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Abstract

Vision is often used as a complementary modality for au-

dio speech recognition (ASR), especially in the noisy en-

vironment where performance of solo audio modality sig-

nificantly deteriorates. After combining visual modality,

ASR is upgraded to the multi-modality speech recognition

(MSR). In this paper, we propose a two-stage speech recog-

nition model. In the first stage, the target voice is sep-

arated from background noises with help from the corre-

sponding visual information of lip movements, making the

model ‘listen’ clearly. At the second stage, the audio modal-

ity combines visual modality again to better understand the

speech by a MSR sub-network, further improving the recog-

nition rate. There are some other key contributions: we in-

troduce a pseudo-3D residual convolution (P3D)-based vi-

sual front-end to extract more discriminative features; we

upgrade the temporal convolution block from 1D ResNet

with the temporal convolutional network (TCN), which is

more suitable for the temporal tasks; the MSR sub-network

is built on the top of Element-wise-Attention Gated Recur-

rent Unit (EleAtt-GRU), which is more effective than Trans-

former in long sequences. We conducted extensive experi-

ments on the LRS3-TED and the LRW datasets. Our two-

stage model (audio enhanced multi-modality speech recog-

nition, AE-MSR) consistently achieves the state-of-the-art

performance by a significant margin, which demonstrates

the necessity and effectiveness of AE-MSR.

1. Introduction

In the book The Listening Eye: A Simple Introduction to

the Art of Lip-reading [17], Clegg mentions that “When you

are deaf you live inside a well-corked glass bottle. You see

the entrancing outside world, but it does not reach you. Af-

ter learning to lip read, you are still inside the bottle, but the

cork has come out and the outside world slowly but surely

comes in to you.” Lip reading is an approach for people

with hearing impairments to communicate with the world,

so that they can interpret what other say by looking at the

movements of lips [7, 16, 22, 32, 46]. Lip reading is a dif-
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Figure 1: Overview of the audio enhanced multi-modality

speech recognition network (AE-MSR). Mag: magnitude.

Different from other MSR methods [2, 14, 47, 41, 35] with

only single visual awareness, we firstly filter the voices

of speakers and background noises with help from visual

awareness. Then we combine visual awareness again for

MSR to benefit speech recognition.

ficult skill for human to grasp and requires intensive train-

ing [20, 41]. Lip reading is also an inexact art, because

different characters may exhibit the similar lip movements

(e.g. ‘b’ and ‘p’) [2]. Consequently, several machine lip

reading models are proposed to discriminate such subtle dif-

ference [18, 31, 34]. However they still suffer difficulties on

extracting spatio-temporal features from the video.

Automatic lip reading becomes achievable due to rapid

development of deep neural network in computer vi-

sion [30, 39, 43], and with help from large scale training

datasets [14, 15, 18, 19, 37, 47]. In addition to serving as

a powerful solution to hearing impairment, lip reading can

also contribute to audio speech recognition (ASR) in adver-

sary environments, such as in high noise level where hu-
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man speaking is inaudible. Multi-modality (video and au-

dio) is more effective than single modality (video or audio)

in terms of both robustness and accuracy. Multi-modality

(audio-visual) speech recognition (MSR) is one of the main

extended applications of multi-modality. But similar to

ASR, there is a significant deterioration in performance for

MSR in noisy environment as well [2]. Compared to audio

modality operating in a clean voice environment, the one

in noisy environment shows less gain because of upgrading

from ASR to MSR. [2] demonstrates that the noisy level

of audio modality directly impacts the performance gain of

MSR compared to single modality.

The goal of this paper is to introduce a two-stage speech

recognition method with double visual-modality awareness.

In the first stage, we reconstruct the audio signal which only

contains the target speaker’s voice with the guiding visual

information (lip movements). In the second stage, the en-

hanced audio modality is combined with the visual modal-

ity again to yield better speech recognition. Compared to

typical MSR methods with single time of visual modality

awareness, our method is more advantageous in terms of

robustness and accuracy.

We propose a deep neural network model named audio-

enhanced multi-modality speech recognition (AE-MSR)

with double visual awareness to implement the method. The

AE-MSR model consists of two sub-networks, the audio en-

hancement (AE) and MSR. Before being fed into the MSR

sub-network, audio modality is enhanced with help from

the first visual awareness in the AE sub-network. After

enhancement, audio stream and revisited visual stream are

then fed into the MSR sub-network to make speech predic-

tions.The techniques we incorporated into AE-MSR include

pseudo 3D residual convolution (P3D), temporal convolu-

tional network (TCN), and element-wise attention gated re-

current unit (EleAtt-GRU). Ablation study shown in the

paper demonstrates the effectiveness of each of the above

sub-modules and the combination of them. The MSR sub-

network is also built on top of EleAtt-GRU.

The intuition of our AE-MSR is as follows. Typically,

a deep learning-based MSR uses symmetric encoders for

both audio and video. Though visual encoder is trained

in an e2e fashion, we conduct experiments to show this

is not the optimal way to leverage the visual information.

The reason might be that the intrinsic architecture of the

typical MSR implicitly suggests equal importance of audio

and video. However we tell from various experiments

that audio is still much more reliable to recognize speech,

even in a noisy environment. Therefore, we re-design the

architecture to embed this bias between video and audio as

a prior.

Overall, the contributions of this paper are:

• We propose a two-stage double visual awareness MSR

model, where the first visual awareness is applied to

remove the audio noise.

• We introduce the P3D as visual front-end to extract

more discriminative visual features and EleAtt-GRU

to adaptively encode the spatio-temporal information

in AE and MSR sub-networks, benefiting performance

of both networks.

• We upgrade the temporal convolution block of 1D

ResNet to a TCN one in AE sub-network for estab-

lishing temporal connections.

• Extensive experiments demonstrate that AE-MSR sur-

passes state-of-the-art MSR model [2] both in audio

clean and noisy environments on the Lip Reading Sen-

tences 3 (LRS3-TED) dataset [5]. The word classifi-

cation model we build based on P3D also outperforms

the word-level state-of-the-art [41] on the Lip Reading

in the Wild (LRW) dataset [15].

2. Related works

In this section, we introduce some related works about

audio enhancement (AE) driven by visual information and

multi-modality speech recognition (MSR).

2.1. Audio enhancement

A few researchers have demonstrated that the target au-

dio signal can be separated from other speakers’ voices

and background noises, e.g. Gabbay et al. [23] introduce

a trained silent-video-to-speech model previously proposed

by [21] to generate speech predictions as a mask on the

noisy audio signal which is then discarded in the pipeline

of audio enhancement. Gabbay et al. [24] also use the con-

volution neural networks (CNNs) to encode multi-modality

features. The embedding vectors of audio and vision are

concatenated before audio decoder and fed into transposed

convolution of audio decoder to produce enhanced mel-

scale spectrograms. Hou et al. [29] build a visual driven AE

network on the top of CNNs and fully connected (FC) lay-

ers to generate enhanced speech and reconstructed lip image

frames. Afouras et al. [3] use 1D ResNet as temporal con-

volution unit to process audio and visual features individu-

ally. Then the multi-modality features are concatenated and

encoded into a mask by another 1D-ResNet-based encoder

to remove noisy components in the audio signal. In their

latest article, they propose a new approach that replaces the

multi-modality feature encoder with Bi-LSTM [6].

2.2. Multimodality speech recognition

Vision is often used as a complementary modality for au-

dio speech recognition (ASR), especially in noisy environ-

ments. After combining visual modality, ASR is upgraded
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Figure 2: Architecture of the multi-modality speech recognition network with double visual awareness (AE-MSR). The AE-

MSR network consists of two sub-networks: a) the audio enhancement (AE) network. The network receives image frames

and audio signals as inputs, outputting the enhanced magnitude spectrograms that the noisy spectrograms are filtered. V:

visual features; A: enhanced audio magnitude. b) the multi-modality speech recognition (MSR) network.

to the multi-modality speech recognition (MSR). Recipro-

cally, MSR is also an upgrade to the lip reading and ben-

efits people with hearing impairments to recognize speech

by generating meaningful text.

In the field of deep learning, research on lip reading has

longer history than MSR [49]. Assael et al. [7] propose Lip-

Net, an end-to-end model on top of spatio-temporal con-

volutions, LSTM [28] and connectionist temporal classi-

fication (CTC) loss on variable-length sequence of video

frames. Stafylakis et al. [41] introduce the state-of-the-

art word-level classification lip reading network on LRW

dataset [15]. The network consists of spatio-temporal con-

volution, residual network and Bi-LSTM.

On the basis of lip reading, MSR is developed [14,

2]. Various MSR methods often use encoder-to-decoder

(enc2dec) mechanism which is inspired by machine trans-

lation [8, 10, 25, 26, 42, 45]. Chung et al. [14] use a dual

sequence-to-sequence model with enc2dec mechanism. Vi-

sual features and audio features are encoded separately by

LSTM units. Then multi-modality features are combined

and decoded into characters. Afouras et al. [2] introduce a

sequence-to-sequence model of encoder-to-decoder mecha-

nism. The encoder and decoder of the model are built based

on the transformer [45] attention architecture. In encoder

stage, each modality feature is encoded with self-attention

individually. After multi-head attention in decoder stage,

the context vectors produced by multiple modalities are

concatenated and fed to the feed forward layers to produce
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1D ResNet block. DS: Depthwise separable [13]; BN:

Batch Normalization. The non-upsample convolution lay-
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probable characters. However, their state-of-the-art method

suffer in noisy scenarios. In noisy environments, the perfor-

mance dramatically decreases, this is the main reason why

we propose the method of AE-MSR. In this paper, we qual-

itatively evaluate performance of the AE-MSR model for

speech recognition in the noisy environments.

3. Architectures

In this section, we describe the double visual awareness

multi-modality speech recognition (AE-MSR) network. It

first learns to filter magnitude spectrogram from the voices

of other speakers or background noises with help from

the information of visual modality (Watch once to listen

clearly). The subsequent MSR then revisits the visual

modality and combines it with filtered audio magnitude

spectrogram (Watch again to understand precisely). The

model architecture is shown in detail in Figure 2.

3.1. Watch once to listen clearly

Audio features. We use Short Time Fourier Transform

(STFT) to extract magnitude spectrogram from the wave-

form signal at a sample rate of 16kHz. To align with the

video frame rate at 25fps, we set the STFT window length to

40ms and hop length to 10ms, corresponding to 75% over-

lap. We multiply the resulting magnitude by a mel-spaced

filter to compute the audio feature of mel-scale magnitude

with mel-frequency bins of 80 between 0 to 8 kHz.

Visual features. We produce image frames by crop-

ping original video frames to 112 × 112 pixel patches

and choose mouth patch as region of interest (ROI). To

extract video features, we build a 3D CNN (C3D) [44]

-P3D [36] network to produce a more powerful visual

spatio-temporal representation instead of using C3D plus

2D ResNet [27] which is mentioned in many other lip-

reading papers [2, 3, 4, 6, 14, 41].

C3D is a beneficial method to capture spatio-temporal

features of videos and widely adopted [41, 2, 3, 35, 6].

Multi-layer C3D can achieve even better performances in

temporal tasks than a single layer one, however they are

both computationally expensive and memory demanding.

We use P3D to replace part of the C3D layers to alleviate

this situation. The three block versions of P3D are shown

in Supplementary Material, P3D ResNet is implemented by

separating N ×N ×N convolutions into 1× 3× 3 convo-

lution filters on spatial domain and 3 × 1 × 1 convolution

filters on temporal domain to extract spatial-temporal fea-

tures. P3D ResNet achieves superior performances over 2D

ResNet in different temporal tasks [36]. We implement a

50-layer P3D network by cyclically mixing the three blocks

in the order of P3D-A, P3D-B, P3D-C.

The visual front-end is built on a 3D convolution layer

with 64 filters of kernel size 5 × 7 × 7, followed by batch

normalization (BN), ReLU activation and max-pooling lay-

ers. And then the max-pooling is followed by a 50-layer

P3D ResNet that gradually decreases the spatial dimensions

with depth while maintaining the temporal dimension. For

an input of T × H × W frames, the output of the sub-

network is a T ×512 tensor (in the final stage, the feature is

average-pooled in spatial dimension and processed as a 512-

dimensional vector representing each video frame). The vi-

sual feature and corresponding magnitude spectrogram are

then fed into audio enhancement sub-network.

Audio enhancement with the first visual awareness.

Noise-free audio signal achieves satisfactory performance

on audio speech recognition (ASR) and multi-modality

speech recognition (MSR). However there is a significant

deterioration in recognition performance in noisy environ-

ments [2, 3]. Architecture of the audio enhancement sub-

network is illustrated in Figure 2a, where the visual fea-

tures are fed into a temporal convolution network (video

stream). The video stream consists of Nv temporal convo-

lution blocks, outputting video feature vectors. We intro-

duce two versions of temporal convolution blocks, one is

the temporal convolutional network (TCN) proposed by [9]

and the other is 1D ResNet block proposed by [6].

Architectures of temporal convolution blocks are shown

in Figure 3, the residual block of TCN consists of two di-

lated causal convolution layers, each layer followed by a

weight normalization (WN) [38] layer and a rectified lin-

ear unit (ReLU) [33] layer. A spatial dropout [40] layer
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is added after ReLU layer for regularization [9]. Identity

skip connection are added after the second dilated causal

convolution layer. By combining causal convolution and

dilated convolution, TCN guarantees no leakage from the

future to the past and effectively expands the receptive field

to maintain a longer memory size [9]. The 1D ResNet block

is based on 1D temporal convolution layer, followed by

a batch normalization (BN) layer. Residual connection is

added after ReLU activation layer.

Two of the intermediate temporal convolution blocks

containing transposed convolution layers up-sample the

video features by 4 to match the temporal dimension of

the audio feature vectors (4T ). Similarly, the noisy mag-

nitude spectrograms are proposed by a residual network

(audio stream) which consists of Na temporal convolution

blocks, outputting audio feature vectors. Then the audio

feature vectors and the video feature vectors are fused in a

fusion layer by simply concatenating over the channel di-

mension. The fused multi-modality vector is then fed into

a one-layer EleAtt-GRU encoder followed by 2 fully con-

nected layers with a Sigmoid as activation to produce a tar-

get enhancement mask (values range from 0 to 1). EleAtt-

GRU is demonstrated more effective than other RNN vari-

ants in spatio-temporal tasks and its detail is introduced in

section 3.2. The enhanced magnitude is produced by mul-

tiplying the original magnitude spectrogram with the target

enhancement mask element-wise. Architecture details of

the audio enhancement sub-network are given in Supple-

mentary Material.

3.2. Watch again to understand precisely

Multi-modality speech recognition with the second vi-

sual awareness. Visual information can help enhance audio

modality by separating target audio signal from noisy back-

ground. After audio enhancement by visual awareness, the

multi-modality speech recognition (MSR) is implemented

by combining enhanced audio and the revisited visual rep-

resentation to benefit the performance of speech recognition

further.

We use encoder-to-decoder (enc2dec) mechanism in the

MSR sub-network. Instead of using transformer [45], which

demonstrates decent performance on lip reading [4] and

MSR [2], our network is basically built on a RNN vari-

ant model named gated recurrent unit with element-wise-

attention (EleAtt-GRU) [48]. Although transformer is a

powerful model emerging in machine translation [45] and

lip reading [2, 4], it builds character relationships within

limited length, less effective with long sequences than

RNN. EleAtt-GRU can alleviate this situation, because it

is equipped with an element-wise-attention gate (EleAttG)

that empowers an RNN neuron to have the attentive capac-

ity. EleAttG is designed to modulate the input adaptively by

assigning different importance levels, i.e., attention, to each

element or dimension of the input. Illustration of EleAttG

for a GRU block is shown in Supplementary Material. In

a GRU block/layer, all neurons share the same EleAttG,

which reduces the cost of computation and number of pa-

rameters.

Architecture of the AE-MSR network is shown in Fig-

ure 2, a sequence-to-sequence MSR network is built based

on EleAtt-GRU. The encoder is a two-layer EleAtt-GRU for

both modalities. The enhanced audio magnitude is fed into

an encoder layer between two 1D-ResNet blocks with stride

2 that down-sample the temporal dimension by 4 to match

the temporal dimension of video features (T ). The 1D-

ResNet layer are followed by another encoder layer, out-

putting the audio modality encoder context. The video fea-

tures extracted by C3D-P3D network are fed into the video

encoder to output video encoder context. In the decoder

stage, video context and audio context are decoded sepa-

rately by independent decoder layer. Generated context vec-

tors of both modalities are concatenated over the channel

dimensions and propagated to another decoder layer to pro-

duce character probabilities. The number of unit of EleAtt-

GRU in both encoder and decoder is 128. The decoder out-

puts character probabilities which are directly matched to

the ground truth labels and trained with a cross-entropy loss

and the whole output sequence is trained with sequence-to-

sequence (seq2seq) loss [42].

4. Training

4.1. Datasets

The proposed network is trained and evaluated on

LRW [15] and LRS3-TED [5] datasets. LRW is a very

large-scale lip reading dataset in the wild from British tele-

vision broadcasts, including news and talk shows. LRW

consists of up to 1000 utterances of 500 different words,

spoken by more than 1000 speakers. We use LRW dataset

to pre-train the P3D spatio-temporal front-end based on a

word-level classification network of lip reading.

LRS3-TED is the largest available dataset in the field

of lip reading (visual speech recognition). It consists of

face tracks from over 400 hours of TED and TEDx videos,

and organized into three sets: pre-train, train-val and test.

We train the audio enhancement (AE) sub-network and the

multi-modality speech recognition (MSR) sub-network on

the LRS3-TED dataset.

4.2. Evaluation metric

For the word-level lip reading experiment, the train, val-

idation and test sets are provided with the LRW dataset. We

report word accuracy for classification in 500 word classes

of LRW. For sentence-level recognition experiments, we

report the Word Error Rate (WER). WER is defined as

WER = (S + D + I)/N , where S is the number of sub-
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stitution, D is the number of deletions, I is the number of

insertions to get from the reference to the hypothesis, and

N is the number of words in the reference [14].

4.3. Training strategy

Visual front-end. The visual front-end of C3D-P3D

is pre-trained on a word-level classification network of lip

reading with LRW dataset for 500 word classes and we

adopt a two-step training strategy. In the first step, image

frames are fed into a 3D convolution, which is followed by

a 50-layer P3D, and the back-end is based on one dense

layer. In the second step, to improve the effectiveness of

the model we replace the dense layer with two layers of

Bi-LSTM, followed by a linear and a SoftMax layer. We

use cross entropy loss to train the word classification tasks.

With the visual front-end frozen, we extract and save video

features, as well as magnitude spectrograms for both origi-

nal audio and the mix-noise one.

Noisy samples. In order to train our model so that it can

be resistant to background noise or speakers, we follow the

noise mix method of [2], the babble noise with SNR from

-10 dB to 10 dB is added to audio stream with probabil-

ity pn = 0.25 and the babble noise samples are synthesized

by mixing the signals of 30 different audio samples from

LRS3-TED dataset.

AE and MSR sub-networks. The AE sub-network

is firstly trained on multi-modality of mixed noises with

temporal convolution block of TCN and 1D ResNet sepa-

rately. The AE sub-network is trained by minimizing the L1

loss between the predicted magnitude spectrogram and the

ground truth. Simultaneously, the multi-modality speech

recognition (MSR) sub-network is trained with video fea-

tures and clean magnitude spectrogram as inputs. The MSR

sub-network is also trained when only single modality (au-

dio or visual) is available. For MSR sub-network, we use a

sequence-to-sequence (seq2seq) loss [12, 42].

AE-MSR. We freeze the AE sub-network and train

the AE-MSR network. To demonstrate the benefit of our

model, we reproduce and evaluate the state-of-the-art multi-

modality speech recognition model provided by [2] at dif-

ferent noise levels. The training begins with one-word sam-

ples, and then the length of the training sequence gradually

grows. This is a cumulative method that not only improves

the convergence rate on the training set, but also reduces

overfitting significantly. Output size of decoder is set to 41,

accounting for the 26 characters in the alphabet, the 10 dig-

its, and tokens for [PAD], [EOS], [BOS] and [SPACE]. We

also use teacher forcing method [2], in which the ground

truth of the previous decoding step serves as input to the de-

coder.

Implementation details. The implementation of the

network is based on the TensorFlow library [1] and trained

Methods Word accuracy

Chung and Zisserman [14] 76.2%

Stafylakis and Tzimiropoulos [41] 83.0%

Petridis and Stafylakis [35] 82.0%

Ours 84.8%

Table 1: Word accuracy of different word-level classifica-

tion networks on the LRW dataset.

Method Google [11] TM-seq2seq [2] EG-seq2seq

WER %

SNR dB

M
A A V A V

clean 10.4 9.0 59.9 7.2 57.8

10 - 35.9 - 35.5 -

5 - 49.0 - 42.6 -

0 70.3 60.5 - 58.2 -

-5 - 87.9 - 86.1 -

-10 - 100.0 - 100.0% -

Table 2: Word error rates (WER) of both single modality

speech recognition and multi-modality speech recognition

(MSR) on the LRS3-TED dataset. M: modality. A: audio

modality only; V: visual modality only.

on a single Tesla P100 GPU with 16GB memory. We use

the ADAM optimiser to train the network with dropout and

label smoothing. An initial learning rate is set to 10−4, and

decreased by a factor of 2 every time if the training error

did not improve, the final learning rate is 5×10−6. Training

of the entire network takes approximately 15 days, includ-

ing the training of the audio enhancement sub-network on

both of the two temporal convolution blocks and the MSR

sub-network separately and the subsequent joint training.

5. Experimental results

5.1. P3Dbased visual frontend and EleAttGRU
based enc2dec

P3D-based visual front-end. We perform lip reading

experiments on both word-level and sentence-level. In sec-

tion 4.3, we introduce a word-level lip reading network on

the LRW dataset to classify 500 word classes to train the

visual front-end of C3D-P3D. Result of this word-level lip

reading network is shown in Table 1, where we report word

accuracy as evaluation metric and our result surpasses the

state-of-the-art [41] on the LRW dataset. It demonstrates

that visual front-end network of C3D-P3D is more advan-

tageous in extracting video feature representations than the

14438



Modality AV VA VAV

SNR dB

Met
TM-s2s EG-s2s 1D-TM-s2s T-TM-s2s 1D-EG-s2s T-EG-s2s 1D-TM-s2s T-TM-s2s 1D-EG-s2s T-EG-s2s

clean 8.0% 6.8% - - - - - - - -

10 33.4% 32.2% 25.9% 24.1% 24.2% 23.2% 24.5% 22.0% 21.5% 20.7%

5 38.1% 36.8% 34.1% 31.7% 32.7% 30.9% 30.2% 25.6% 26.3% 24.3%

0 44.3% 41.1% 37.0% 33.2% 36.6% 32.5% 31.6% 29.6% 28.5% 25.5%

-5 56.2% 52.6% 50.2% 49.5% 49.3% 46.0% 36.7% 35.1% 32.7% 31.1%

-10 60.9% 57.9% 52.5% 49.8% 50.6% 44.5% 42.3% 42.0% 40.2% 38.6%

Table 3: Word error rates (WER) of both audio speech recognition (ASR) with single visual modality awareness and multi-

modality speech recognition (MSR) with double visual modality awareness on the LRS3-TED dataset. Met: method. TM-

s2s: TM-seq2seq; EG-s2s: EG-seq2seq; 1D-TM-s2s: an AE-MSR model, which consists of 1DRN-AE and TM-seq2seq;

T-TM-s2s: an AE-MSR model, which consists of TCN-AE and TM-seq2seq; 1D-EG-s2s: an AE-MSR model, which

consists of 1DRN-AE and EG-seq2seq; T-EG-s2s: an AE-MSR model, which consists of TCN-AE and EG-seq2seq. AV:

multi-modality with single visual modality awareness; VA: enhanced audio modality by single visual awareness for ASR;

VAV: multi-modality by double visual awareness for multi-modality speech recognition (MSR).

C3D-2D-ResNet one used by [2].

EleAtt-GRU-based enc2dec. Results in both of Col-

umn V and A in Table 2 demonstrate that EleAtt-GRU-

based enc2dec is more beneficial in speech recognition

than the Transformer-based enc2dec. As shown in Table 2

Column V, our multi-modality speech recognition (EG-

seq2seq) network (illustrated in Figure 2b) with only visual

modality reduces word error rate (WER) by 2.1% compared

to the previous state-of-the-art (TM-seq2seq) [2] WER of

59.9% on the LRS3 dataset without using language model

in decoder. Furthermore, we also evaluate the EleAtt-GRU-

based enc2dec model in ASR at different noise levels. As

shown in Table 2 Column A, EG-seq2seq exceeds the state-

of-the-art (TM-seq2seq) model on ASR at all noise levels (-

10 dB to 10 dB) without extra language model. Table 2 Col-

umn A also shows that neither EG-seq2seq or TM-seq2seq

works any more with only audio modality at -10 dB SNR.

Results in the columns under AV in Table 3 demonstrate

the speech recognition accuracy improvement after adding

the visual awareness once at the MSR stage, especially in

noisy environments. Even when the audio is clean, visual

modality can still play a helping role, for example the WER

is reduced from 7.2% for audio modality only to 6.8% for

multi-modality. EG-seq2seq outperforms the state-of-the-

art (TM-seq2seq) model on MSR at different noise levels.

It again demonstrates the superiority of EleAtt-GRU-based

enc2dec in speech recognition. However, we notice that un-

der very noisy conditions, audio modality can negatively

impact the MSR because of its highly polluted input, when

comparing lip reading (V in Table 2) with MSR (AV in Ta-

ble 3) at -10 dB SNR.

5.2. Audio enhancement (AE) with the first visual
awareness

In order to demonstrate the enhancement effectiveness

of our AE models so that it can benefit not only our speech

recognition models but also other speech recognition mod-

els. Compared with MSR in the Section 5.1, here we apply

visual awareness at audio enhancement stage, instead of at

MSR. We compare and analyze the results of following net-

works at different noise levels:

• 1DRN-TM-seq2seq: an AE-MSR network, where

the audio enhancement (AE) sub-network (1DRN-AE)

uses 1D ResNet as temporal convolution unit and out-

puts enhanced audio modality. The MSR sub-network

of this network is TM-seq2seq.

• TCN-TM-seq2seq: an AE-MSR network, where the

AE sub-network (TCN-AE) uses the temporal convo-

lutional network (TCN) as temporal convolution unit.

The MSR sub-network is TM-seq2seq.

• 1DRN-EG-seq2seq: an AE-MSR network, where

the AE sub-network is 1DRN-AE and the MSR sub-

network is EG-seq2seq.

• TCN-EG-seq2seq: an AE-MSR network, where the

AE sub-network is TCN-AE and the MSR sub-

network is EG-seq2seq.

In this section, all the models above use only audio

modality at MSR stage. As shown in columns under VA

in Table 3, our AE networks can benefit other speech recog-

nition models, for example at SNR of -5 dB, the WER is re-

duced from 87.9% of TM-seq2seq to 50.2% of 1DRN-TM-

seq2seq and 49.5% of TCN-TM-seq2seq. The enhancement
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Audio source Magnitude error %

SNR dB -5 0 5

Noisy 97.1 65.4 49.1

1DRN-AE 66.5 51.0 35.6

TCN-AE 59.5 46.3 33.1

Table 4: Energy errors between original noise-free audio

magnitudes and enhanced magnitudes produced by differ-

ent audio enhancement models.

gain is also clearly illustrated in Figure 4. Moreover, by

comparing the result of columns under AV and VA in Ta-

ble 3, with the same number of visual awareness, our audio

enhancement approach shows more benefit in speech recog-

nition than the multi-modality with single visual awareness

in noisy environments.

Magnitudes produced by the two AE models are shown

in Supplementary Material. We also introduce an energy

error function to measure the effect of audio enhancement

models as follow:

∆M =
‖ M −Mo ‖2

‖ Mo ‖2
(1)

where M is the magnitudes of noisy audio or enhanced au-

dio, Mo is the original audio without mixing noises, ∆M is

the deviation results between M and Mo. We chose 10,000

noise-free samples that are added to babble noises with SNR

of -5 dB, 0 dB and 5 dB separately to compare the enhance-

ment performance between 1DRN-AE and TCN-AE net-

works. We average the ∆M results among samples at each

SNR-level. Results in Table 4 show the beneficial perfor-

mance of TCN-AE.

In Supplementary Material, we list some of the many

examples where the single modality (video or audio alone)

fails to predict the correct sentences, but these sentences are

correctly deciphered by applying both modalities. It also

shows that, in some noisy environment the multi-modality

also fails to produce the right sentence, however the en-

hanced audio modality predict successfully. Experimental

results of speech recognition in Table 3.2 also demonstrate

that TCN-EG-seq2seq is more advantageous than 1DRN-

EG-seq2seq in audio modality enhancement due to the TCN

temporal convolution unit, which has a longer-term mem-

ory and larger receptive field by combining causal convolu-

tion and dilated convolution that more beneficial in tempo-

ral tasks.

5.3. Multimodality speech recognition with the sec
ond visual awareness

After audio enhancement with the first visual aware-

ness, we implement multi-modality speech recognition with
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Figure 4: Word error rate (WER) on different methods.

Each method in this diagram equivalent to the one with

same name in Table 2.

the second visual awareness. By comparing the results in

columns under VA and VAV in Table 3, MSR with double

visual awareness leads to a further improvement compared

to any single visual awareness method (e.g. AV, VA and V).

For example, the WER of 1DRN-EG-seq2seq is reduced

from 36.6% to 28.5% when combining the visual awareness

again for speech recognition after audio enhancement, and

the TCN-EG-seq2seq model reduces the WER even more.

It demonstrates the performance gain because of the second

visual awareness in MSR. Our AE-MSR network shows sig-

nificant advantage in terms of performance after combining

visual awareness twice, once for audio enhancement and

the other for MSR. In Supplementary Material we list some

examples that the multi-modality model (AV) and the AE

model (VA) fail to predict the correct sentences, but the AE-

MSR model deciphers the words successfully in some noisy

environments.

6. Conclusion

In this paper, we introduce a two-stage speech recogni-

tion model named double visual awareness multi-modality

speech recognition (AE-MSR) network, which consists of

the audio enhancement (AE) sub-network and the multi-

modality speech recognition (MSR) sub-network. By ex-

tensive experiments, we demonstrate the necessity and ef-

fectiveness of double visual awareness for MSR, and our

method leads to a significant performance gain on MSR

especially in noisy environments. Further, our models in

this paper outperform the state-of-the-art ones on the LRS3-

TED and the LRW datasets by a significant margin.
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