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Abstract

Previous deep learning approaches to color constancy

usually directly estimate illuminant value from input image.

Such approaches might suffer heavily from being sensitive

to the variation of image content. To overcome this

problem, we introduce a deep metric learning approach

named Illuminant-Guided Triplet Network (IGTN) to color

constancy. IGTN generates an Illuminant Consistent and

Discriminative Feature (ICDF) for achieving robust and

accurate illuminant color estimation. ICDF is composed

of semantic and color features based on a learnable

color histogram scheme. In the ICDF space, regardless

of the similarities of their contents, images taken under

the same or similar illuminants are placed close to each

other and at the same time images taken under different

illuminants are placed far apart. We also adopt an end-

to-end training strategy to simultaneously group image

features and estimate illuminant value, and thus our

approach does not have to classify illuminant in a separate

module. We evaluate our method on two public datasets

and demonstrate our method outperforms state-of-the-art

approaches. Furthermore, we demonstrate that our method

is less sensitive to image appearances, and can achieve

more robust and consistent results than other methods on

a High Dynamic Range dataset.

1. Introduction

Under a different light source, an object will reflect a

different color appearance. Color constancy is a feature of

the human visual system which ensures that the perceived

color of objects remains relatively constant under varying

lighting conditions. Computational color constancy tries

to develop digital imaging algorithms that mimic such

human vision ability. In the literature, many color

constancy algorithms have been proposed to achieve this

goal including learning-based methods [1, 20, 31, 18, 15]

and statistical methods [7, 16, 27, 13, 37].

These traditional approaches usually define a

photographed scene image as:

I(x) =

∫
ω

E(x, λ)S(x, λ)C(λ)dλ, (1)

where I(x) is the image value at the spatial coordinate x,

E(x, λ) is the color of light source, S(x, λ) is the surface

spectral reflectance, C(λ) is the camera sensor sensitivity

function, and ω is the visible spectrum of the wavelength

λ. According to the Von Kries coefficient law [6] and the

assumption of single light, it could be simplified as [2, 33]:

I = E × S, (2)

where each observed RGB pixel in I is the product of

the RGB illumination E shared by all pixels and the RGB

value S of reflectance under canonical illumination (usually

white). The goal of color constancy can thus be defined as

estimating E from I .

Recently researchers have applied deep learning [28,

29, 22, 33, 5] to estimate the illuminations. They regard

color constancy as a regression problem that aims to learn a

mapping function f through a deep learning model to map

the observed image content to the illumination value:

E = f(I) (3)

One problem with these deep learning approaches is

that the predicted illuminant is heavily influenced by the

scene content. For instance, two different patches xi
and xj from the same image could have different scene

contents. When directly inferring illumination from those

two different scene contents, it would lead to different

estimation results, i.e., f(xi) 6= f(xj), since the mapping

function f is fixed after training, any changes in the

input will directly affect the output. However, with the

assumption of single illuminant setting (Equation 3), the

estimation should be location independent, which means

an observation at any location of the scene should correctly

estimate the same illuminant color. On the other hand, most
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previous deep learning methods try to directly estimate

illuminant from images. We argue that it is beneficial

to learn content-insensitive illuminant features first and

then estimate illuminant value from these features. These

features should be only sensitive to illuminant changes and

less influenced by the variation of image contents.

To overcome aforementioned problems, we propose a

deep metric learning framework called Illuminant-Guided

Triplet Network (IGTN) to first embed input images into an

Illuminant Consistent and Discriminative Feature (ICDF)

space through a mapping function h(·) and then estimate

illuminant value from ICDF by an estimation function f(·).
Specifically, the IGTN has three networks with shared

weights and thus takes three images as inputs in the training

stage, where two images have the same illuminant value,

and a third image has a dissimilar illuminant to the previous

two images. For each of the input image, we propose

a base network to obtain semantic features and a multi-

scale learnable color histogram scheme to extract the image

color features. Both semantic features and color features

are combined to form the ICDF representation. ICDF are

further refined by the triplet loss and angular loss to better

reflect illuminant information. The whole network can be

trained in an end-to-end manner, and thus does not need to

cluster images before training the neural network as done in

the work of [29].

We test our approach on two public color constancy

datasets to show our method’s superior performances wtih

respect to previous approaches. We also test our method

on images of high dynamic range (HDR) scenes taken

with different camera parameter settings. We show that

our method is capable of more consistently estimating the

illuminant color across images taken with different camera

parameter settings, thus demonstrating the robustness of our

method.

Our contributions are as follows: (1) We provide a

new perspective on deep learning based color constancy,

where a good feature should be consistent when they are

from images with similar illuminants, discriminative when

they come from images with different illuminants, and

insensitive to the variation of image content. (2) We achieve

this by proposing a deep metric learning method termed

Illuminant-Guided Triplet Network to generate Illuminant

Consistent and Discriminative Features (ICDF) for color

constancy. (3) Our proposed method could be trained

in an end-to-end manner and thus does not have to do

illuminant clustering in a separate module. (4) We evaluate

our approach on two public datasets, where our approach

demonstrates superior performance with respect to previous

methods.

2. Related Work

Recent years have witnessed a large number of work on

color constancy. They can be roughly categorized into three

branches, (i) statistics-based, (ii) learning-based and (iii)

deep learning based.

2.1. StatisticsBased Approaches

Some statistics-based approaches assume the statistics of

reflectance in the scene to be achromatic. A number of well-

known approaches including Grey-World [7], White-Patch

[16, 27] , Shades of Grey [13] and Grey-Edge [37] are based

on the assumption of the scene color to be gray.

The advantage of the statistics-based approaches is

that they do not require training data and are usually

efficient. However, the performance of these methods is not

comparable to the learning-based approaches.

2.2. LearningBased Approaches

The learning-based approaches employ labeled training

data to estimate illumination. There are mainly two lines of

learning-based methods including combinatorial methods

and direct methods.

Combinatorial methods try to optimally combine several

statistics-based methods according to the scene contents of

the input images. One work [15] trained a neural network to

estimate illumination. They binarized the rg-chromaticity

as the input. However, as they stated in the paper, such

binarization results in a large input layer especially when

processing 12-bit raw images. The work of [19] applies low

level properties of images to select the best combination of

algorithms.

Direct approaches aim to train a learning model and

estimate the illumination from the training dataset. The

Gamut Mapping methods assume one observes only a

limited gamut of colors for a given illuminant [14]. [1, 20]

first find the canonical gamut from the training data and

then map the gamut of each input image into the canonical

gamut. Other learning approaches such as SVR-based

algorithm [17], neural networks [35], Bayesian model [31,

18] and the exemplar-based algorithm [24], usually employ

hand-crafted features and these learning models are also

shallow.

2.3. Deep Learning Based Approaches

With the emergence of deep learning, the deep features

[21, 34, 36] are shown to achieve superior performance to

the traditional hand-crafted features.

There are several deep learning work trying to solve

the color constancy problem. One problem with the deep

learning approaches is that the size of dataset is usually

small, and it would lead to the over-fitting problem with

deep neural network. To overcome this problem, [28]
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uses ImageNet dataset to pre-train a CNN whose ground-

truths are obtained by the existing method such as Gray-

of-shades. Another way to augment the dataset size is to

partition the raw image into patches. One pioneer work [4]

takes raw image as input and directly predict illumination

from a CNN. In their further work [5], they develop a

multiple illuminant detector to decide whether to aggregate

the local outputs into the single estimate. The author of

[22] develop a fully convolutional network architecture that

can take any size of input patches. In the work of [33],

they propose a selection network to choose an estimate

from illumination hypotheses. [30] constructs a recurrent

neural network to take a sequence of input image patches to

estimate illuminant.

The closest work to ours is probably [29]. Authors

regard the color constancy as a classification problem. They

try to cluster training data by k-means and to compute

illuminants by finding their nearest neighbor in the training

dataset. In comparison, our approach does not have to do

clustering in a separate module. The deep metric learning

framework in our approach can simultaneously group image

features and also estimate illuminant value. Also, in the

work of [29], they have to manually define the cluster

number by applying k-means, which is not required in our

approach.

3. Methodology

In this section we describe our proposed method. We aim

to design a deep neural network to map image to the ICDF

space, and then estimate the illuminant value from ICDF

(the whole framework is shown in Figure 1). Our proposed

method is composed of two main parts to achieve this goal:

• A Deep Illuminant Network (DIN) based on the

AlexNet and learnable histogram scheme to extract

semantic features and multi-scale color features from

image.

• An Illuminant-Guided Triplet Network (IGTN)

consists of three DINs with shared weights to generate

ICDF representation.

In the following we detail each of these parts separately.

3.1. Deep Illuminant Network

We propose a Deep Illuminant Network to extract image

features h(x) from input image x and it consists of two

components: a base network and a learnable histogram

network. The base network is constructed to obtain

semantic image features and the learnable histogram aims

to extract color features. The final image representation is

the combination of semantic features and color features.

We choose AlexNet (up to FC6) as the base network

to extract image features. It is mainly due to two reasons:

(1) the size of current color constancy datasets are usually

small, thus using very deep network such as ResNet [21]

would lead to the over-fitting problem; (2) although very

deep networks have powerful discriminative ability, they

are usually illuminant-insensitive which is not a suitable

property for the illuminant estimation problem. Thus we

did not choose those networks with very deep structure in

this work.

The original AlexNet is designed for the classification

problem, thus it is able to extract semantic features.

However, in the illuminant estimation problem, we are also

interested in the illuminant color. Therefore, we apply a

learnable color histogram scheme to extract color features.

3.2. Learnable Color Histogram

Color feature is one of the most important features to

address the illuminant estimation problem. In this work, we

extend the work [41] to extract both global and local color

histograms to represent image color features.

We choose the learnable color histogram mainly for

two reasons: (1) unlike traditional color histogram, the

computation of learnable color histogram is differentiable

and thus could be trained in an end-to-end manner in the

deep learning framework; (2) the computation process of

learnable histogram can be represented by existing deep

learning layers and thus makes it easy to implement.

In the learnable color histogram, the centers and widths

of the bin are learned by the deep neural network. For each

pixel in the image, the voting function for it to select a bin

is formulated as below:

ψk,b(xk) = max{0, 1− |xk − µk,b| × wk,b}, (4)

where xk is the value of k-th element in the feature map, b
is the index of output bin, µk,b is the value of the voted bin

center and wk,b is the width of the b−th bin.

The nice property of learnable color histogram is that its

computation process can be modeled by the existing deep

learning layers. In specific, the computation of |xk − µk,b|
is the same as to convolving the feature map by a fixed 1×1
unit convolutional kernel with a learnable bias term −µk,b

and then to compute its absolute value. The calculation of

1−|xk−µk,b|×wk,b is equivalent to be then convolved by

another 1 × 1 convolutional kernel with learnable weights

and fixed bias terms of value 1. The max{0, ·} is exactly

the same as the ReLU activation function. The output

dimension of Equation 4 isH×W×C×B, whereH,W,C
are the number of height, width and channel of input, B is

the number of bins of the histogram.

In order to extract global and local color features, we

then adopt a spatial pyramid pooling layer based on the

learnable color histogram scheme. Formally, we apply three

scales of the pooling pyramid by a global average pooling

based on the learned color histogram. The strides of three
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Figure 1. The architecture of Illuminant-Guided Triplet Network (IGTN). The network takes three inputs: two have the same illuminant

value and one with different illuminant value. The IGTN maps images to the ICDF space according to their illuminant value. The final

illuminant could be inferred from the ICDF representation. Thus, the whole network could be trained in an end-to-end manner. Here “SPP”

refers to spatial pyramid pooling layer and “FC” denotes fully-connected layer.

global pooling are set to 1, 2, and 4 respectively. All three

pooled color histograms are flatten for concatenation. Then

we construct a fully-connected layer with 4,096 neurons to

represent the final learnable color histogram features. The

learned color histogram features are further combined with

the semantic features to form the ICDF representation.

3.3. IlluminantGuided Triplet Network

The current learned image features h(x) are more related

to the image content, while in the illuminant estimation task

we expect the features to be more related to the illuminant

information.

In order to generate the ICDF representation, we propose

a deep metric learning framework called the Illuminant-

Guided Triplet Network (IGTN) to achieve the illuminant

consistent and discriminative feature (ICDF) embedding.

The overall architecture of IGTN is based on the Triplet

Network framework which consists of three DINs with

shared weights. IGTN takes three inputs x, x+, x−, where x

and x+ have the same illuminant value, and x− has different

illuminant value from previous two images. IGTN aims to

refine the image features h(x) produced by DIN, and to

achieve embedding for each of the input images. Then,

the IGTN could estimate the illuminant value ŷ from the

embedding by an estimation function f(·):

ŷ = f(h(x)) (5)

In the vanilla triplet network [40, 26], the loss function

is formulated as:

LT = max(0, ‖h(xi)−h(x
+

i )‖
2
2−‖h(xi)−h(x

−

i )‖
2
2+α),

(6)

where α is a constant margin value. This loss function tends

to pull images of same class (x, x+) into nearby points in

the embedding space, and push images of different classes

(x, x−) apart from each other.

While the vanilla triplet loss retains the intra-class and

inter-class distances in the classification problems, it could

not well-describe the ordinal sample relationship in the

regression problem such as illuminant estimation.Thus, a

constant penalty α is not enough to disclose the ordinal

illuminant difference between image pairs. To overcome

this problem, we propose an illuminant guided triplet loss

based on the illuminant difference. The margin value of

penalty parameter α is defined as:

α = τD(yi, y
−

i ), (7)

where τ is a hyperparameter and D(yi, y
−

i ) is the angular

distance to measure the illuminant difference between
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anchor image and the negative image sample. By adopting

such learning strategy, we ensure the penalty margin

changes w.r.t the illuminant differences between different

image pairs. The modified triplet loss can then be

formulated as:

LT =max(0, ‖h(xi)− h(x+i )‖
2
2 − ‖h(xi)− h(x−

i )‖
2
2+

τD(yi, y
−

i )).

(8)

3.4. Triplet Sampling

Another issue with triplet network is how to construct the

triplet inputs. As we mentioned before, we aim to construct

triplet inputs as two image with the same illuminant and one

with different illuminant. In the single illuminant task, we

assume the illuminant is uniformly distributed within the

image. Thus, one safe way to construct two images with

the same illuminant is to take two image patches cropping

from one image. When looking for the image with different

illuminant, we use a threshold η to define the illuminant

difference. Here we define two images’ illuminant value

are different if their angular distance is larger than the

threshold:

D(yi, yj) > η (9)

3.5. EndtoEnd Optimization

The final illuminant value can be estimated from ICDF

to produce normalized r, g value. As illuminant estimation

is an ill-posed problem, the learned features have to be

supervised by the illuminant labels to achieve more accurate

results. We thus further apply an angular error loss to

optimize the IGTN. The angular error loss is formulated as:

LA(xi) = arccos(
f(h(xi)) · yi

‖f(h(xi))‖ · ‖yi‖
), (10)

where f(h(xi)) is the predicted illuminant value by IGTN

and yi is the ground-truth illuminant value. The total loss

is the combination of modified triplet loss and the angular

loss for each input image:

Ltotal = LT (xi, x
+

i , x
−

i ) + LA(xi) + LA(x
+

i ) + LA(x
−

i ).
(11)

By adopting such training strategy, the whole network

could be trained in an end-to-end manner. Also, the

IDCF representation are refined to better reflect illuminant

information and thus enable to more accurately predict the

illuminant value.

4. Experiment

4.1. Settings

Implementation and Training We implemented our

networks based on Tensorflow and Keras using four GTX

1080 Ti GPUs. When training the IGTN, we set the learning

rate to 1 × 10−4. The batch size is set to 48. The AlexNet

is pre-trained on the ImageNet dataset. We use Adam

optimizer [25] to train the network. We use 6 bins for the

learnable color histogram, and the initial centers were set

to (0, 0.2, 0.4, 0.6, 0.8, 1) and the initial bin widths were set

to 0.2. The value of τ in Equation 8 is set to 0.2. We set

threshold η = 3 in Equation 9.

Data Augmentation and Preprocessing The image

patches are randomly cropped from raw image with size

of 227 × 227. As the size of color constancy dataset is

usually small, we augment the image data by a random

angle rotation between −15◦ and 15◦ and left-right flipping

with a probability of 0.5. We also apply a gamma correction

of γ = 1/2.2 on linear RGB images to be fit with the images

in the ImageNet dataset.

Datasets We first evaluate our approach on the

reprocessed [32] Color Checker Dataset dataset [18]. It

consists of 568 raw images. Another dataset used in the

experiment is the NUS 8-camera set [9]. It contains 1,736

images from 8 different cameras and the experiment is done

independently on each sub-dataset. Both datasets use a

Macbeth Color Checker (MCC) to obtain the ground truth

illumination color. When doing experiment, we masked out

the MCCs in both training and testing phase. The evaluation

is done through a 3-fold cross validation for both datasets.

For the NUS dataset, we calculate the performance metric

by taking geometric mean over the eight image subsets as

done in previous works. We use the angular error metric to

evaluate the performance of different methods:

errangle = arccos(
ŷi · yi

‖ŷi‖ · ‖yi‖
) (12)

where ŷi is the estimated illuminant value and yi is the

ground-truth.

4.2. Experiment Results on the Color Constancy
Datasets

We present the experimental results in Table 1 and

Table 2. In the NUS 8-Camera dataset, it can be

seen that our new approach achieves the lowest errors

in most evaluation metrics when compared with previous

approaches, including the state of art deep learning

methods. In the Color Checker dataset, our approach also

demonstrates competitive estimation results. We achieve

the lowest mean error and worst-25% error and slightly

higher errors on the median and best-25% evaluation

metrics. These results demonstrate the effectiveness of

using the triplet network to extract illuminant consistent

and discriminative local features. It should be noticed that

FFCC [3] achieves the best performance in Color Checker

dataset by utilizing additional “semantics” features from

another pre-trained CNN model [39] and the “meta-data”
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Color Checker Dataset

Mean Median Best-25% Worst-25%

Gray World [7] 6.36 6.28 2.33 10.58

General Gray World [37] 4.66 3.48 1.00 10.09

White Patch [6] 7.55 5.68 1.45 16.12

Shades-of-Gray [13] 4.93 4.01 1.14 10.20

Spatio-spectral (GenPrior) [8] 3.59 2.96 0.95 7.61

Cheng et al. [9] 3.52 2.14 0.50 8.74

NIS [19] 4.19 3.13 1.00 9.22

Corrected-Moment (Edge) [12] 3.12 2.38 0.90 6.46

Corrected-Moment (Color) [12] 2.96 2.15 0.64 6.69

Exemplar [24] 3.10 2.30 - -

Regression Tree [10] 2.42 1.65 0.38 5.87

CNN [5] 2.36 1.98 - -

CCC (dist+ext) [2] 1.95 1.22 0.35 4.76

DS-Net (HypNet+SelNet) [33] 1.90 1.12 0.31 4.84

FFCC-4 channels [3] 1.78 0.96 0.29 4.29

FFCC-2 channels, +S [3] 1.67 0.96 0.26 4.23

FFCC-2 channels, +M [3] 1.65 0.86 0.24 4.44

FFCC-2 channels, +S +M [3] 1.61 0.86 0.23 4.27

SqueezeNet-FC4 [22] 1.65 1.18 0.38 3.78

AlexNet-FC4 [22] 1.77 1.11 0.34 4.29

Ours (vanilla triplet loss) 1.73 1.09 0.31 4.25

Ours (no triplet) 1.78 1.13 0.34 4.31

Ours (no learnable histogram) 1.85 1.10 0.31 4.91

Ours (no AlexNet) 2.49 1.70 0.41 6.01

Ours (no SPP; s = 1) 1.72 1.08 0.32 4.20

Ours (no SPP; s = 2) 1.76 1.09 0.34 4.28

Ours (no SPP; s = 4) 1.78 1.11 0.35 4.34

Ours (full) 1.58 0.92 0.28 3.70

Table 1. Performance of various methods on the Color Checker

dataset. For metric values not reported in the literature, their

entries are left blank. We denote “S” as the semantic data

employed in [3], and denote “M” as the meta-data used in [3].

Method Mean Med Best-25% Worst-25%

White-Patch [6] 10.62 10.58 1.86 19.45

Edge-based Gamut [1] 8.43 7.05 2.41 16.08

Pixel-based Gamut [1] 7.70 6.71 2.51 14.05

Intersection-based Gamut [1] 7.20 5.96 2.20 13.61

Gray-World [7] 4.14 3.20 0.90 9.00

Bayesian [18] 3.67 2.73 0.82 8.21

NIS [19] 3.71 2.60 0.79 8.47

Shades-of-Gray [13] 3.40 2.57 0.77 7.41

1st-order Gray-Edge [37] 3.20 2.22 0.72 7.36

2nd-order Gray-Edge [37] 3.20 2.26 0.75 7.27

Spatio-spectral (GenPrior) [8] 2.96 2.33 0.80 6.18

Corrected-Moment (Edge) [12] 3.03 2.11 0.68 7.08

Corrected-Moment (Color) [12] 3.05 1.90 0.65 7.41

Cheng et al. [9] 2.92 2.04 0.62 6.61

CCC (dist+ext) [2] 2.38 1.48 0.45 5.85

Regression Tree [10] 2.36 1.59 0.49 5.54

DS-Net (HypNet+SelNet) [33] 2.24 1.46 0.48 6.08

AlexNet-FC4 [22] 2.12 1.53 0.48 4.78

FFCC-4 channels [3] 1.99 1.31 0.35 4.75

SqueezeNet-FC4 [22] 2.23 1.57 0.47 5.15

Ours (vanilla triplet loss) 2.02 1.36 0.45 4.70

Ours (no triplet) 2.28 1.64 0.51 5.20

Ours (no learnable histogram) 2.15 1.52 0.47 5.28

Ours (no AlexNet) 2.86 1.99 0.59 6.98

Ours (no SPP; s = 1) 2.02 1.35 0.45 4.72

Ours (no SPP; s = 2) 2.15 1.48 0.60 4.98

Ours (no SPP; s = 4) 2.22 1.54 0.45 5.12

Ours (full) 1.85 1.24 0.36 4.58

Table 2. Performance of various methods on the NUS dataset.

of EXIF tags in the Color Checker dataset. In our approach,

both of these additional features are not applied to train our

deep learning models.

We then conducted a series of ablation experiment to

study the importance of each component of our deep metric

learning framework. We built four kinds of baseline

models:

1. Ours (vanilla triplet loss): We use the vanilla triplet

loss [40, 26] instead of Equation 8 to train the network.

2. Ours (no triplet): The triplet network framework is

remove and only single Deep Illuminant Network is

trained to estimate the illuminant.

3. Ours (no learnable color histogram): The whole

learnable color histogram is removed (spatial pyramid

pooling is also removed). Only the AlexNet is used to

extract image features.

4. Ours (no AlexNet): We removed the base network and

only learnable color histogram is served as the feature

extractor.

5. Ours (no SPP): The spatial pyramid pooling

mechanism is removed (learnable histogram is

remained). We only use global average pooling

once, and different settings of stride (s = 1, 2, 4) are

evaluated.

The experimental results are also presented in Table 3 and

Table 2.

When using the vanilla triplet loss (Vanilla Triplet),

we could see that triplet network performs slightly worse

than our proposed IGTN. One of the reasons may be that

dynamic penalty term in Equation 8 of our version can

better model the relationship among samples. This leads

to more reasonable feature distribution in the ICDF space,

which in turn makes the features easier to be separated by

the deep neural network.

When the triplet framework is removed (no triplet),

we can see that our method is still able to achieve

better performances than most of previous statistical

methods and learning methods based on handcrafted

features, but it is slightly lower than the state-of-the-

art deep learning approaches without the metric learning

framework. It demonstrates the importance of triplet

network framework to produce ICDF representation, which

is able to dramatically improve the prediction accuracy.

When learnable color histogram is not applied (no

learnable color histogram), the error also increases

dramatically. It is mainly due to the relatively coarse image

features extracted by the AlexNet, which are insufficient

to represent the color and texture features of input image.

We can see that the learnable color histogram scheme is

a necessary part of our approach to extract representative

image features.

In comparison, the base network demonstrates more

contribution to the estimation accuracy. When it is removed

(no AlexNet), we could see that the error increases by a

large margin. It shows the importance of base network to

extract the semantic image features. Those semantic image

features including texture features and spatial information
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Algorithm Color Checker NUS

Mean Med Mean Med

Rotation [23] 2.02 1.43 2.38 1.55

Ours 1.58 0.92 1.85 1.24
Table 3. Evaluation of the different triplet sampling strategy. [23]

rotate the anchor image as the positive image. In our work, we take

two cropped patches from one image as the anchor and positive

image.

are also the key to the illuminant estimation, which are not

included in the learnable color histogram features. The

importance of semantic features is also confirmed in the

work of [38]. Thus, we can see that both semantic features

and learnable color histogram features are both the key

components to improve the estimation accuracy.

When spatial pyramid pooling mechanism is removed

(no SPP), we show that the error slightly goes up without

applying multi-scale learning strategy. It is because the

multi-scale feature extraction strategy is able to learn both

local and global color features, which could better represent

the image color features. When setting the sole global

average pooling layer with different sizes, we can find

that the smaller stride size could lead to lower estimation

error. It is due to the smaller stride size is able keep more

color histogram information. However, it is still necessary

to construct a multi-scale pooling mechanism, since we

could obtain both global and local color features from such

mechanism.

4.3. Discussion on the Triplet Sampling Strategy

In this work, the way of constructing two images with

the same illuminant is to take two different crops from one

image. We also evaluate this sampling strategy with one in

the work of [23]. In their work, the same class images are

selected one image and its rotated image. Following their

experiment setting, the rotated image is generated by -10,-

5,5,10 degrees respectively.

We present the results in Table 3. It can be seen that

our approach has much lower angular than [23]. The

main reason is that simply rotating an image would make

the triplet network group image features according to the

image content instead of the illuminant, since the feature

difference between one image and its rotated version is

relatively small. It would cause the network more sensitive

to the variation of image content, which is not a suitable

property for the color constancy problem.

4.4. Threshold Analysis

We then evaluate the influence of threshold η in Equation

9 on the estimation performance. The result is shown

in Figure 2. It can be seen that the best performance is

achieved when setting η = 3 on both datasets. When setting

η to lower value, the estimation error increases dramatically.

Figure 2. The mean angular errors on two datasets by

setting different value of threshold η to determining illuminant

differences.

The reason is that the shorter angular distance means closer

illuminant value. When defining negative input with closer

illuminant value to anchor image, it is difficult for the triplet

network to distinguish images by illuminant and thus the

network is not able to map image to ICDF space. When

setting η to larger value, there is slightly increase on the

estimation error. The reason is that more images with

a broader range of illuminants would not be considered

as having different illuminant, which might leads to the

illuminant estimation error.

4.5. Robust Illuminant Estimation

The goal of this experiment is to test how image quality

affects the performances of color constancy algorithms. For

a given scene with a given illumination, the image acquired

by a camera is affected by the camera’s parameter settings.

For high dynamic range scenes, standard camera often

cannot capture the full dynamic range of the scene very

well. When using a short exposure time, the image often

fail to depict the dark regions very well, and conversely a

long exposure will make the bright regions over saturated.

In this experiment, we set out to test how the appearance

of an image affect illuminant color estimation. For a good

algorithm, the estimated result should not be affected by the

image quality because it doesn’t matter what quality of the

image is, the illuminant color of the scene is the same.

The high dynamic range image dataset in [11] contains

97 groups of images. Each group contains a series of

images of the same objects taken under the same lighting

condition but with different exposure intervals. According

to Equation 2, the estimated illuminants should be the same

for each image within the same group.

We present four examples in Figure 3 and statistical

results in Table 4. We compared our approach with Gray

World, White Patch and one state-of-the-art deep learning

approach AlexNet-FC4 which is pre-trained on the NUS
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Figure 3. Each scene has 4 images taken with different exposure

times. The chromaticity values estimated from each image using

different methods are plotted alongside each group of images. It

is seen that whilst the estimated illuminant chromatic values of

others methods spread widely, our results cluster close together,

indicating the more consistent and robust performances of our

approach.

dataset 1. It can be seen from Figure 3 that our approach

is able to predict more consistent result when the exposure

changes. Statistical analysis also proves the consistency

of our approach. We calculate the average variances

(σ̄r, σ̄g) of r and g channels to measure the spread of

the estimated results. The lower value of the average

variances means the more consistent estimation results. In

Table 4, we can see that our approach is able to predict

more consistent illuminant value when the exposure time

changes especially when comparing with one deep learning

approach (AlexNet-FC4). It is due to the successful usage

1https://github.com/yuanming-hu/fc4

σ̄r σ̄g
Gray World [7] 2.72× 10−4 8.52× 10−5

White Patch [6] 5.86× 10−4 7.16× 10−5

AlexNet-FC4 [22] 3.48× 10−4 2.89× 10−5

Triplet Network 3.89× 10−4 2.56× 10−5

Ours (no triplet) 4.58× 10−4 3.90× 10−5

Ours (full) 2.62× 10−4 2.27× 10−5

Table 4. Average variance of r and g channels on a HDR dataset.

Lower value means the prediction result is less influenced by the

variation of exposure time.

of metric learning strategy to produce ICDF representation,

which makes the final illuminant estimation less sensitive to

the variation of image content.

5. Concluding Remarks

In this paper, we have introduced a new perspective on

color constancy, where a desired color feature should be

discriminative and also be content-insensitive. We achieve

this by constructing a Illuminant-Guided Triplet Network

to learn Illuminant Consistent and Discriminative Feature.

In the experiment, our approach is compared with other

state-of-the-art methods on the two public datasets, our

method is demonstrated to give superior performances.

Furthermore, we evaluated the robustness of our method

and demonstrated that compared with other methods in

the literature, our method achieves more consistent results

against variations in camera parameter. In the future

work, we will consider to extend our approach to the

multi-iiluminant scenario, which should be a more realistic

problem in our daily life.
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