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Abstract

In this paper, we tackle the domain adaptive object detec-

tion problem, where the main challenge lies in significant

domain gaps between source and target domains. Previous

work seeks to plainly align image-level and instance-level

shifts to eventually minimize the domain discrepancy. How-

ever, they still overlook to match crucial image regions and

important instances across domains, which will strongly af-

fect domain shift mitigation. In this work, we propose a

simple but effective categorical regularization framework for

alleviating this issue. It can be applied as a plug-and-play

component on a series of Domain Adaptive Faster R-CNN

methods which are prominent for dealing with domain adap-

tive detection. Specifically, by integrating an image-level

multi-label classifier upon the detection backbone, we can

obtain the sparse but crucial image regions corresponding

to categorical information, thanks to the weakly localization

ability of the classification manner. Meanwhile, at the in-

stance level, we leverage the categorical consistency between

image-level predictions (by the classifier) and instance-level

predictions (by the detection head) as a regularization factor

to automatically hunt for the hard aligned instances of tar-

get domains. Extensive experiments of various domain shift

scenarios show that our method obtains a significant perfor-

mance gain over original Domain Adaptive Faster R-CNN

detectors. Furthermore, qualitative visualization and analy-

ses can demonstrate the ability of our method for attending

on the key regions/instances targeting on domain adapta-

tion. Our code is open-source and available at https:

//github.com/Megvii-Nanjing/CR-DA-DET.

1. Introduction

Object detection is a fundamental task in computer vision,

which aims to identify and localize objects of interest in an

image. In the past decade, remarkable progress has been
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(a) Source Domain (b) Target Domain

Figure 1. First row: Exampled images from Cityscapes [2] (source)

and Foggy Cityscapes [29] (target). Second row: Heatmaps by the

backbone network (VGG-16 [31]) of DA Faster R-CNN [1]. Third

row: Heatmaps by the backbone network of DA Faster R-CNN

trained with our categorical regularization framework. Our regu-

larization framework enables more accurate alignment for crucial

regions and important instances, and thus can assist the backbone

network to activate the main objects of interest more accurately in

both domains, and lead to better adaptive detection performance.

witnessed for object detection, with the advances of large-

scale benchmarks [19] and modern CNN-based detection

frameworks, such as Fast/Faster R-CNN [8, 25]. However,

state-of-the-art detectors require massive training images

with bounding box annotations. This limits their generaliza-

tion ability when facing new environments (i.e., the target

domain) where the object appearance, background, and even

weather condition significantly differ from the training im-

ages (i.e., the source domain). Meanwhile, due to the high

cost of box annotations, it is not always feasible to acquire

sufficient annotated training images from new environments.

In such situations, unsupervised domain adaptation offers

an appealing solution by adapting object detectors from label-

rich source domains to unlabeled target domains. Among a

large number of methods, a promising manner for domain

adaptation is to utilize the domain classifier to measure do-
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Figure 2. Overview of our categorical regularization framework: a plug-and-play component for the Domain Adaptive Faster R-CNN

series [1, 28]. Our framework consists of two modules, i.e., image-level categorical regularization (ICR) and categorical consistency

regularization (CCR). The ICR module is an image-level multi-label classifier upon the detection backbone, which exploits the weakly

localization ability of classification CNNs to obtain crucial regions corresponding to categorical information. The CCR module considers the

consistency between the image-level and instance-level predictions as a novel regularization factor, which can be used to automatically hunt

for hard aligned instances in the target domain during instance-level alignment.

main discrepancy, and train the domain classifier and feature

extractor in an adversarial way [5, 33]. In the literature,

adversarial training has been well-studied for domain adap-

tive image classification [5, 6, 22, 33], semantic segmenta-

tion [13, 30, 32] and object detection [1, 28, 41, 12].

Among many domain adaptive detection methods, Do-

main Adaptive (DA) Faster R-CNN [1] is the most repre-

sentative work that integrates Faster R-CNN [25] with ad-

versarial training. To address the domain shift problem, it

aligns both the image and instance distributions across do-

mains with adversarial training. Recently, DA Faster R-CNN

has rapidly evolved into a successful series [28, 41, 12, 14].

Specifically, Saito et al. [28] and Zhu et al. [41] improved

DA Faster R-CNN based on the observation that the plain

image-level alignment forces to align non-transferable back-

grounds, while the object detection task by nature focuses

on local regions that may contain objects of interest. Further-

more, although instance-level alignment can match object

proposals in both domains, current practices [1, 12] lack

the ability of identifying the hard aligned instances from

excessive low-value region proposals.

Aiming at these issues, we propose a novel categori-

cal regularization framework, which can assist the Domain

Adaptive Faster R-CNN series [1, 28] to focus on aligning

the crucial regions and important instances cross domains.

Thanks to the accurate alignment for such regions and in-

stances, the detection backbone networks can activate objects

of interest more accurately in both domains (cf. Figure 1),

and thus lead to better adaptive object detection results.

Concretely, our framework consists of two regularization

modules, i.e., image-level categorical regularization (ICR),

and categorical consistency regularization (CCR) (cf. Fig-

ure 2). For image-level categorical regularization, we attach

the detection backbone network with an image-level multi-

label classifier, and train it with categorical supervisions

from the source domain. The classification manner enables

the backbone to learn object-level concepts from the holistic

images, without being affected by the distribution of non-

transferable source backgrounds [39, 40]. It allows us to

implicitly align the crucial regions on both domains at the

image level. For categorical consistency regularization, we

take into account the consistency between image-level pre-

dictions by the attached classifier and instance-level predic-

tions by the detector. We adopt this categorical consistency

as a novel regularization factor, and use it to increase the

weights of the hard aligned instances in the target domain

during instance-level alignment.

The main contributions of this work are three-fold:

• We present a novel categorical regularization frame-

work for domain adaptive object detection, which can

be applied as a plug-and-play component for the promi-

nent Domain Adaptive Faster R-CNN series. Our frame-

work is cost-free as requiring no further annotations,

and also hyperparameter-free for performing on the

vanilla detectors.

• We design two regularization modules, by exploiting

the weakly localization ability of classification CNNs

and the categorical consistency between image-level

and instance-level predictions. They enable us to fo-
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cus on aligning object-related regions and hard aligned

instances that are directly pertinent to object detection.

• We conduct extensive experiments of various domain

shift scenarios to validate the effectiveness of our cate-

gorical regularization framework. Our framework can

significantly boost the performance of existing Domain

Adaptive Faster R-CNN detectors [1, 28], and produce

state-of-the-art results on benchmark datasets.

2. Preliminaries and Related Work

2.1. CNN-based Object Detection

In the past few years, the rise of deep convolutional neu-

ral networks led to a sharp paradigm shift of object de-

tection [20]. Among a large number of approaches, the

two-stage R-CNN series [9, 8, 25, 17] have become the

mainstream detection framework. The pioneer work, i.e.,

R-CNN [9], extracts region proposals from the image with

low-level vision techniques [34], and applies a network to

classify each region of interest (RoI) independently. Fast R-

CNN [8] improves R-CNN by sharing convolutional features

among RoIs, and thus enables fast training and inference.

Faster R-CNN [25] advances the region proposal genera-

tion process with a Region Proposal Network (RPN). RPN

shares the feature extraction backbone with the detection

head, which in essence is a Fast R-CNN [8]. Faster R-

CNN is a famous two-stage detection framework, and is

the foundation for many follow-up works [7, 3, 17]. While

recently single-stage detectors have emerged as a popular

paradigm [24, 21, 18], many top-performing systems still

adopt the proven two-stage pipeline [17, 10].

Thanks to the flexibility of Faster R-CNN, recently, it

is widely adapted for domain adaptive object detection [1,

28, 41, 12] with adversarial training [5]. Other approaches,

such as self-training [16, 26], are also exploited for domain

adaptive object detection in the literature.

2.2. Domain Adaptive Faster R-CNN Series

Domain Adaptive (DA) Faster R-CNN [1] is a prominent

two-stage object detector for dealing with the challenging

domain adaptive object detection problem. It is an intu-

itive extension of Faster R-CNN [25], which aligns both

the image and instance distributions by learning domain

classifiers in an adversarial manner. For the image-level

alignment, the domain classifier is trained on each activa-

tion (channel-wise descriptor) from the feature map after

the base convolutional layers, while for instance-level align-

ment, the domain classifier is trained with instance-level RoI

features. Furthermore, the consistency between image-level

and instance-level domain classifiers is enforced to learn the

cross-domain robustness for RPN.

Formally, for a given image, let D= 0 denote that it is

from the source domain while D=1 denote that it is from

the target domain. Let D̂(u,v) denote the output of the image-

level domain classifier for the activation located at (u, v) of

the feature map, then the image-level alignment loss can be

written as

Limg=−

∑

u,v

[

DlogD̂(u,v)+(1−D)log(1−D̂(u,v))
]

. (1)

Let D̂j denote the output of the instance-level domain clas-

sifier for the j-th region proposal, then the instance-level

alignment loss is as follows

Lins = −

∑

j

[

D log D̂j + (1−D) log(1− D̂j)
]

. (2)

Furthermore, let Lcst denote the consistency loss for image-

level and instance-level domain classifiers, and let Ldet be

the original training loss for Faster R-CNN [25]. The overall

objective LDAF for DA Faster R-CNN can be written as

LDAF = Ldet + λ · (Limg + Lins + Lcst), (3)

where λ is a hyper-parameter to balance the detection loss

and the domain adaptation components. The adversarial

training for adaptation components is implemented by the

gradient reverse layer (GRL) [5], where the sign of gradients

is flipped when training the base convolutional layers.

As aforementioned, DA Faster R-CNN [1] may fail to

align the crucial regions and important instances which are

crucial for adaptive detection. Meanwhile, it tends to fit

the distribution of non-transferable source backgrounds, as

the training process involves a large amount of background

proposals. Recent works attempted to improve DA Faster

R-CNN by replacing the plain image-level alignment model

with a weak alignment model [28] or a region-level align-

ment model [41], and found that the instance-level alignment

model is not necessary in presence of other local alignment

model [28]. We term to these methods collectively as Do-

main Adaptive Faster R-CNN series.

A high-level diagram of Domain Adaptive Faster R-CNN

series is shown in Figure 2 (a), where we follow the paradigm

of DA Faster R-CNN [1] but omit the part of Lcst which is

not an essential ingredient in our regularization framework.

Please note that Figure 2 (a) is a conceptual diagram, and

not all components of the Domain Adaptive Faster R-CNN

series strictly follow this structure.

2.3. Weakly Localization by Classification CNNs

It is widely acknowledged that CNNs trained for single-

label image classification tend to produce high responses on

the local regions containing the main objects [38, 40, 39].

Analogously, CNNs trained for multi-label classification also

have the weakly localization ability for the objects associated

with image-level categories [35, 36].
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Figure 3. Visualization of the weakly localization ability of multi-

label classification CNNs. The CNN model is VGG-16 trained on

Cityscapes [2].

Taking the Cityscapes [2] dataset for an example, we col-

lect all instance-level labels into an image-level label vector,

and train VGG-16 [31] for multi-label image classification.

Figure 3 shows the heatmaps for two exampled images from

Cityscapes, where the main objects related to image-level

categories such as “car”, “person” and “rider” are weakly

localized.

3. Approach

3.1. Framework Overview

The overview of our categorical regularization framework

is illustrated in Figure 2. In general, our framework improves

the DA Faster R-CNN series detectors [1, 28, 12] by explor-

ing categorical regularization from two aspects: image-level

categorical regularization (ICR) and categorical consistency

regularization (CCR). Note that the ICR module does not

depend on the CCR module, and thus it can be individu-

ally integrated with DA Faster R-CNN detectors which only

perform image-level alignment [28].

Our framework enables better alignment of crucial re-

gions and important instances across domains. Consequently,

the detection backbone produces more accurate activations

on objects of interest of both domains (cf. Figure 1), leading

to better adaptive detection performance. Our framework is

flexible and generalizable – it does not depend on specific

algorithms for either image or instance alignment.

3.2. Image-Level Categorical Regularization

Image-level categorical regularization (ICR) is exploited

to obtain the sparse but crucial image regions corresponding

to categorical information. We achieve this with a weakly su-

pervised solution, which can learn discriminative features for

objects of interest, without being affected by the distribution

of non-transferable source backgrounds. While the standard

training for Faster R-CNN can learn discriminative features

for objects of interest, it tends to fit the source backgrounds

due to the large amount of background RoIs sampled for

training. Since the patterns of source backgrounds are non-

transferable, plain image-level alignment may lead to noisy

activations in target domains (cf. Figure 1).

In our proposal, as illustrated in Figure 2 (b), we attach the

detection backbone with an image-level multi-label classifier,

and train it with supervisions from the source domain. Such

categorical supervisions are cost-free for detection datasets,

and can be easily acquired by collecting all instance-level

categories in an image into an image-level categorical vector.

Given the detection backbone network, we perform global

average pooling on the output of the last convolutional layer,

and feed the pooled features into a plain multi-label classifier

implemented by a 1×1 convolution. We train this image-

level classifier with the standard cross-entropy multi-label

loss by

LICR =
∑C

c=1
yc log(ŷc) + (1− yc) log(1− ŷc), (4)

where C is the total number of categories of a detection

dataset, yc is the ground truth label, and ŷc is the predicted

one. yc = 1 denotes that there is at least one object of

category c appearing in this image, while yc = 0 means

there is no object of category c in the image.

The image-level categorical supervisions encourage the

detection backbone to learn category-specific features that

can activate object-related regions. This allows us to align

the crucial regions of both domains with an image-level align-

ment model (e.g., Equation (2)). Meanwhile, because there

is no background supervision involved in the training process

of our image-level multi-label classifier, the risk of fitting

(even over-fitting) non-transferable source backgrounds is

greatly reduced.

3.3. Categorical Consistency Regularization

We design a categorical consistency regularization (CCR)

module to automatically hunt for the hard aligned instances

in target domains. Our motivation lies in two aspects. First,

current instance alignment models [1, 12] may be dominated

by the excessive low-value background proposals, as they

can not identify the hard foreground instances in the target

domain. Second, the attached image-level classifier and the

instance-level detection head are complementary, because

the former exploits the whole image-level context while the

latter enjoys more accurate RoI features.

Building upon those above considerations, we adopt

the categorical consistency between the image-level and

instance-level predictions as a measure for the hardness of

classifying a certain target instance. Intuitively, if the image-

level classifier predicts that there is no “person” in a target

image while the detection head classifies a certain instance

as “person”, this instance should be a hard but informative

sample for current detection model. Therefore, we utilize

this consistency as a regularization factor to increase the

weight of hard aligned samples in target domains during

instance-level alignment.
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Specifically, assume that the detection head classifies

the j-th instance in a target image as category c, we let

p̂cj denote the estimated probability. Using the notation in

Equation (4), we let ŷc denote the image-level estimation of

the probability that this image contains objects of category

c. We define the following distance function to measure

the categorical consistency between the instance-level and

image-level predictions as

dj = e|p̂
c
j−ŷc|. (5)

Here the exponent form characterizes the intuition that while

a small disagreement may come from the model’s variance,

a large disagreement should be attributed to the hardness in

classifying this instance.

We use Equation (5) to weight the instance-level adversar-

ial loss, which in implementation is equivalent to weight the

gradients passed through the gradient reversal layer (GRL)

during training. Take the instance alignment model (i.e.,

Equation (2)) in DA Faster R-CNN [1] for an example, the

instance-level alignment loss with CCR can be written as

L
CCR
ins =−

∑

j

dj

[

D log D̂j+(1−D) log(1−D̂j)
]

. (6)

It is worth noting that, we only apply Equation (5) to

weight foreground instances from the target domain, accord-

ing to the predictions of detection head. We keep the weights

for source instances and the background instances from the

target domain unchanged (i.e., dj = 1), as the former have

supervision signals from the source domain, while the latter

are not as important as foreground proposals.

3.4. Integration with DA Faster R-CNN Series

In this work, we take the DA Faster R-CNN [1] and the

state-of-the-art strong-weak aligned Faster R-CNN [28] as

our baseline detectors. In the following, we term them as

“DA-Faster” and “SW-Faster” for simplicity. In fact, other

Domain Adaptive Faster R-CNN detectors [12, 41] may also

be compatible with our framework with minor modifications.

Integration with DA-Faster. Integrating our framework

with DA-Faster [1] is straightforward. We attach an image-

level multi-label classifier to the backbone, by adding a

global averaging pooling layer and a 1×1 convolution layer.

Furthermore, we use our CCR to weight the gradients passed

through the reverse gradient layer (GRL) for instance-level

alignment. The modified overall objective of DA-Faster with

our regularization framework can be written as

L
∗
DAF =Ldet+LICR+ λ · (Limg+L

CCR
ins +Lcst), (7)

where λ is set to 0.1 in [1], and our method does not intro-

duce additional hyper parameters.

Integration with SW-Faster. SW-Faster [28] improves

the strong image-level alignment model of DA-Faster with a

weak global alignment model, and replaces the instance-level

alignment model with a strong local alignment model. Since

our categorical regularization framework is independent of

the specific algorithms for alignment, our ICR module can

be straightly integrated into SW-Faster. Furthermore, we add

an instance-level alignment model, which is the same to that

of DA-Faster, into the pipeline of SW-Faster during training.

This allows us to apply our CCR module to further improve

SW-Faster. The modified overall objective for SW-Faster

with our regularization framework can be written as

L
∗
SWF =Ldet+LICR+λ′

· (LCCR
ins +Lglobal+Llocal), (8)

where λ′ is set to 1.0, and Lglobal and Llocal denote the

global alignment loss and local alignment loss in [28].

4. Experiments

4.1. Empirical Setup

Datasets. Five public datasets are utilized in our exper-

iments, including Cityscapes [2], Foggy Cityscapes [29],

BDD100k [37], PASCAL VOC [4], and Clipart1k [15].

• Cityscapes [2] focuses on capturing high variability

of outdoor street scenes in common weather conditions

from different cities. It contains 2,975 training images

and 500 validation images with dense pixel-level labels.

We transform the instance segmentation annotations

into bounding boxes for our experiments.

• Foggy Cityscapes [29] is built upon the images in the

Cityscapes dataset [2]. This dataset simulates the foggy

weather using depth maps provided in Cityscapes with

three levels of foggy weather, and thus is suitable to

conduct weather adaptation experiments.

• BDD100k [37] consists of 100k images, with 70k train-

ing images and 10k validation images annotated with

bounding boxes. We extract a subset of BDD100k with

images labeled as daytime, including 36,728 training

and 5,258 validation images. We use this subset for

scene adaptation experiments.

• PASCAL VOC [4] is a real-world dataset containing

20 categories of common objects with bounding box

annotations. Following [28], we employ PASCAL VOC

2007 and 2012 training and validation images (16,551

images in total) for experiments.

• Clipart1k [15] contains 1k clipart images, which

shares the same instance categories with PASCAL VOC

but exhibits a large domain shift. We follow the prac-

tice in [28], and use all images of Clipart1k for both

training (without labels) and test.

Baselines and Comparison Methods. We consider DA-

Faster [1] and the state-of-the-art SW-Faster [28] as our
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Table 1. Weather Adaptation: Results on Foggy Cityscapes, using models trained on Cityscapes.

Method person rider car truck bus train mcycle bicycle mAP

Faster R-CNN (Source) 24.4 30.5 32.6 10.8 25.4 9.1 15.2 28.3 22.0

MA-Faster [12] 28.4 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0

Selective-Faster [41] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8

DA-Faster [1] 28.7 36.5 43.5 19.5 33.1 12.6 24.8 29.1 28.5

DA-Faster-ICR (Ours) 28.7 37.3 43.0 21.9 36.9 9.2 25.9 31.9 29.4

DA-Faster-ICR-CCR (Ours) 29.7 37.3 43.6 20.8 37.3 12.8 25.7 31.7 29.9

SW-Faster [28] 32.3 42.2 47.3 23.7 41.3 27.8 28.3 35.4 34.8

SW-Faster-ICR (Ours) 33.1 44.2 48.8 27.7 44.9 27.9 29.4 36.2 36.5

SW-Faster-ICR-CCR (Ours) 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4

Faster R-CNN (Oracle) 36.2 47.7 53.0 34.7 51.9 41.0 36.8 37.8 42.4

Table 2. Scene Adaptation: Results of 7 common categories on the daytime subset of BDD100k, using models trained on Cityscapes.

Method person rider car truck bus train mcycle bicycle mAP

Faster R-CNN (Source) 26.9 22.1 44.7 17.4 16.7 - 17.1 18.8 23.4

DA-Faster [1] 29.4 26.5 44.6 14.3 16.8 - 15.8 20.6 24.0

DA-Faster-ICR (Ours) 29.1 28.6 44.8 14.9 15.8 - 17.1 22.4 24.7

DA-Faster-ICR-CCR (Ours) 29.3 28.4 45.3 17.5 17.1 - 16.8 22.7 25.3

SW-Faster [28] 30.2 29.5 45.7 15.2 18.4 - 17.1 21.2 25.3

SW-Faster-ICR (Ours) 30.9 31.2 45.6 15.9 18.4 - 19.3 23.7 26.4

SW-Faster-ICR-CCR (Ours) 31.4 31.3 46.3 19.5 18.9 - 17.3 23.8 26.9

Faster R-CNN (Oracle) 35.3 33.2 53.9 46.3 46.7 - 25.6 29.3 38.6

baseline methods, and re-implement them for fair compar-

isons. Our re-implementations achieve comparable or even

better accuracies compared to the original papers. When

comparing with other state-of-the-art methods, we report

the results from original papers. Furthermore, we also train

Faster R-CNN [25] only using source images, as well as di-

rectly using annotated target images. We refer to models of

these two settings as “Faster R-CNN (Source)” and “Faster

R-CNN (Oracle)”, respectively.

Implementation Details. Following the default settings

in [1, 28], all training and test images are resized such that

the shorter side has a length of 600 pixels. By default, the

backbone models are initialized using pre-trained weights

of VGG-16 [31] on ImageNet, but for the dissimilar do-

main adaptation experiments from PASCAL VOC [4] to Cli-

part1k [15], we follow the practices in [28] and use ResNet-

101 [11] as the detection backbone. We fine-tune the network

with a learning rate of 1× 10−3 for 50k iterations and then

reduce the learning rate to 1 × 10−4 for another 20k iter-

ations. Each batch is composed of two images, one from

source and another from target. The momentum of 0.9 and

the weight decay of 5 × 10−4 is used for VGG-16 based

detectors, while for ResNet-101 based detectors, we set the

weight decay as 1 × 10−4. In all experiments, we employ

RoIAlign [10] for RoI feature extraction.

4.2. Comparison Results

Weather Adaptation. In real-world scenarios, object de-

tectors may be applied under different weather conditions.

We study the weather adaptation from clear weather to a

foggy environment, using Cityscapes’ training set and Foggy

Cityscapes’ validation set as the source domain and the target

domain, respectively.

Table 1 shows the comparison results. Our categorical

regularization framework can consistently boost the perfor-

mance of DA-Faster and SW-Faster detectors, with 1.4% and

2.6% mAP improvements, respectively. In particular, our

CCR module can greatly improve the detection results for

some difficult categories such as “train”. It clearly verifies

the importance of increasing the weight of hard foreground

instances in target domains for instance-level alignment. It is

worth noting that our categorical regularization framework

helps to reduce the performance gap between the domain

adaptive detector and oracle detector trained with annotated

target images to about 5% mAP.

Scene Adaptation. Scene layout changes frequently occur

in real-life applications of object detection, e.g., automatic

driving from one city to another. To study the effectiveness

of our regularization framework for scene adaptation, we

choose the Cityscapes [2] training set as the source domain

and a subset of BDD100k [37] as the target domain. In

particular, we choose a subset of the BDD100k dataset anno-

tated as daytime to be our target domain and consider the city

scene as the adaptation factor, since there only exists day-

time data in the Cityscapes dataset. We report the detection

results on seven common categories on both datasets.

As shown in Table 2, we observe a significant perfor-

mance gap between the domain adaptive detectors and the

oracle detector, which suggests that scene layout shift is a

challenging factor that hinders the performance of domain

adaptive detection. Even under this difficult setting, our

categorical regularization framework can also improve DA-
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Table 3. Dissimilar Domain Adaptation: Results on the Clipart1k dataset, using models trained on the PASCAL VOC training set.

Method aero bike bird boat bottle bus car cat chair cow table dog horsembike person plant sheep sofa train tv mAP

Faster R-CNN (Source) 21.9 42.2 22.9 19.0 30.8 43.1 28.9 10.7 27.4 18.1 13.5 10.3 25.0 50.7 39.0 37.4 6.9 18.1 39.2 34.9 27.0

Kim et al. [16] 28.0 64.5 23.9 19.0 21.9 64.3 43.5 16.4 42.2 25.9 30.5 7.9 25.5 67.6 54.5 36.4 10.3 31.2 57.4 43.5 35.7

DA-Faster [1] 38.0 47.5 27.7 24.8 41.3 41.2 38.2 11.4 36.8 39.7 19.6 12.7 31.9 47.8 55.6 46.3 12.1 25.6 51.1 45.5 34.7

DA-Faster-ICR (Ours) 31.0 53.9 29.2 28.2 41.5 56.6 38.3 8.1 37.4 43.1 22.0 12.4 27.8 49.8 55.0 48.2 11.0 22.7 54.2 46.9 35.9

DA-Faster-ICR-CCR (Ours) 30.2 57.0 30.6 26.2 38.0 57.1 36.1 12.7 36.4 44.8 18.2 14.6 30.0 56.7 56.6 45.9 17.8 25.3 50.5 48.5 36.7

SW-Faster [28] 29.2 53.1 30.2 24.4 41.4 52.5 34.6 14.0 36.3 43.5 17.6 16.6 33.4 78.1 59.1 42.1 15.8 24.9 45.5 43.7 36.8

SW-Faster-ICR (Ours) 25.2 54.0 31.7 23.4 40.3 65.8 35.4 12.1 37.6 48.1 18.6 14.2 31.3 73.6 59.9 46.5 19.5 25.9 46.0 45.6 37.7

SW-Faster-ICR-CCR (Ours) 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3

SW-Faster SW-Faster-ICR-CCR (Ours) Ground Truth

Figure 4. Detection examples from three target datasets, from top to bottom: Foggy Cityscapes [29], BDD100k [37], and Clipart1k [15]. Our

categorical regularization framework enables SW-Faster [28] to produce more accurate detection results with large domain shifts.

Faster and SW-Faster by 1.3% and 1.6%, respectively. Simi-

lar to the observations on weather adaptation experiments,

our CCR module can significantly improve the detection

results of some difficult objects such as “truck”.

Dissimilar Domain Adaptation. Both weather adaptation

and scene adaptation can be considered as adaptation be-

tween similar domains. We further show experiments on

the dissimilar domain adaptation from real images to artistic

images. We utilize Pascal VOC [4] as the real source do-

main and the Clipart1k [15] as the target domain. Clipart1k

contains 1k comical images in total, which have the same

20 categories as PASCAL VOC. Following [28], all images

in Clipart1k are used for both training (without labels) and

testing, and thus there is no oracle detector for this dataset.

As shown in Table 3, for dissimilar domain adaptation,

our regularization framework also achieves considerable

improvements over the baseline DA-Faster and SW-Faster

by 2.0% and 1.5% mAP, respectively. Furthermore, our

methods also outperform recent state-of-the-art one-stage

object adaptive detector [16] that employs self training for

domain adaptation.

4.3. Visualization and Analyses

Detection Examples. In Figure 4, we show some de-

tection examples from three target datasets, i.e., Foggy

Cityscapes [29], BDD100k [37] and Clipart1k [15]. Com-

pared to the baseline SW-Faster [28] method, our SW-Faster-

ICR-CCR method produces more accurate detection results

under complex environments and large domain shifts.
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(a) SW-Faster ( AP: 36.8) (b) SW-Faster-ICR ( AP: 37.7) (c) SW-Faster-ICR-CCR ( AP: 38.3)

Im
ag

e
ist

rib
ut

io
n

Figure 5. Visualization of image features and instance features with t-SNE [23], where the blue points represent source samples from

PASCAL VOC [4] and the red ones represent target samples from Clipart1k [15]. Top Row: Holistic image features obtained by applying

global average pooling to the output of the detection backbone network. Second Row: Instance features obtained by applying RoIAlign on

the ground truth instances, where we also show three pairs of instances from different domains, and zoom in to the local regions of the most

poorly matched instances. Compared to original SW-Faster [28], our method better aligns both the image-level and instance-level features

on both domains, and enables two dissimilar instances of the same category from different domains to stay close in the feature space.

Feature Visualization. We visualize the image and in-

stance features learned for dissimilar domain adaptation

(from PASCAL VOC [4] to Clipart1k [15]) using t-SNE [23].

For this experiment, we randomly sample 100 ground truth

instances for each category, 50 from the source domain and

50 from the target domain. For some categories that have less

than 50 instances in a certain domain, we sample all instances

in that domain and the same number of instances from the

other domain. The images containing these instances are

sampled for image-level visualization. The image features

are extracted by applying global average pooling on the out-

put of the detection backbone network, while the instance

features are extracted by RoIAlign.

As shown in Figure 5, the blue points represent source

samples and the red ones represent target samples. We also

show three pairs of instances from different domains, and

zoom in to the local regions of the most poorly matched

instances. The dissimilar instance pairs of the same category

from different domains stay closer in the feature space of

our methods. Even for the most poorly matched region,

our method still have better alignment performance than the

baseline SW-Faster method [28]. Furthermore, thanks to the

accurate instance-level alignment, our image-level alignment

performance is also better than the baseline method.

Domain Distance. Besides visualization understanding,

we also calculate a quantitative metric for domain distance,

where both domains are represented by object instances. For

this experiment, we use the same instance samples as the fea-

ture visualization experiment. Specifically, we adopt Earth

Mover’s Distance (EMD) [27] as the metric for measuring

domain distance. With this metric, domain distance com-

puted for SW-Faster [28], SW-Faster-ICR and SW-Faster-

ICR-CCR are 8.84, 8.59, 8.15, respectively.

The consistency between domain distance and model ac-

curacy verifies the motivation of our work. That is, domain

adaptive object detection relies heavily on aligning the cru-

cial local regions and important instances on both domains.

Our regularization framework assists the DA Faster R-CNN

series to achieve this goal.

5. Conclusions

In this work, we presented a categorical regularization

framework upon Domain Adaptive Faster R-CNN series for

improving the adaptive detection performance. Specifically,

we exploited the weakly localization ability of multi-label

classification CNNs and the categorical consistency between

image-level and instance-level predictions, which allows us

to focus on aligning object-related local regions and hard

aligned instances. In experiments, our framework signifi-

cantly boosted the performance of existing Domain Adap-

tive Faster R-CNN detectors and produced state-of-the-art

results on public benchmark datasets. Visualization and anal-

yses can validate the effectiveness of our method. In the

future, we will investigate how to apply our regularization

framework to improve adaptive detectors beyond the Domain

Adaptive Faster R-CNN series.
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