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Abstract

Applying the knowledge of an object detector trained on

a specific domain directly onto a new domain is risky, as

the gap between two domains can severely degrade model’s

performance. Furthermore, since different instances com-

monly embody distinct modal information in object detec-

tion scenario, the feature alignment of source and target

domain is hard to be realized. To mitigate these prob-

lems, we propose a Graph-induced Prototype Alignment

(GPA) framework to seek for category-level domain align-

ment via elaborate prototype representations. In the nut-

shell, more precise instance-level features are obtained

through graph-based information propagation among re-

gion proposals, and, on such basis, the prototype repre-

sentation of each class is derived for category-level do-

main alignment. In addition, in order to alleviate the neg-

ative effect of class-imbalance on domain adaptation, we

design a Class-reweighted Contrastive Loss to harmonize

the adaptation training process. Combining with Faster

R-CNN, the proposed framework conducts feature align-

ment in a two-stage manner. Comprehensive results on

various cross-domain detection tasks demonstrate that our

approach outperforms existing methods with a remarkable

margin. Our code is available at https://github.

com/ChrisAllenMing/GPA-detection.

1. Introduction

Following the rapid development of techniques leverag-

ing Deep Neural Networks (DNNs), a variety of computer-

vision-related tasks, e.g. object classification [20, 14], ob-

ject detection [35, 24], and semantic segmentation [4, 13],

witnessed major breakthroughs in the last decade. It should

be noticed that the impressive performance of these mod-

els is established, to a great extent, on the basis of massive

amounts of annotated data, of which the annotation process

*The corresponding author is Bingbing Ni.

(a) (b)
Figure 1. Two vehicles and corresponding region proposals from

the Cityscapes [6] dataset which serves as target domain. These

two vehicles reflect multi-modal information, e.g. distinct scale

and orientation, and the generated region proposals contain incom-

plete information of them.

itself could be a laborious task in many cases. Furthermore,

when the model trained on a domain with abundant anno-

tations is applied to a distinct domain with limited, even

unavailable, labels, it will suffer from performance decay,

due to the existence of domain shift [53].

One of the extensively explored techniques to deal with

such dilemma is Unsupervised Domain Adaptation (UDA),

which seeks for knowledge transfer from a labeled dataset

(source domain) to another unlabeled one (target domain).

In order to encourage domain-invariant feature representa-

tions, commonly adopted strategies can be roughly classi-

fied into two categories: 1) Minimizing an explicitly de-

fined domain discrepancy measurement [25, 44, 42, 48]; 2)

Applying adversarial training to UDA via domain classi-

fier [7, 43, 1, 32]. These strategies are comprehensively

exploited in classification-based tasks.

Besides classification, cross-domain detection is also

strongly demanded in modern Computer Vision systems,

including intelligent surveillance and autonomous driving,

in which the deployment environment, e.g. backgrounds,

weather, illumination, changes from site to site. Previous

works [5, 2, 55] utilize independent or grouped region pro-

posals to align source and target domain on local instance

level. However, since supervisory signal is lacked on target

domain, the generated region proposals commonly deviate

from instances, which makes the information from primal
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proposals improper to depict corresponding instances. In

addition, the representation of an instance is insufficient to

characterize the category it belongs to, because a single in-

stance can only reflect limited modal information, e.g. spe-

cific scale or orientation. However, the representations of

instances within a category are multi-modal. Two typical

examples are illustrated in Figure 1, where two vehicles ex-

press different modal information, and the generated region

proposals deviate from objects. These two problems make

instance-level domain alignment trapped into dilemma. Ex-

cept for these issues, in multi-class cross-domain detection

tasks, class-imbalance leads to the inconsistency of domain

adaptation process among different classes along training,

which greatly impairs model’s adaptation performance on

those sample-scarce categories.

Motivated by these problems, we propose the Graph-

induced Prototype Alignment (GPA) framework and em-

bed it into a two-stage detector, Faster R-CNN [35]. For the

sake of better local alignment via region proposals, we in-

troduce two key components, graph-based region aggrega-

tion and confidence-guided merging. In graph-based region

aggregation, a relation graph which takes both the location

and size of proposals into consideration is constructed to ag-

gregate features on instance level, such that the critical fea-

tures of each instance are integrated. In confidence-guided

merging, the multi-modal information contained in various

instances is embodied by prototype† representations, such

that, by utilizing the complementarity of multi-modal infor-

mation, each category can be better characterized. Using

prototypes as the proxy of different classes, category-level

domain alignment is performed. Furthermore, considering

that class-imbalance exists in the multi-class cross-domain

detection tasks, we harmonize the process of domain adap-

tation via a Class-reweighted Contrastive Loss, in which

the sample-scarce classes are assigned with higher weights,

thus they can be better aligned during training.

Based on the two-stage structure of Faster R-CNN, we

also conduct feature alignment in a two-stage manner: 1)

In the first stage, foreground and background distributions

are separated, and class-agnostic alignment is performed on

feature distributions of two domains; 2) In the second stage,

more fine-grained alignment is respectively performed on

each foreground category.

Our contributions can be summarized as follows:

• We propose the Graph-induced Prototype Alignment

(GPA) framework, in which more precise instance-

level features are obtained through graph-based region

aggregation, and prototype representations are derived

for category-level domain alignment.

• In multi-class cross-domain detection tasks, for tack-

ling the class-imbalance during feature alignment, we

†Prototype is the representative embedding of all samples within the

same class.

design a Class-reweighted Contrastive Loss to harmo-

nize the adaptation process among different classes.

• Combining with the Faster R-CNN architecture, we

propose a two-stage domain alignment scheme, and

it achieves state-of-the-art performance on the cross-

domain detection tasks under various scenarios.

2. Related Work

Object Detection. Current object detection methods can

be roughly categorized into two classes: one-stage detectors

[33, 24, 34, 22] and two-stage detectors [10, 9, 35, 21, 13].

R-CNN [10] first obtains region proposals with selective

search and then classifies each proposal. Fast R-CNN [9]

speeds up detection process by introducing RoI pooling.

Faster R-CNN [35] produces nearly cost-free region pro-

posals with Region Proposal Network. One-stage detectors,

such as YOLO [33] and SSD [24], directly predict category

confidence and regress bounding box based on predefined

anchors. Lin et al. [22] proposed focal loss to address

class-imbalance, which increases the accuracy of one-stage

detector. In this work, we choose Faster R-CNN as baseline

detector for its robustness and scalability.

Unsupervised Domain Adaptation (UDA). UDA aims

to generalize the model learned from labeled source do-

main to the other unlabeled target domain. In the field of

UDA, a group of approaches focus on minimizing a spe-

cific domain discrepancy metric, e.g., Maximum Mean Dis-

crepancy (MMD) [11, 44], Weighted MMD [49], Multi-

Kernel MMD [25] and Wasserstein Distance [41]. Another

research line is based on adversarial training, in which a do-

main classifier is introduced to facilitate domain-invariance

on feature level [7, 43, 26] or pixel level [40, 15, 47]. Re-

cently, several works [46, 54, 30, 3] utilize pseudo labels

of samples from target domain to introduce discrimina-

tive information during domain alignment. Following the

prototype-based approaches [46, 30], we extend the usage

of prototype to cross-domain detection tasks.

Cross-domain Detection. Beginning with the work of

Chen et al. [5], the topic of cross-domain detection arouses

interests in the community of UDA. In that work, a Domain

Adaptive Faster R-CNN model is constructed to reduce do-

main discrepancy on both image and instance levels. More

recently, Saito et al. [38] proposed a strong-weak alignment

strategy which puts less effort on aligning globally dissimi-

lar images. Cai et al. [2] remolded the mean teacher scheme

for cross-domain detection. Kim et al. [18] used domain

diversification to learn feature representations which are in-

variant among multiple domains. Zhu et al. [55] solved the

questions of “where to look” and “how to align” via two

key components, region mining and region-level alignment.

In [17], domain adaptation problem is tackled from the per-

spective of robust learning.
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Figure 2. Framework overview. (a) Region proposals are generated. (b) Constructing the relation graph on produced region proposals.

(c) More accurate instance-level feature representations are obtained through information propagation among proposals belonging to the

same instance. (d) Prototype representation of each class is derived via confidence-guided merging. (e) Performing category-level domain

alignment through enhancing intra-class compactness and inter-class separability.

Improvements over existing methods. Although former

works [5, 2, 55] seek for instance-level domain alignment

using region proposals, they fail to derive exact instance-

level representations and ignore the multi-modal informa-

tion of various instances. In this work, we utilize relation

graph to obtain more precise instance-level feature repre-

sentations, and per-category prototypes are derived to inte-

grate different instances’ multi-modal information.

Graph Convolutional Network (GCN). GCN [19] has

been explored as a manner to learn graph relations with

convolution, which boosts the optimization of graph-based

model. Because of the effectiveness and interpretability of

GCN, it has been widely applied to various tasks, e.g., ac-

tion recognition [50], person Re-ID [51], video understand-

ing [45, 52] and point cloud learning [23]. Several recent

works [29, 27] utilize graph model to structure multiple do-

mains and categories for classification-based domain adap-

tation. For cross-domain detection, we employ graph struc-

ture to model the relation among region proposals.

3. Method

In Unsupervised Domain Adaptation (UDA), source do-

main S = {(xS
i , y

S
i )}

NS

i=1
is characterized by NS i.i.d. la-

beled samples, where xS
i follows source distribution PS and

ySi denotes its corresponding label. Similarly, target domain

T = {xT
j }

NT

j=1
is represented by NT i.i.d. unlabeled sam-

ples, where xT
j follows target distribution PT .

3.1. Motivation and Overview

In contrast to domain adaptation in classification, its ap-

plication in object detection is more sophisticated. In spe-

cific, since supervisory signal is lacked on target domain,

foreground instances are normally represented by a bunch

of inaccurate region proposals. In addition, different in-

stances in various scenes commonly reflect diverse modal

information, which makes it harder to align source and

target domain on local instance level. Another problem

impairing model’s performance on cross-domain detection

tasks is class-imbalance. Concretely, those categories with

abundant samples are trained more sufficiently, thus better

aligned, while the sample-scarce categories can’t be readily

aligned for the lack of adaptation training.

To address above issues, we propose the Graph-induced

Prototype Alignment (GPA) framework. In specific, do-

main adaptation is realized via aligning two domains’ pro-

totypes, in which the critical information of each instance is

aggregated via graph-based message propagation, and the

multi-modal information reflected by different instances is

integrated into per-category prototypes. On the basis of

this framework, Class-imbalance-aware Adaptation Train-

ing is proposed to harmonize the domain adaptation process

among different classes through assigning higher weights to

the sample-scarce categories.

3.2. Graph-induced Prototype Alignment

In the proposed framework, five steps are performed to

align source and target domain with category-level proto-

type representations, just as shown in Figure 2.

Region proposal generation. In Faster R-CNN [35], re-

gion proposals are generated by Region Proposal Network

(RPN) to characterize foreground and background. These

proposals provide abundant information of various instance

patterns and scene styles, while they usually contain incom-

plete information of instances because of the deviation of

bounding boxes, especially on target domain. Subsequent

operations aim to extract the exact information of each in-

stance from region proposals.
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Figure 3. Region proposal ri interacts with another two region

proposals, rj and rj′ , with different sizes.

Constructing relation graph. We structure the propos-

als generated by RPN as a graph G = (V, E), where V rep-

resents the set of vertices corresponding to Np proposals,

and E ⊆ V × V denotes the set of edges, i.e. the relations

between proposals. Adjacency matrix A ∈ R
Np×Np is used

to model such relationship. Intuitively, two spatially closer

proposals more likely depict the same object and should be

assigned with higher connection weight. Following this in-

tuition, a manner to obtain adjacency matrix is to apply a

Gaussian kernel over the Euclidean distance between the

centers of two proposals:

Ai,j = exp
(
−

||oi − oj ||
2

2

2σ2

)
, (1)

where oi and oj denote the centers of the i-th and j-th pro-

posal (1 � i, j � Np), and σ is the standard deviation pa-

rameter which controls the sparsity of A.

However, when calculating the adjacency matrix, it is

unreasonable to treat proposals with various spatial sizes

equally. Just as shown in Figure 3, though region proposal

pairs (ri, rj) and (ri, rj′) have the equal center distance,

their strength of relevance is obviously distinct, and (ri, rj)
should possess higher connection weight in A for the larger

overlap between ri and rj . Intersection over Union (IoU)

is a broadly used metric which takes both the location and

size of proposals into consideration, and the derivation of

adjacency matrix with IoU is as follows:

Ai,j = IoU(ri, rj) =
ri
⋂

rj
ri
⋃

rj
, (2)

where ri and rj denote the i-th and j-th region proposal re-

spectively (1 � i, j � Np). The setup of relation graph lays

the foundation for information propagation among region

proposals. The comparison between above two methods of

constructing adjacency matrix is presented in Sec. 5.1.

Graph-based region aggregation. Because of the devi-

ation of bounding boxes, region proposals often distribute

around the ground truth objects, which leads to the inaccu-

racy of representing an object with single proposal. In fact,

primal region proposals express incomplete information of

instances. In order to achieve exact instance-level feature

representations, the embeddings of proposals belonging to

a certain instance should be aggregated. By utilizing the

spatial relevance provided by adjacency matrix A, propos-

als’ feature embeddings F ∈ R
Np×d (d is the dimension of

embedding) and classification confidence P ∈ R
Np×Nc (Nc

is the number of classes) are aggregated as follows:

F̃ = D− 1

2 AD− 1

2 F, (3)

P̃ = D− 1

2 AD− 1

2 P, (4)

where D ∈ R
Np×Np denotes the diagonal degree matrix

with entries Dii =
∑

j Aij . In Eqs. 3, 4, after region aggre-

gation, F̃ ∈ R
Np×d and P̃ ∈ R

Np×Nc express more precise

instance-level information through information propagation

among adjacent proposals. Compared with the conventional

graph convolution, we leave the learnable parameter matrix

out, considering that explicit supervisory signal is lacked on

the branch of domain adaptation learning. We illustrate the

benefit of such operation in Sec. 5.1.

Confidence-guided merging. Now that the feature rep-

resentations are aggregated on instance level, we would like

to integrate the multi-modal information reflected by dif-

ferent instances into prototype representations. In order to

highlight the modal information which is critical to a spe-

cific class, we employ proposals’ confidence to each class

as the weight during merging, and prototypes are derived as

the weighted mean embedding of region proposals:

ck =

∑Np

i=1
P̃ik · F̃

T

i∑Np

i=1
P̃ik

, (5)

where ck ∈ R
d denotes the prototype of class k. The de-

rived prototypes serve as the proxy of each class during sub-

sequent domain alignment.

Category-level domain alignment. Prototype-based

domain alignment is comprehensively studied in recent lit-

eratures [46, 30, 37]. The core idea of these methods is

to narrow the distance between same categories’ prototypes

of two domains, which is achieved through minimizing an

intra-class loss, noted as Lintra. Furthermore, we pro-

pose that the distance between different classes’ prototypes

should also be constrained with another inter-class loss,

noted as Linter. In addition, considering the existence of

class-imbalance, the influence of different classes needs to

be adjusted. The detailed training scheme is presented in

the next section.

3.3. Class-imbalance-aware Adaptation Training

In object detection scenario, the class-imbalance prob-

lem commonly exists, which means the number of sam-

ples belonging to different classes varies greatly. Former

work [22] deems that such problem can overwhelm training

and degrade detector’s performance. In cross-domain de-

tection tasks, class-imbalance can lead to another trouble:
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the domain adaptation process among different classes is

highly unbalanced. In particular, the feature distributions of

sample-scarce categories can’t be readily aligned. Inspired

by Focal Loss [22] which puts more weights on hard-to-

classify examples, we would like to assign higher weights

to the sample-scarce categories during the training process

of domain adaptation.

Considering that the categories with abundant samples

are trained more sufficiently and better aligned, especially

in the early training phase, they should possess higher con-

fidence compared with sample-scarce categories. Based on

this fact, we select a specific class’s highest confidence in a

set of proposals, and such confidence value is employed to

calculate the weight of this class:

pk = max
1�i�Np

{P̃ik}, (6)

αk =

{
(1− pk)

γ if pk > 1

Nc

0 otherwise
, (7)

where pk is the maximum confidence of class k within Np

proposals, and γ is the parameter controlling the weights

among different classes. Also, we apply a hard threshold,

1/Nc, to filter out those classes whose samples are not in-

cluded in the proposal set.
Contrastive loss [12] is commonly used in siamese net-

work architecture to enhance the intra-class compactness
and inter-class separability. Utilizing such property, we pro-
pose a Class-reweighted Contrastive Loss to conduct do-
main alignment on category level, in which class weights

{αS
i }

Nc

i=0
and {αT

i }
Nc

i=0
reweight each term in the loss (“i =

0” denotes background). Concretely, in this loss function,
the intra-class part requires identical classes’ prototypes to
be as close as possible, and the inter-class part constrains the
distance between different classes’ prototypes to be larger
than a margin:

Lintra(S, T ) =

∑Nc

i=0
αS
i α

T
i Φ(cSi , c

T
i )

∑Nc

i=0
αS
i α

T
i

, (8)

Linter(D,D
′) =

∑

0�i �=j�Nc

αD
i αD′

j max(0,m− Φ(cDi , cD
′

j ))

∑

0�i �=j�Nc

αD
i αD′

j

,

(9)

Lda = Lintra(S, T ) +
1

3

(

Linter(S,S)

+ Linter(S, T ) + Linter(T , T )
)

,

(10)

where Φ(x, x′) = ||x − x′||2 calculates the Euclidean dis-

tance between two prototypes, and {cSi }
Nc

i=0
, {cTi }

Nc

i=0
de-

note the prototypes of source and target domain. D and D′

represent two domains from which pairs of prototypes be-

longing to different categories are taken. m is the margin

term which is fixed as 1.0 in all experiments. In the total

domain adaptation loss Lda, all pairwise relations between

two domains’ prototypes are considered.

3.4. Two-stage Domain Alignment

Faster R-CNN [35] is a two-stage object detector made

up of Region Proposal Network (RPN) and Region-based

CNN (R-CNN). First, based on the feature map produced by

bottom convolutional layers, RPN generates class-agnostic

region proposals. After that, R-CNN predicts fine-grained

category labels from feature vectors obtained via ROI pool-

ing. Each stage defines a classification and a localization

error, and the total detection loss is defined as follows:

Ldet = LRPN
cls + LRPN

loc + LRCNN
cls + LRCNN

loc . (11)

Based on the two-stage structure of Faster R-CNN, we

also conduct domain alignment in a two-stage manner. In

the first stage, using the region proposals and correspond-

ing class-agnostic confidence produced by RPN, foreground

and background features are separated on latent space, and

the foreground feature distributions are aligned as a whole.

In the second stage, by utilizing the more accurate bounding

boxes and per-category confidence, the feature distribution

of each category is respectively aligned. Applying the pro-

posed Class-reweighted Contrastive Loss to both RPN and

RCNN, the overall objective is:

min
Fθ

Ldet + λ1L
RPN
da + λ2L

RCNN
da , (12)

where Fθ represents the whole parameterized model, and

λ1 and λ2 are the trade-off parameters between detection

and domain adaptation loss.

Implementation details. On the basis of ResNet-50 [14]

architecture, we implement two domain adaptation losses,

LRPN
da and LRCNN

da , through adding two domain adaptation

learning branches to the 7 × 7 × 1024 feature map after

ROI pooling and the 2048-dimensional vector after average

pooling, respectively.

4. Experiments

In this section, we provide comprehensive experimental

results on three cross-domain detection tasks with distinct

domain shift, including Normal to Foggy, Synthetic to Real

and Cross Camera Adaptation.

4.1. Experimental Setup

Training details. In all experiments, unless otherwise

specified, all of the training and test images are resized such

that their shorter side has 600 pixels. During training, for

each image, 128 anchors are sampled with a positive to neg-

ative ratio of 1 : 3. ResNet-50 [14] pre-trained on ImageNet

[36] serves as the base architecture. We adopt the SGD opti-

mizer (initial learning rate: 0.001, momentum: 0.9, weight

decay: 5 × 10−4) to train our model. The number of to-

tal training epoch is set as 20, and the learning rate warm-
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Table 1. Experimental results (%) of Normal to Foggy cross-domain detection task, Cityscapes → Foggy Cityscapes.

Methods person rider car truck bus train motorcycle bicycle mAP

Source-only 26.9 38.2 35.6 18.3 32.4 9.6 25.8 28.6 26.9

DA [5] 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0

DivMatch [18] 31.8 40.5 51.0 20.9 41.8 34.3 26.6 32.4 34.9

SW-DA [38] 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3

SC-DA [55] 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9

MTOR [2] 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1

GPA (RPN Alignment) 32.5 43.1 53.3 22.7 41.4 40.8 29.4 36.4 37.4

GPA (RCNN Alignment) 33.5 44.8 52.6 26.0 41.2 37.6 29.8 35.2 37.6

GPA (Two-stage Alignment) 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5

up strategy [14] is used in the first 200 iterations of train-

ing. Without specific notation, the class-balancing hyper-

parameter γ is set as 2.0, and the IoU-based adjacency ma-

trix defined in Eq. 2 is adopted. For evaluation, we report

mean average precisions (mAP) with a threshold of 0.5.

In our experiments, two NVIDIA GeForce 1080 Ti

GPUs are used for training, and we select the batch size

of 12 to fit GPU memory, i.e. 6 images per GPU, consisting

of 3 labeled samples from source domain and 3 unlabeled

samples from target domain. Our method is implemented

with the PyTorch [31] deep learning framework.

Performance comparison. We compare our approach

with state-of-the-art methods to verify its effectiveness. Our

method is evaluated under three configurations correspond-

ing to RPN Alignment (λ1 = 1.0, λ2 = 0.0), RCNN Align-

ment (λ1 = 0.0, λ2 = 1.0) and Two-stage Alignment

(λ1 = 1.0, λ2 = 1.0). Former works, DA [5], DivMatch

[18], SW-DA [38], SC-DA [55] and MTOR [2] are intro-

duced for comparison. For the sake of fair comparison, we

employ ResNet-50 as the backbone for all these methods. In

specific, we re-evaluate the performance of DA, DivMatch,

SW-DA and SC-DA using their source code with default

configuration, and the performance of MTOR in original

paper is reported for the lack of source code.

4.2. Normal to Foggy

Datasets. In this experiment, Cityscapes [6] and Foggy

Cityscapes [39] dataset serve as source and target domain,

respectively. Cityscapes dataset contains 2,975 training im-

ages and 500 validation images, and we follow the operation

in [5] to get the detection annotations. Foggy Cityscapes

dataset simulates fog on real scenes through rendering the

images from Cityscapes, and it shares the same annotations

with Cityscapes dataset. The results are reported on the val-

idation set of Foggy Cityscapes.

Results. In Table 1, the comparisons between our ap-

proach and other cross-domain detection methods are pre-

sented on eight categories. Source-only denotes the base-

line Faster R-CNN trained with only source domain data.

From the table, it can be observed that the performance of

our approach under three configurations all surpasses exist-

ing methods. In particular, an increase of 3.6% on mAP

is achieved by Two-stage Alignment. The results showcase

that, under the domain shift caused by local fog noise, the

proposed graph-based region aggregation can effectively

alleviate such noise and extract critical instance-level fea-

tures. Take a closer look at per-category performance, our

approach achieves highest AP on most sample-scarce cat-

egories, i.e. rider, bus, train and motorcycle. This phe-

nomenon illustrates the effectiveness of Class-imbalance-

aware Adaptation Training on balancing the domain adap-

tation process among different classes.

4.3. Synthetic to Real

Datasets. In this experiment, SIM 10k [16] dataset is

employed as source domain. SIM 10k dataset is collected

from the computer game Grand Theft Auto V (GTA5), and

it contains 10,000 images. Cityscapes [6] dataset serves as

target domain, and experimental results are reported on its

validation split.

Results. Table 2 reports the performance of our ap-

proach compared with other works on two datasets’ com-

mon category, car. The Two-stage Alignment configuration

of our approach obtains the highest AP (47.6%) over all

methods. The domain shift of this task is mainly brought

by distinct image styles. In such case, in order to achieve

satisfactory performance, it’s important to produce discrim-

inative features between foreground and background on tar-

get domain. We think that, in our framework, such goal is

realized through constraining inter-class separability in the

Class-reweighted Contrastive Loss.

4.4. Cross Camera Adaptation

Datasets. In this part, we want to explore the adaptation

between real-world datasets under different camera setups.

KITTI [8] dataset serves as source domain, and it contains

7,481 training images. Cityscapes [6] dataset is utilized as

target domain, and its validation set is used for evaluation.

Results. The results of various methods on two datasets’

common category, car, are presented in Table 3. In this

12360



Table 2. Experimental results (%) of Synthetic to Real cross-

domain detection task, SIM 10k → Cityscapes.

Methods car AP

Source-only 34.6

DA [5] 41.9

DivMatch [18] 43.9

SW-DA [38] 44.6

SC-DA [55] 45.1

MTOR [2] 46.6

GPA (RPN Alignment) 45.1

GPA (RCNN Alignment) 44.8

GPA (Two-stage Alignment) 47.6

task, all three configurations of our approach exceed exist-

ing works with a notable margin, in particular, 4.3% per-

formance gain achieved by Two-stage Alignment. In cross

camera adaptation tasks, due to the difference of camera se-

tups, abundant patterns exist in instances. In our method,

the multi-modal information reflected by various instances

is integrated into prototype representations, such that the di-

verse patterns within a specific category are considered dur-

ing domain adaptation, which promises the superior perfor-

mance of our approach.

5. Analysis

In this section, we provide more in-depth analysis of our

approach to validate the effectiveness of major components

with both quantitative and qualitative results.

5.1. Ablation Study

Effect of relation graph. In Table 4, we analyze a key

component, i.e. the relation graph, on the task SIM 10k →
Cityscapes. The first row directly uses the original region

proposals produced by RPN to compute prototypes, and it

serves as the baseline. In the second row, we use an Eu-

clidean distance based relation graph defined in Eq. 1, in

which σ is set as 15.0 so as to keep the sparsity of derived

relation graph same as the one defined by IoU. Comparing

the second and fourth row, it can be observed that the con-

figuration using IoU based relation graph performs better,

which illustrates that region proposals’ size information is

essential for relation graph construction.

In the third and fifth row, we append the learnable pa-

rameter matrix to Eqs. 3, 4, which forms the conventional

formula of graph convolution. After introducing such learn-

able parameter matrix, compared with the parameter-free

counterparts in the second and fourth row, apparent perfor-

mance decay occurs. We suppose that such phenomenon

can be ascribed to the lack of explicit supervisory signal on

the branch of domain adaptation learning, which makes it

hard to learn a proper feature transformation.

Table 3. Experimental results (%) of Cross Camera Adaptation

task, KITTI → Cityscapes.

Methods car AP

Source-only 37.6

DA [5] 41.8

DivMatch [18] 42.7

SW-DA [38] 43.2

SC-DA [55] 43.6

GPA (RPN Alignment) 46.9

GPA (RCNN Alignment) 46.1

GPA (Two-stage Alignment) 47.9

Table 4. Ablation study on different manners to construct relation

graph. (“ED”: Euclidean distance, “LP”: learnable parameter.)

ED IoU LP car AP

45.0

� 46.1

� � 43.2

� 47.6

� � 43.6

Effect of two-stage alignment. In this part, we demon-

strate the effectiveness of two-stage alignment. In different

cross-domain detection tasks, as shown in Table 1, 2 and

3, three configurations of the proposed approach are evalu-

ated. Two single-stage configurations possess similar per-

formance, and two-stage alignment surpasses them with a

clear margin. These results illustrate that two-stage align-

ment boosts domain adaptation via a progressive alignment

manner, i.e. from coarse-grained foreground alignment to

fine-grained per-category alignment.

5.2. Sensitivity Analysis

Sensitivity of trade-off parameters λ1, λ2. In this ex-

periment, we validate our approach’s sensitivity to λ1 and

λ2 which trade off between detection and domain adapta-

tion loss. Figure 5(a) shows model’s performance under

different λ1 (λ2) values when the other parameter λ2 (λ1)

is fixed, and all results are evaluated on the task SIM 10k

→ Cityscapes. From the line chart, it can be observed that

the performance on target domain is not sensitive to both pa-

rameters when they vary from 0.25 to 2.0, and apparent per-

formance gain is obtained compared with RCNN Alignment

(λ1 = 0) and RPN Alignment (λ2 = 0). This phenomenon

illustrates that the two-stage alignment can achieve satisfac-

tory results on a wide range of trade-off parameters.

Sensitivity of class-balancing parameter γ. In this

part, we discuss the selection of parameter γ which bal-

ances the domain adaptation process among different cat-

egories. In Figure 5(b), we plot the performance of mod-

els trained with different γ value on the task Cityscapes →
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(b) DA (a) Source-only (c) GPA (Two-stage Alignment)

Figure 4. The detection results on the task SIM 10k → Cityscapes, in which Source-only, DA [5] and our method are evaluated.
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Figure 5. Sensitivity analysis of trade-off parameters λ1, λ2 (left)

and class-balancing parameter γ (right).

Foggy Cityscapes. The highest mAP on target domain is

achieved when the value of γ is around 2.0, which means

that, under such condition, the weight assignment among

different classes benefits domain adaptation most.

5.3. Visualization

Visualization of two-stage feature. In Figure 6, we

utilize t-SNE [28] to visualize the feature distribution

of source and target domain on the task SIM 10k →
Cityscapes, in which the feature embeddings of both RPN

and RCNN phase are used for visualization. Compared with

the Source-only model, after conducting RPN and RCNN

alignment, the features of the same category in two domains

are better aligned, and different categories’ features are sep-

arated more clearly. This visually verifies that the proposed

method boosts feature alignment on both stages.

Qualitative detection results. Figure 4 displays some

typical detection results on the task SIM 10k → Cityscapes,

in which Source-only, DA [5] and our approach are evalu-

ated. As shown in the figure, the Source-only model can

poorly localize objects. DA [5] predicts bounding box more

accurately, but it incorrectly classifies the garbage can as a

car, and produces some false positives. Our model success-

fully inhibits false positives, and it is able to localize objects

precisely even when severe occlusion occurs.

Source background Source car Target background Target car

(a) Source-only (b) GPA (Two-stage Alignment)

RP
N

RC
N

N

Figure 6. The t-SNE [28] visualization of feature embeddings pro-

duced by RPN and RCNN, in which Source-only model and our

method are employed for feature extraction.

6. Conclusion

In this paper, we propose the Graph-induced Prototype

Alignment (GPA) framework for cross-domain detection.

In the framework, the critical information of each instance is

aggregated through graph-based message propagation, and

prototype representations are derived for category-level do-

main alignment. Furthermore, we harmonize the process

of adaptation training through Class-reweighted Contrastive

Loss. Extensive experiments and analytical studies demon-

strate the prominent performance of our approach.
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