-art ImageNet models.

We found that self-training is a simple and effective algo-

rithm to leverage unlabeled data at scale. We improved it

by adding noise to the student, hence the name NoisyStu-

dent, to learn beyond the teacher’s knowledge.

Our experiments showed that NoisyStudent and Effi-

cientNet can achieve an accuracy of 88.4% which is 2.9%

higher than without NoisyStudent. This result is also a

new state-of-the-art and 2.0% better than the previous best

method that used an order of magnitude more weakly la-

beled data [55, 84].

An important contribution of our work was to show that

NoisyStudent boosts robustness in computer vision models.

Our experiments showed that our model significantly im-

proves performances on ImageNet-A, C and P.
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