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Abstract

Despite the remarkable progress made by learning based

stereo matching algorithms, one key challenge remains un-

solved. Current state-of-the-art stereo models are mostly

based on costly 3D convolutions, the cubic computational

complexity and high memory consumption make it quite ex-

pensive to deploy in real-world applications. In this pa-

per, we aim at completely replacing the commonly used 3D

convolutions to achieve fast inference speed while main-

taining comparable accuracy. To this end, we first pro-

pose a sparse points based intra-scale cost aggregation

method to alleviate the well-known edge-fattening issue at

disparity discontinuities. Further, we approximate tradi-

tional cross-scale cost aggregation algorithm with neural

network layers to handle large textureless regions. Both

modules are simple, lightweight, and complementary, lead-

ing to an effective and efficient architecture for cost ag-

gregation. With these two modules, we can not only sig-

nificantly speed up existing top-performing models (e.g.,

41× than GC-Net, 4× than PSMNet and 38× than GA-

Net), but also improve the performance of fast stereo mod-

els (e.g., StereoNet). We also achieve competitive results

on Scene Flow and KITTI datasets while running at 62ms,

demonstrating the versatility and high efficiency of the pro-

posed method. Our full framework is available at https:

//github.com/haofeixu/aanet.

1. Introduction

Estimating depth from stereo pairs is one of the most fun-

damental problems in computer vision [29]. The key task

is to find spatial pixel correspondences, i.e., stereo match-

ing, then depth can be recovered by triangulation. Effi-

cient and accurate stereo matching algorithms are crucial

for many real-world applications that require fast and reli-

able responses, such as robot navigation, augmented reality

and autonomous driving.

Traditional stereo matching algorithms generally per-
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Figure 1: Illustration of the sampling locations in regular

convolution based cost aggregation methods and our pro-

posed approach, where the yellow and red points represent

the locations for aggregation. (a) left image of a stereo

pair. (b) fixed sampling locations in regular convolutions,

also the aggregation weights are spatially shared. (c) adap-

tive sampling locations and position-specific aggregation

weights in our approach. The background in (b) and (c)

is ground truth disparity.

form a four-step pipeline: matching cost computation, cost

aggregation, disparity computation and refinement, and

they can be broadly classified into global and local methods

[29]. Global methods usually solve an optimization prob-

lem by minimizing a global objective function that contains

data and smoothness terms [31, 17], while local methods

only consider neighbor information [40, 12], making them-

selves much faster than global methods [23, 29]. Although

significant progress has been made by traditional methods,

they still suffer in challenging situations like textureless re-

gions, repetitive patterns and thin structures.

Learning based methods make use of deep neural net-

works to learn strong representations from data, achiev-

ing promising results even in those challenging situations.

DispNetC [20] builds the first end-to-end trainable frame-

work for disparity estimation, where a correlation layer is

used to measure the similarity of left and right image fea-

tures. GC-Net [14] takes a different approach by directly

concatenating left and right features, and thus 3D convo-

lutions are required to aggregate the resulting 4D cost vol-

ume. PSMNet [4] further improves GC-Net by introduc-

ing more 3D convolutions for cost aggregation and accord-

ingly obtains better accuracy. Although state-of-the-art per-

formance can be achieved with 3D convolutions, the high
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computational cost and memory consumption make it quite

expensive to deploy in practice (for example, PSMNet costs

about 4G memory and 410ms to predict a KITTI stereo pair

even on high-end GPUs). The recent work, GA-Net [43],

also notices the drawbacks of 3D convolutions and tries to

replace them with two guided aggregation layers. However,

their final model still uses fifteen 3D convolutions.

To this end, a motivating question arises: How to achieve

state-of-the-art results without any 3D convolutions while

being significantly faster? Answering this question is espe-

cially challenging due to the strong regularization provided

by 3D convolutions. In this paper, we show that by de-

signing two effective and efficient modules for cost aggre-

gation, competitive performance can be obtained on both

Scene Flow and KITTI datasets even with simple feature

correlation [20] instead of concatenation [14].

Specifically, we first propose a new sparse points based

representation for intra-scale cost aggregation. As illus-

trated in Fig. 1, a set of sparse points are adaptively sam-

pled to locate themselves in regions with similar disparities,

alleviating the well-known edge-fattening issue at disparity

discontinuities [29]. Moreover, such representation is flexi-

ble to sample from a large context while being much more

efficient than sampling from a large window, an essential

requirement for traditional local methods to obtain high-

quality results [23]. We additionally learn content-adaptive

weights to achieve position-specific weighting for cost ag-

gregation, aiming to overcome the inherent drawback of

spatial sharing nature in regular convolutions. We imple-

ment the above ideas with deformable convolution [45].

We further approximate traditional cross-scale cost ag-

gregation algorithm [44] with neural network layers by con-

structing multi-scale cost volumes in parallel and allowing

adaptive multi-scale interactions, producing accurate dis-

parity predictions even in low-texture or textureless regions.

These two modules are simple, lightweight, and comple-

mentary, leading to an efficient architecture for cost aggre-

gation. We also make extensive use of the key ideas in the

feature extraction stage, resulting in our highly efficient and

accurate Adaptive Aggregation Network (AANet). For in-

stance, we can outperform existing top-performing models

on Scene Flow dataset, while being significantly faster, e.g.,

41× than GC-Net[14], 4× than PSMNet [4] and 38× than

GA-Net [43]. Our method can also be a valuable way to

improve the performance of fast stereo models, e.g., Stere-

oNet [15], which are usually based on a very low-resolution

cost volume to achieve fast speed, while at the cost of sac-

rificing accuracy. We also achieve competitive performance

on KITTI dataset while running at 62ms, demonstrating the

versatility and high efficiency of the proposed method.

2. Related Work

This section reviews the most relevant work to ours.

Local Cost Aggregation. Local stereo methods (either

traditional [40, 12] or 2D/3D convolution based methods

[20, 14]) usually perform window based cost aggregation:

C̃(d,p) =
∑

q∈N(p)

w(p, q)C(d, q), (1)

where C̃(d,p) denotes the aggregated cost at pixel p for

disparity candidate d, pixel q belongs to the neighbors

N(p) of p, w(p, q) is the aggregation weight and C(d, q)
is the raw matching cost at q for disparity d. Despite the

widespread and successful applications of local methods,

they still have several important limitations. First and fore-

most, the fundamental assumption made by local methods is

that all the pixels in the matching window have similar dis-

parities. However, this assumption does not hold at dispar-

ity discontinuities, causing the well-known edge-fattening

issue in object boundaries and thin structures [29, 23]. As

a consequence, the weighting function w needs to be de-

signed carefully to eliminate the influence of pixels that vi-

olate the smoothness assumption [12, 40]. While learning

based methods automatically learn the aggregation weights

from data, they still suffer from the inherent drawback of

regular convolutions: weights are spatially shared, thus

making themselves content-agnostic. Moreover, a large

window size is often required to obtain high-quality results

[24, 23], leading to high computational cost. Some works

have been proposed to address the limitations of fixed rect-

angular window, e.g., using varying window size [26], mul-

tiple windows [11], or unconstrained shapes [2].

Different from existing methods, we propose a new

sparse points based representation for cost aggregation.

This representation is also different from [23], in which

sparse points inside the matching window are regularly

sampled to reduce the computational complexity. In con-

trast, our proposed sampling mechanism is completely

unconstrained and adaptive, providing more flexibility

than the regular sampling in [23]. We also learn addi-

tional content-adaptive weights to enable position-specific

weighting in contrast to the spatial sharing nature of regular

convolutions.

Cross-Scale Cost Aggregation. Traditional cross-scale

cost aggregation algorithm [44] reformulates local cost

aggregation from a unified optimization perspective, and

shows that by enforcing multi-scale consistency on cost vol-

umes, the final cost volume is obtained through the adaptive

combination of the results of cost aggregation performed at

different scales. Details are provided in the supplementary

material. We approximate this conclusion with neural net-

work layers in an end-to-end manner. Different from exist-

ing coarse-to-fine approaches [33, 39, 30], we build multi-

scale cost volumes in parallel and allow adaptive multi-

scale interactions. Our cross-scale aggregation architecture

is also different from the very recent work [35], in which
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Figure 2: Overview of our proposed Adaptive Aggregation Network (AANet). Given a stereo pair, we first extract down-

sampled feature pyramid at 1/3, 1/6 and 1/12 resolutions with a shared feature extractor. Then multi-scale cost volumes

are constructed by correlating left and right features at corresponding scales. The raw cost volumes are aggregated by six

stacked Adaptive Aggregation Modules (AAModules), where an AAModule consists of three Intra-Scale Aggregation (ISA,

Sec. 3.1) modules and a Cross-Scale Aggregation (CSA, Sec. 3.2) module for three pyramid levels. Next multi-scale dispar-

ity predictions are regressed. Note that the dashed arrows are only required for training and can be removed for inference.

Finally the disparity prediction at 1/3 resolution is hierarchically upsampled/refined to the original resolution. For clarity,

the refinement modules are omitted in this figure, see Sec. 3.3 for details.

multi-scale cost volumes are also constructed. However,

[35] fuses the cost volumes from the lowest level to the

higher ones hierarchically, while ours aggregates all scale

cost volumes simultaneously based on the analysis in [44].

Stereo Matching Networks. Existing end-to-end stereo

matching networks can be broadly classified into two cat-

egories: 2D and 3D convolution based methods. They

mainly differ in the way that cost volume is constructed.

2D methods [20, 18, 33] generally adopt a correlation layer

[20] while 3D methods [14, 4, 25, 43, 3] mostly use direct

feature concatenation [14]. An exception to concatenation

based 3D methods is [8], in which group-wise correlation is

proposed to reduce the information loss of full correlation

[20]. In terms of performance, 3D methods usually out-

perform 2D methods by a large margin on popular bench-

marks (e.g., Scene Flow [20] and KITTI [22]), but the run-

ning speed is considerably slower. In this paper, we aim

at significantly speeding up existing top-performing meth-

ods while maintaining comparable performance. The very

recent work, DeepPruner [6], shares a similar goal with us

to build efficient stereo models. They propose to reduce

the disparity search range by a differentiable PatchMatch

[1] module, and thus a compact cost volume is constructed.

In contrast, we aim at reducing the sampling complexity

and improving the sampling flexibility in cost aggregation,

which works on different aspects, and both methods can be

complementary to each other.

Deformable Convolution. Deformable convolution

[5, 45] is initially designed to enhance standard convo-

lution’s capability of modeling geometric transformations,

and commonly used as backbone for object detection and

semantic/instance segmentation tasks. We instead take a

new perspective of traditional stereo methods and propose

an adaptive sampling scheme for efficient and flexible cost

aggregation. Since the resulting formulation is similar to

deformable convolution, we adopt it in our implementation.

3. Method

Given a rectified image pair Il and Ir, we first extract

downsampled feature pyramid {F s

l
}Ss=1 and {F s

r }
S
s=1 with

a shared feature extractor, where S denotes the number of

scales, s is the scale index, and s = 1 represents the high-

est scale. Then multi-scale 3D cost volumes {Cs}Ss=1 are

constructed by correlating left and right image features at

corresponding scales, similar to DispNetC [20]:

Cs(d, h, w) =
1

N
〈F s

l (h,w),F
s

r (h,w − d)〉, (2)

where 〈·, ·〉 denotes the inner product of two feature vec-

tors and N is the channel number of extracted features.

Cs(d, h, w) is the matching cost at location (h,w) for dis-

parity candidate d. The raw cost volumes {Cs}Ss=1 are
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then aggregated with several stacked Adaptive Aggrega-

tion Modules (AAModules), where an AAModule consists

of S adaptive Intra-Scale Aggregation (ISA) modules and

an adaptive Cross-Scale Aggregation (CSA) module for S
pyramid levels. Finally, the predicted low-resolution dis-

parity is hierarchically upsampled to the original resolution

with the refinement modules. All disparity predictions are

supervised with ground truth when training, while only the

last disparity prediction is required for inference. Fig. 2

provides an overview of our proposed Adaptive Aggrega-

tion Network (AANet). In the following, we introduce the

ISA and CSA modules in detail.

3.1. Adaptive IntraScale Aggregation

To alleviate the well-known edge-fattening issue at dis-

parity discontinuities, we propose a sparse points based rep-

resentation for efficient and flexible cost aggregation. Since

the resulting formulation is similar to deformable convolu-

tion, we adopt it in our implementation.

Specifically, for cost volume C ∈ R
D×H×W at a certain

scale, where D,H,W represents the maximum disparity,

height and width, respectively, the proposed cost aggrega-

tion strategy is defined as

C̃(d,p) =

K
2

∑

k=1

wk ·C(d,p+ pk +∆pk), (3)

where C̃(d,p) denotes the aggregated cost at pixel p for

disparity candidate d, K2 is the number of sampling points

(K = 3 in our paper), wk is the aggregation weight for k-

th point, pk is the fixed offset to p in window based cost

aggregation approaches. Our key difference from previous

stereo works is that we learn additional offset ∆pk to regu-

lar sampling location p + pk, thus enabling adaptive sam-

pling for efficient and flexible cost aggregation, leading to

high-quality results in object boundaries and thin structures.

However, in the context of learning, the spatial shar-

ing nature of regular convolution weights {wk}
K

2

k=1 makes

themselves content-agnostic. We further learn position-

specific weights {mk}
K

2

k=1 (i.e., modulation in [45], they

also have effects of controlling the relative influence of

the sampling points) for each pixel location p to achieve

content-adaptive cost aggregation:

C̃(d,p) =

K
2

∑

k=1

wk ·C(d,p+ pk +∆pk) ·mk. (4)

We implement Eq. (4) with deformable convolution [45],

both ∆pk and mk are obtained by a separate convolution

layer applied over the input cost volume C. The original

formulation of deformable convolution assumes the offsets

∆pk and weights mk are shared by each channel (i.e., dis-

parity candidate d in this paper), we further evenly divide all

disparity candidates into G groups, and share ∆pk and mk

within each group. Dilated convolution [41] is also used for

deformable convolution to introduce more flexibility. We

set G = 2 and the dilation rate to 2 in this paper.

We build an Intra-Scale Aggregation (ISA) module with

a stack of 3 layers and a residual connection [9]. The three

layers are 1 × 1, 3 × 3 and 1 × 1 convolutions, where the

3× 3 convolution is a deformable convolution. This design

is similar to the bottleneck in [9], but we always keep the

channels constant (equals to the number of disparity candi-

dates). That is, we keep reasoning about disparity candi-

dates, similar to traditional cost aggregation methods.

3.2. Adaptive CrossScale Aggregation

In low-texture or textureless regions, searching the corre-

spondence at the coarse scale can be beneficial [21], as the

texture information will be more discriminative under the

same patch size when an image is downsampled. A similar

observation has also been made in [36]. Therefore, multi-

scale interactions are introduced in traditional cross-scale

cost aggregation algorithm [44].

The analysis in [44] shows that the final cost volume is

obtained through the adaptive combination of the results of

cost aggregation performed at different scales (details are

given in the supplementary material). We thus approximate

this algorithm with

Ĉs =

S
∑

k=1

fk(C̃
k), s = 1, 2, · · · , S, (5)

where Ĉ is the resulting cost volume after cross-scale cost

aggregation, C̃k is the intra-scale aggregated cost volume

at scale k, for example, with the algorithm in Sec. 3.1, and

fk is a general function to enable the adaptive combination

of cost volumes at each scale. We adopt the definition of fk
from HRNet [32], a recent work for human pose estimation,

which depends on the resolutions of cost volumes C̃k and

Ĉs. Concretely, for cost volume Ĉs,

fk =











I, k = s,

(s− k) stride−2 3× 3 convs, k < s,

upsampling
⊕

1× 1 conv, k > s,

(6)

where I denotes the identity function, s − k stride-2 3 × 3
convolutions are used for 2s−k times downsampling to

make the resolution consistent, and
⊕

means bilinear up-

sampling to the same resolution first, then following a 1× 1
convolution to align the number of channels. We denote this

architecture as Cross-Scale Aggregation (CSA) module.

Although our CSA module is similar to HRNet[32], they

have two major differences. First, we are inspired by tradi-

tional cross-scale cost aggregation algorithm [44] and aim-

ing at approximating the geometric conclusion with neu-

ral network layers, while HRNet is designed for learning
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rich feature representations. Moreover, the channel number

(corresponding to the disparity dimension) of lower scale

cost volume is halved in our approach due to the smaller

search range in coarser scales, while HRNet doubles, indi-

cating our architecture is more efficient than HRNet.

3.3. Adaptive Aggregation Network

The proposed ISA and CSA modules are complemen-

tary and can be integrated, resulting in our final Adaptive

Aggregation Module (AAModule, see Fig. 2). We stack six

AAModules for cost aggregation, while for the first three

AAModules, we simply use regular 2D convolutions for

intra-scale aggregation, thus a total of nine deformable con-

volutions are used for cost aggregation in this paper.

Our feature extractor adopts a ResNet-like [9] archi-

tecture (40 layers in total), in which six regular 2D con-

volutions are replaced with their deformable counterparts.

We use Feature Pyramid Network [19] to construct feature

pyramid at 1/3, 1/6 and 1/12 resolutions. Two refinement

modules proposed in StereoDRNet [3] are used to hierar-

chically upsample the 1/3 disparity prediction to the origi-

nal resolution (i.e., upsample to 1/2 resolution first, then to

original resolution). Combining all these components leads

to our final Adaptive Aggregation Network (AANet).

3.4. Disparity Regression

For each pixel, we adopt the soft argmin mechanism [14]

to obtain the disparity prediction d̃:

d̃ =

Dmax−1
∑

d=0

d× σ(cd), (7)

where Dmax is the maximum disparity range, σ is the soft-

max function, and cd is the aggregated matching cost for

disparity candidate d. σ(cd) can be seen as the probability

of disparity being d. This regression based formulation can

produce sub-pixel precision and thus is used in this paper.

3.5. Loss Function

Our AANet is trained end-to-end with ground truth dis-

parities as supervision. While for KITTI dataset, the high

sparsity of disparity ground truth may not be very effective

to drive our learning process. Inspired by the knowledge

distillation in [10], we propose to leverage the prediction re-

sults from a pre-trained stereo model as pseudo ground truth

supervision. Specifically, we employ a pre-trained model to

predict the disparity maps on the training set, and use the

prediction results as pseudo labels in pixels where ground

truth disparities are not available. We take the pre-trained

GA-Net [43] model as an example to validate the effective-

ness of this strategy.

For disparity prediction Di

pred, i = 1, 2, · · · , N , it is

first bilinearly upsampled to the original resolution. The

corresponding loss function is defined as

Li =
∑

p

V (p) · L(Di

pred(p),Dgt(p))

+ (1− V (p)) · L(Di

pred(p),Dpseudo(p)), (8)

where V (p) is a binary mask to denote whether the ground

truth disparity for pixel p is available, L is the smooth L1

loss [4], Dgt is the ground truth disparity and Dpseudo is

the pseudo ground truth.

The final loss function is a combination of losses over all

disparity predictions

L =

N
∑

i=1

λi · Li, (9)

where λi is a scalar for balancing different terms.

4. Experiments

4.1. Datasets and Evaluation Metrics

We conduct extensive experiments on three popular

stereo datasets: Scene Flow, KITTI 2012 and KITTI 2015.

The Scene Flow dataset [20] is a large scale synthetic

dataset and provides dense ground truth disparity maps. The

end-point error (EPE) and 1-pixel error are reported on this

dataset, where EPE is the mean disparity error in pixels and

1-pixel error is the average percentage of pixel whose EPE

is bigger than 1 pixel. The KITTI 2012 [7] and KITTI 2015

[22] are real-world datasets in the outdoor scenario, where

only sparse ground truth is provided. The official metrics

(e.g., D1-all) in the online leader board are reported.

4.2. Implementation Details

We implement our approach in PyTorch [27] and using

Adam [16] (β1 = 0.9, β2 = 0.999) as optimizer. For Scene

Flow dataset, we use all training set (35454 stereo pairs) for

training and evaluate on the standard test set (4370 stereo

pairs). The raw images are randomly cropped to 288× 576
as input. We train our model on 4 NVIDIA V100 GPUs

for 64 epochs with a batch size of 64. The learning rate

starts at 0.001 and is decreased by half every 10 epochs af-

ter 20th epoch. For KITTI dataset, we use 336 × 960 crop

size, and first fine-tune the pre-trained Scene Flow model on

mixed KITTI 2012 and 2015 training sets for 1000 epochs.

The initial learning rate is 0.001 and decreased by half at

400th, 600th, 800th and 900th epochs. Then another 1000

epochs are trained on the separate KITTI 2012/2015 train-

ing set for benchmarking, with an initial learning rate of

0.0001 and same schedule as before. But only the last dis-

parity prediction is supervised with ground truth following

a similar strategy in [13]. For all datasets, the input images

are normalized with ImageNet mean and standard deviation
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Method
Scene Flow KITTI 2015

EPE > 1px EPE D1-all

w/o ISA & CSA 1.10 10.9 0.75 2.63

w/o ISA 0.97 10.1 0.70 2.22

w/o CSA 0.99 10.1 0.69 2.31

AANet 0.87 9.3 0.68 2.29

Table 1: Ablation study of ISA and CSA modules. The best

performance is obtained by integrating these two modules.

Im
ag

e
w

/o
IS

A
&

C
S

A
A

A
N

et
G

T

Figure 3: Visual comparisons of ablation study on Scene

Flow test set. Our AANet produces sharper results in thin

structures and better predictions in textureless regions.

statistics. We use random color augmentation and vertical

flipping, and set the maximum disparity as 192 pixels. From

highest scale to lowest, the loss weights in Eq. 8 are set to

λ1 = λ2 = λ3 = 1.0, λ4 = 2/3, λ5 = 1/3.

4.3. Analysis

To validate the effectiveness of each component pro-

posed in this paper, we conduct controlled experiments on

Scene Flow test set and KITTI 2015 validation set (the

KITTI 2015 training set is split into 160 pairs for training

and 40 pairs for validation).

Ablation Study. As shown in Tab. 1, removing the pro-

posed ISA or CSA module leads to clear performance drop.

The best performance is obtained by integrating these two

modules, which are designed to be complementary in prin-

ciple. Fig. 3 further shows the visual comparison results.

Our full model produces better disparity predictions in thin

structures and textureless regions, demonstrating the effec-

tiveness of the proposed method.

Sampling Points Visualization. To better understand

our proposed adaptive intra-scale cost aggregation algo-

(a) object boundary (b) textureless region

Figure 4: Visualization of sampling points (red points) in

two challenging regions (green points). In object boundary

(a), the sampling points tend to focus on similar disparity re-

gions. While for large textureless region (b), they are more

discretely distributed to sample from a large context.

Im
ag

e
w

/o
p
se

u
d
o

g
t

w
/

p
se

u
d
o

g
t

Figure 5: Visualization of disparity prediction results on

KITTI 2015 validation set. Leveraging pseudo ground truth

as additional supervision helps reduce the artifacts in re-

gions where ground truth disparities are not available, e.g.,

the sky region.

rithm, we visualize the sampling locations in two challeng-

ing regions. As illustrated in Fig. 4, for pixel in object

boundary (Fig. 4a), the sampling points tend to focus on

similar disparity regions. While for large textureless re-

gion (Fig. 4b), a large context is usually required to ob-

tain reliable matching due to lots of local ambiguities. Our

method can successfully adapt the sampling locations to

these regions, validating that the proposed adaptive aggre-

gation method can not only dynamically adjust the sampling

locations, but also enables sampling from a large context.

Pseudo Ground Truth Supervision. Fig. 5 shows the

visual results on KITTI 2015 validation set. We empiri-

cally find that leveraging the prediction results from a pre-

trained GA-Net [43] model helps reduce the artifacts in re-

gions where ground truth disparities are not available, e.g.,

the sky region. Quantitatively, the D1-all error metric de-

creases from 2.29 to 2.15, while the EPE increases from

0.68 to 0.69. The possible reason might be that the valida-

tion set is too small to make the results unstable. Similar

phenomenon has also been noticed in [8]. However, the

qualitative results indicate that our proposed strategy can be
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Method #3D Convs #DConvs #CSA EPE > 1px Params FLOPs Memory Time (ms)

StereoNet [15] 4 0 0 1.10 - 0.62M 106.89G 1.41G 23

StereoNet-AA 0 4 0 1.08 12.9 0.53M 88.17G 1.38G 17

GC-Net [14] 19 0 0 2.51 16.9 2.85M 1754.10G 21.52G 3731

GC-Net-AA 0 9 6 0.98 10.8 2.15M 212.59G 1.97G 91

PSMNet [4] 25 0 0 1.09 12.1 5.22M 613.90G 4.08G 317

PSMNet-AA 0 9 6 0.97 10.2 4.15M 208.73G 1.58G 77

GA-Net [43] 15 0 0 0.84 9.9 4.60M 1439.57G 6.23G 2211

GA-Net-AA 0 14 6 0.87 9.2 3.68M 119.64G 1.63G 57

Table 2: Comparisons with four representative stereo models: StereoNet, GC-Net, PSMNet and GA-Net. We replace the 3D

convolutions in cost aggregation stage with our proposed architectures and denote the resulting model with suffix AA. Our

method not only obtains clear performance improvements (except GA-Net has lower EPE), but also shows fewer parameters,

less computational cost and memory consumption, while being significantly faster than top-performing models (41× than

GC-Net, 4× than PSMNet and 38× than GA-Net). The comparison with StereoNet indicates that our method can also be a

valuable way to improve the performance of existing fast stereo models. “DConvs” is short for deformable convolutions.

Image PSMNet AANet

Figure 6: Generalization on Middlebury 2014 dataset. Our

AANet produces sharper object boundaries and better pre-

serves the overall structures than PSMNet.

an effective way to handle highly sparse ground truth data.

Generalization. We further test the generalization abil-

ity of our method on Middlebury 2014 dataset [28]. Specifi-

cally, we directly use our KITTI fine-tuned model to predict

the disparity map, no additional training is done on Middle-

bury. Fig. 6 shows the results. Compared with the popu-

lar PSMNet [4] model, our AANet produces sharper object

boundaries and better preserves the overall structures.

4.4. Comparison with 3D Convolutions

To demonstrate the superiority of our proposed cost ag-

gregation method over commonly used 3D convolutions,

we conduct extensive experiments on the large scale Scene

Flow dataset.

Settings. We mainly compare with four representative

stereo models: the first 3D convolution based model GC-

Net [14], real-time model StereoNet [15], previous and cur-

rent state-of-the-art models PSMNet [4] and GA-Net [43].

For fair comparisons, we use similar feature extractors with

them. Specifically, StereoNet uses 8× downsampling for

fast speed while we use 4×; five regular 2D convolutions

in GA-Net are replaced with their deformable counterparts;

for GC-Net and PSMNet, the feature extractors are exactly

the same. We replace the 3D convolutions in cost aggrega-

tion stage with our proposed AAModules, and denote the

resulting model with suffix AA. We integrate all these mod-

els in a same framework and measure the inference time

with 576× 960 resolution on a single NVIDIA V100 GPU.

Results. Tab. 2 shows the comprehensive comparison

metrics/statistics. To achieve fast speed, StereoNet [15]

uses 8× downsampling to build a very low-resolution cost

volume, while at the cost of sacrificing accuracy. But thanks

to our efficient adaptive aggregation architecture, we are

able to directly aggregate the 1/4 cost volume with even

less computation while being more accurate and faster, in-

dicating that our method can be a valuable way to improve

the performance of existing fast stereo models. Compared

with top-performing stereo models GC-Net [14], PSMNet

[4] and GA-Net [43], we not only obtain clear performance

improvements (except GA-Net has lower EPE than ours),

but also show fewer parameters, less computational cost and

memory consumption, while being significantly faster (41×
than GC-Net, 4× than PSMNet and 38× than GA-Net),

demonstrating the high efficiency of our method compared

with commonly used 3D convolutions.

Complexity Analysis. 2D stereo methods use simple

feature correlation to build a 3D cost volume (D×H ×W )

while 3D methods use concatenation thus a 4D cost volume

is built (C × D × H × W ), where C,D,H,W denotes

channels after feature concatenation, maximum disparity,

height and width, respectively. C usually equals to 64 for
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Method GC-Net [14] PSMNet [4] GA-Net [43] DeepPruner-Best [6] DispNetC [20] StereoNet [15] AANet AANet⋆

EPE 2.51 1.09 0.84 0.86 1.68 1.10 0.87 0.83

Time (s) 0.9 0.41 1.5 0.182 0.06 0.015 0.068 0.160

Table 3: Evaluation results on Scene Flow test set. Our method not only achieves state-of-the-art performance but also runs

significantly faster than existing top-performing methods.

Method
KITTI 2012 KITTI 2015 Time

(s)Out-Noc Out-All D1-bg D1-all

MC-CNN [42] 2.43 3.63 2.89 3.89 67

GC-Net [14] 1.77 2.30 2.21 2.87 0.9

PSMNet [4] 1.49 1.89 1.86 2.32 0.41

DeepPruner-Best [6] - - 1.87 2.15 0.182

iResNet-i2 [18] 1.71 2.16 2.25 2.44 0.12

HD3 [39] 1.40 1.80 1.70 2.02 0.14

GwcNet [8] 1.32 1.70 1.74 2.11 0.32

GA-Net [43] 1.36 1.80 1.55 1.93 1.5

AANet⋆ 1.71 2.21 1.78 2.24 0.142

StereoNet [15] 4.91 6.02 4.30 4.83 0.015

MADNet [33] - - 3.75 4.66 0.02

DispNetC [20] 4.11 4.65 4.32 4.34 0.06

DeepPruner-Fast [6] - - 2.32 2.59 0.061

AANet 1.91 2.42 1.99 2.55 0.062

Table 4: Benchmark results on KITTI 2012 and KITTI 2015

test sets. Our deeper model AANet⋆ achieves competitive

results among existing top-performing methods while main-

taining fast inference speed. Note that HD3 has more than

6× parameters than ours. Compared with other fast models,

our AANet is much more accurate.

3D convolutions based methods and D = 64 for 1/3 reso-

lution cost volume. Supposing the output cost volume has

the same size as input and the kernel size of a convolution

layer is K (K = 3 usually), then the computational com-

plexity of a 3D convolution layer is O(K3C2DHW ). In

contrast, the complexity of a deformable convolution layer

is O(K2D2HW + 3K4DHW + 3K2DHW ). Therefore,

the computational complexity of a deformable convolution

layer is less than 1/130 of a 3D convolution layer.

4.5. Benchmark Results

For benchmarking, we build another model variant

AANet⋆ that uses higher-resolution (1/2) cost volume and

deeper (61 layers) feature extractor. Tab. 3 shows the eval-

uation results on Scene Flow test set. Our method not only

achieves state-of-the-art results, but also runs significantly

faster than existing top-performing methods. The evalua-

tion results on KITTI 2012 and KITTI 2015 benchmarks

are shown in Tab. 4. Compared with other fast models, our

AANet is much more accurate. The deeper version model

AANet⋆ achieve competitive results while maintaining fast

inference speed. We also note that HD3[39] has more than
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Figure 7: Visualization of disparity prediction error on

KITTI 2015 test set (red and yellow denote large errors).

Our method produces better results in object boundaries.

Best viewed enlarged.

6× parameters than our AANet⋆ (39.1M vs. 5.9M), and our

AANet⋆ performs much better than iResNet-i2[18] on the

more challenging KITTI 2015 dataset, demonstrating that

our method achieves a better balance between accuracy and

speed. Fig. 7 further visualizes the disparity prediction er-

ror on KITTI 2015 test set. Our method produces better

results in object boundaries, validating the effectiveness of

our proposed adaptive aggregation algorithm.

5. Conclusion

We have presented an efficient architecture for cost ag-

gregation, and demonstrated its superiority over commonly

used 3D convolutions by high efficiency and competitive

performance on both Scene Flow and KITTI datasets. Ex-

tensive experiments also validate the generic applicability

of the proposed method. An interesting future direction

would be extending our method to other cost volume based

tasks, e.g., high-resolution stereo matching [37], multi-view

stereo [38] and optical flow estimation [30]. We also hope

our lightweight design can be beneficial for downstream

tasks, e.g., stereo based 3D object detection [34].
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