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Abstract

Maximally Stable Extremal Regions (MSER) algorithms

are based on the component tree and are used to detect in-

variant regions. OpenCV MSER, the most popular MSER

implementation, uses a linked list to associate pixels with

ERs. The data-structure of an ER contains the attributes

of a head and a tail linked node, which makes OpenCV

MSER hard to be performed in parallel using existing paral-

lel component tree strategies. Besides, pixel extraction (i.e.

extracting the pixels in MSERs) in OpenCV MSER is very

slow. In this paper, we propose two novel MSER algorithms,

called Fast MSER V1 and V2. They first divide an image

into several spatial partitions, then construct sub-trees and

doubly linked lists (for V1) or a labelled image (for V2) on

the partitions in parallel. A novel sub-tree merging algo-

rithm is used in V1 to merge the sub-trees into the final tree,

and the doubly linked lists are also merged in the process.

While V2 merges the sub-trees using an existing merging al-

gorithm. Finally, MSERs are recognized, the pixels in them

are extracted through two novel pixel extraction methods

taking advantage of the fact that a lot of pixels in parent

and child MSERs are duplicated.

Both V1 and V2 outperform three open source MSER al-

gorithms (28 and 26 times faster than OpenCV MSER), and

reduce the memory of the pixels in MSERs by 78%.

1. Introduction

Invariant region extraction [36, 21, 14, 17, 42, 4, 32, 31,

34, 43, 5, 18, 6, 3] has been widely used in large scale im-

age retrieval tasks, object detection and recognition, object

tracking and view matching. The Maximally Stable Ex-

tremal Regions (MSER) algorithm was invented by Matas

et al. [20] and optimized by Nister et al. [28]. It constructs

a component tree [33, 24], recognizes MSERs from the tree

and then extracts the pixels in MSERs. We call these three

steps component tree construction, MSER recognition and

pixel extraction. Note that some tasks such as wide-baseline

1This work is an amateur research. Part of this work was done when

Hailiang Xu worked in Alibaba Group (using spare time).

stereo do not need the pixel extraction. Each node in the tree

is an extremal region (ER), which has the characteristic that

the pixels inside the ER are brighter (bright ER) or darker

(dark ER) than the pixels at its outer edge. An MSER is

an ER that is stable across a range of gray-level thresholds.

The MSER algorithm runs in two different passes: dark to

bright pass (detecting dark MSERs) and bright to dark pass

(detecting bright MSERs). It has been used in wide-baseline

stereo [20, 10, 19], large scale image retrieval [27], object

tracking [8], object recognition [29] and scene text detec-

tion [46, 13, 26, 25, 45, 44, 12]. It has been extended to

color [9], volumetric images [7], 1-D images [41] and has

been optimized on FPGA [16].

The MSER algorithm requires low computing resources

(suitable for embedding devices and mobile phones), and

works well with small training data (MSER features are

high-level handicraft features). Although deep-learning

techniques are very popular in academic areas, the MSER

algorithm is still active in industrial tasks such as stereo

matching (possibly combined with SIFT, SURF and ORB

feature descriptors), document text process and traffic sign

detection, etc. We can also use the MSER algorithm to anal-

yse heat-map, i.e. find regions whose heats exceed a certain

threshold. Thus, the MSER algorithm needs to run very

fast as well as use less memory (considering the relatively

small memory in embedding devices and mobile phones).

Besides, some optimization techniques of the MSER algo-

rithm can be extended to other component tree algorithms.

Parallel strategies [39, 23] have been proposed to accel-

erate the component tree based algorithms. They divide an

image into several partitions. A sub-tree merging algorithm

[39] is used to merge the sub-trees which are constructed

on all partitions in parallel. The sub-tree merging algorithm

can correctly accumulate the attributes (the attributes must

be simple enough to accumulate, e.g. the area of a region) of

each tree node. We call this partition parallel strategy. Mos-

chini et al. [23] described two partition strategies: spatial

partition and intensity partition, as shown in Fig. 1. Inten-

sity partition is suitable for the algorithms which work on

pixels that are ordered by gray-levels [23].

Fig. 2 shows the comparison of partition and channel
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Figure 1. Left: spatial partition. Right: intensity partition.
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Figure 2. A channel parallel algorithm works on 4 channels at the

same time and thus allocates 4 blocks of memory. However, a

partition parallel algorithm only allocates 1 block of memory (the

memory will be reused in all the partitions).
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Figure 3. (a) 6 dark ERs. (b) CV-MSER generates a linked list

from the source image. The data-structure of an ER contains a

head and a tail linked node. In Fast MSER V1, the linked list is

a doubly linked list. (c) Fast MSER V2 uses a labelled image in

which each pixel records the corresponding MSER index.

parallel strategies. As the partition parallel algorithm using

less running memory than the channel parallel algorithm,

we focus on the partition parallel strategy.

MSER algorithms can be divided into two categories:

Standard MSER [20] and Linear MSER [28]. Standard

MSER takes quasi-linear time in the number of pixels,

while Linear MSER takes true worst-case linear time.

VLFeat MSER (VF-MSER) [37] is a Standard MSER. It

uses the same way of the well known flooding simulation

algorithm [38] in the task of watershed segmentation, and

is easily performed in partition parallel using the merging

algorithm in [39]. Since VL-MSER first sorts the pixels, it

is suitable for intensity partition. Idiap MSER (ID-MSER)

[2] is a Linear MSER. By using a different calculation or-

dering of the pixels, it uses significantly less memory and

runs with better cache-locality (suitable for intensity par-

tition), resulting in faster execution. Both of them do not

implement the pixel extraction, and can only calculate mo-

ment features which are easily accumulated. More complex

features such as skeleton [11] are unable to be extracted.

OpenCV MSER (CV-MSER) [1] is another Linear

MSER algorithm, and its procedure is in Fig. 7. To calculate

(b) CV-MSER (c) Fast MSER V1

(a) Linked list
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MSER 5 MSER 6

MSER 6
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Record begin and end indexes:

MSER 1: 0,2     MSER 2: 3,4

MSER 3: 5,5     MSER 4: 6,7

MSER 5: 0,4     MSER 6: 5,7

Pixels in top MSERs:

Figure 4. (a) 6 MSERs are recognized. (b) CV-MSER extracts the

pixels in the 6 MSERs independently. The pixels in MSER 1, 2

and 3 are repeatedly extracted in their parent MSER 5 and 6. (c)

Fast MSER V1 first stores the pixels in those top MSERs (having

no parent MSERs) in a block of continuous memory. Then all

the MSERs record the begin and end indexes in the continuous

memory. All pixels are extracted only once.

(a) CV-MSER (b) Fast MSER V1 and V2

Green ERs are recognized as MSERs

Compute the total number of pixels

and allocate a block of continuous

memory for all MSERs

ER 1 ER 2 ER 3

Pixel extraction Pixel extraction

ER 1 ER 3

Pixel extraction Pixel extraction
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Allocate a block of continuous

memory for each recognized MSER

Figure 5. (a) The pixel extraction is performed immediately after

an ER is recognized as an MSER. (b) V1 and V2 first finish the

MSER recognition and then extract the pixels in MSERs. Releas-

ing a block of continuous memory in Fast MSER is faster than

releasing many blocks of continuous memory in CV-MSER.

complex features of MSERs, it extracts the pixels in each

MSER, and stores the pixels in a linked list which contains

the attributes of a head and a tail node (see Fig. 3 (b)). It

successfully extracts the pixels, but does not take advantage

of the relationship between parent and child MSER, thereby

slowing down extraction speed, see Fig. 4 (b). Moreover,

CV-MSER is incompatible with the partition parallel strat-

egy because the attributes of linked nodes cannot be accu-

mulated by the merging algorithm in [39]. Another major

flaw limiting the execution speed is that CV-MSER does not

allocate a block of continuous memory to store the pixels,

thereby slowing memory release, see Fig. 5 (a).

Fast MSER V1. Since the pixels in an MSER also be-

long to its parent MSERs, the pixels in the MSER can be

shared by its parent MSERs. By using a linked list, we

can significantly accelerate the pixel extraction, as shown

in Fig. 4. Thus, we would like to extract pixels through

visiting the linked list. To merge sub-trees and correctly up-

date the attributes of linked nodes, we need to disconnect

the linked list into sub-lists and merge the sub-lists under

certain conditions. Thus, a doubly linked list may be use-

ful. Besides, releasing a block of continuous memory for

storing the pixels in all MSERs is very fast (see Fig. 5 (b)).

Inspired by these, we propose Fast MSER V1, which per-
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Figure 6. We assume that the memory of a pixel and an index is

1 byte. The numbers in red pixels denote MSER indexes, while

the numbers in green and gray pixels denote gray-levels. Green

pixels in (a) are extracted directly through visiting a linked list.

In (b), pixels in an MSER R are divided into child-pixels (belong

to both R and its child MSERs, e.g. gray pixels) and self-pixels

(only belong to R, e.g. green pixels). Self-pixels (green pixels)

are extracted first through visiting a labelled image. We store the

indexes of child MSERs (red pixels) instead of extracting the pix-

els in child MSERs (gray pixels). Note the pixel in MSER 2 is

extracted three times in (a), while it is only extracted one time in

(b). V2 reduces the visiting times, which makes the pixel extrac-

tion faster. Besides, the memory size of ER 6 in (a) is 9 bytes,

while in (b) is 9 bytes (three pixels and three MSER indexes). V2

compresses the memory of ER 6. However, the memory is uncom-

pressed for MSER 5 because the area of its two children is a small

value of 1 (equalling the size of an MSER index).

forms on multiple image partitions in parallel, and reduces

pixel extraction time, memory release time and the memory

of the pixels in MSERs. As can be seen in Fig. 7, V1 first

divides an image into spatial partitions. Then it constructs

sub-trees and doubly linked lists on the partitions in paral-

lel. A novel sub-tree merging algorithm is used to merge the

sub-trees into the final tree, and the doubly linked lists are

also merged in the process. The attributes of linked nodes

can be updated correctly. Finally, MSERs are recognized,

and the pixels in them are extracted through a novel pixel

extraction method (see Fig. 4 (c)) in partition parallel.

Fast MSER V2. Connected component algorithm uses

an image to label component indexes and then extracts the

pixels in each component. Moreover, since the pixels in an

MSER also belong to its parent MSER, the pixels in R can

be shared by the parent ER, see Fig. 6. Inspired by these,

we propose Fast MSER V2, which follows the same process

flow as V1. However, V2 uses a labelled image (see Fig. 3

(c)) instead of a linked list to construct sub-trees, thereby

merging the sub-trees easily with an exist sub-tree merging

algorithm. Besides, V2 uses a novel pixel extraction method

(see Fig. 6 (b)) to accelerate the pixel extraction.

Both V1 and V2 can significantly accelerate MSER ex-

traction and reduce the memory of the pixels in MSERs.

Our contributions are summarized as three folds:

1 The component tree construction, MSER recognition

and pixel extraction are all partition parallel in V1 and

V2. As partition parallel algorithms, V1 and V2 use

(d) Component tree construction

(e) MSER 

recognition

(f) Pixel

extraction

(a) Algorithm

initialization

(b) MSER detection

CV-MSER

Fast MSER V1

4 stages: c-f

Algorithm

memory

(c) Algorithm

initialization

Algorithm

memory

Component tree construction 

and MSER recognition
Pixel extraction

Linked list

Doubly linked list and

tree in partition 1

Doubly linked list and

tree in  partition 2

Merge

2 stages: a, b

Figure 7. The comparison of CV-MSER and Fast MSER V1. CV-

MSER (a) allocates the memory needed, (b) constructs a compo-

nent tree and recognizes MSERs (left part), and extracts the pixels

in MSERs (right part). V1 divides the input image into multiple

partitions, (c) allocates the memory needed, (d) constructs com-

ponent tree in partition parallel with our novel sub-tree merging

algorithm, (e) recognizes MSERs and (f) extracts pixels using our

novel pixel extraction method. Note that V2 is similar as V1 but

eliminates the linked list.

less memory than channel parallel algorithms. Note

that they work without synchronization mechanisms.

Our code has been made publicly available at [40].

2 In V1, a novel sub-tree merging algorithm is proposed

to merge sub-trees produced on all partitions. The at-

tributes of linked nodes in the data-structure of an ER

can be correctly updated.

3 Two novel pixel extraction methods to accelerate the

pixel extraction and memory release, and reduce the

memory size of the pixels in MSERs, are proposed in

V1 and V2 respectively.

2. Related Works

Standard MSER [20] first uses BINSORT to sort the pix-

els in an image by gray-level. The computational complex-

ity is O (N), where N is the number of pixels. Then the

efficient union-find algorithm [35] is applied to obtain a

component tree. The complexity of the union-find is quasi-

linear. Finally, ERs which are maximally stable across a

range of gray-levels are considered as MSERs. Some per-

formance optimization techniques for Standard MSER can

be found in [30]. VF-MSER [37] is a Standard MSER. It

can be easily performed in partition parallel using the merg-

ing algorithm [39]. However, VF-MSER is much slower

than Linear MSER. Besides, it does not implement the pixel

extraction. Thus, such complex features (skeleton [11]) are

unable to be extracted. While the component tree construc-

tion in our algorithm is similar to that in Linear MSER and

our algorithm can extract the pixels in MSERs.
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Linear MSER [28] behaves like a true flood-fill, provides

exactly identical results as Standard MSER, and takes lin-

ear time in number of pixels. By working with a single con-

nected component of pixels, Linear MSER uses less running

memory and runs with better cache-locality. Thus Linear

MSER is much faster than Standard MSER. ID-MSER and

CV-MSER are both Linear MSER. For ID-MSER, it does

not implement the pixel extraction. Moreover, the data-

structure of an ER contains a double array with the size of

5 to store moment features. Only MSERs use the moment

features in the following process. Thus, the moment fea-

tures waste a lot of running memory because only a small

number of ERs (1%) can be recognized as MSERs.

CV-MSER contains algorithm initialization and MSER

detecting steps (see Fig. 7). The data-structure of an ER

contains the attributes of a head and a tail node in a linked

list. CV-MSER can extract the pixels in MSERs through

visiting the linked list. However, it can not be performed

in parallel because the attributes of linked nodes can not be

accumulated by the merging algorithm [39]. Moreover, the

pixel extraction and the memory release in CV-MSER are

very slow, as explained in Fig. 5 (a) and Fig. 4 (b).

Unlike CV-MSER, to merge sub-trees and correctly up-

date the attributes of linked nodes, Fast MSER V1 uses a

doubly linked list instead of using a linked list, and uses a

novel sub-tree merging algorithm. While V2 eliminates the

attributes of linked nodes in the data-structure of an ER and

uses a labelled image (each pixel records its corresponding

ER index). V2 can be easily performed in partition parallel

using the sub-tree merging algorithm [39]. Both V1 and V2

divide the MSER detecting in CV-MSER into three sequen-

tial states: component tree construction, MSER recognition

and pixel extraction (see Fig. 7). The total memory size

of MSERs is calculated in MSER recognition, and thus the

continuous memory can be allocated before the pixel extrac-

tion (see Fig. 5 (b)). Besides, V1 only extracts the pixels in

top MSERs (see Fig. 4 (c)), while V2 only directly extracts

the self-pixels in MSERs (see Fig. 6 (b)).

3. Fast MSER V1

For simplicity, we take the dark to bright pass as an ex-

ample to introduce V1. Fig. 7 shows the four stages of V1.

We introduce them in the following sections.

3.1. Algorithm Initialization

We define 5 data-structures: 1) an array of ERs. The

data-structure of an ER contains the variables of gray-level,

area, the pointer of the parent ER, variation, partition index,

head and tail linked nodes; 2) an array of pixels. Each en-

try contains the variables of gray-level and the binary mask

of an accessible pixel; 3) a doubly linked list. Each node

contains 4 variables: the coordinate of corresponding pixel,

the index referring to previous entry, the index referring

to the next entry and reference index (used in our sub-tree

merging algorithm); 4) a priority queue of boundary pix-

els [28]. 5) a component stack [28].

Data-structure 1 is dynamically allocated in the com-

ponent tree construction. The number of entries in data-

structure 5 equals the number (256) of gray-levels. The

size of other data-structures is N (the number of pixels).

The memory of each data-structure is split into P partitions,

where P equals the number of threads.

3.2. Component Tree Construction

We divide an image into P partitions, and then construct

P component trees (sub-trees) on the partitions in parallel.

The tree construction on each partition is similar to CV-

MSER. Note that we use a doubly linked list, while CV-

MSER uses a single linked list. Finally, all the sub-trees are

merged into the final tree. For example, in Fig. 8, tree 1 and

2 are merged (each time two trees are merged), and tree 3
and 4 are also merged. Then we merge the two new trees

generated by the previous merging processes. Specifically,

for tree 1 and 2, we get the each ER pair corresponding to

the green adjacent pixels, then use Alg. 1 to connect them.

Some important symbols in our merging algorithm are:

split par: determines to which partition an ER belongs;

chg: 0 indicates there is no change in this connection;

merged set: records which nodes have been changed;

discon ers: records the ERs that have been removed from

the raw linked list;

parent [s], gray [s], area [s], t area [s]: the parent, gray-

level, area and temp area (used in procedure ChangeNode)

of ER s. parent [s] =⊥ denotes that s has no parent;

head [a], tail [a]: the head and the tail node of ER a;

next [n], prev [n], ref [n]: the next index, previous index

and reference index of node n.

In Fig. 9, during the connection of ER 1 and 4 (they are

adjacent), we change the parent of ER 1 to ER 4. The key

problem here is how to update the attributes of linked nodes

in the data-structure of ER 1 and 4. As the attributes of

linked nodes can not be accumulated, the existing merging

algorithm can not handle the problem. In our merging al-

gorithm, we disconnect (see Alg. 2) the parts of the doubly

linked lists corresponding to ER 1 and 4 (see Fig. 9 (b)),

resulting in a new linked list. In the following merging pro-

cess in Alg. 1, other linked nodes will be connected to the

new linked list. Note that after the disconnecting process,

the real tail node of ER 2 and 3 is the gray node (real tail)

with the gray-level of 3. However, the attributes of the tail

nodes in the data-structures of ER 2 and 3 are still the yel-

low node (tail 1) with the gray-level of 1. Thus, we set the

reference index of tail 1 to real tail, see line 12 in Alg. 2.

To avoid duplicated merging (see Fig. 10), before the

merging process, we sort the ER pairs from small to large

by their gray-levels (the gray-level of an ER pair is the min-
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tree and the linked list is already the final result).

imum gray-level in the pair). In other words, the ER pairs

with low gray-levels will be merged first.

Algorithm 1 Connect two ERs.

1: procedure ConnectER(s, b, split par)
2: discon ers← [⊥,⊥]; chg ← 0; merged set← {}
3: while s 6=⊥ do

4: if b 6=⊥ and gray [s] > gray [b] then

5: Swap s and b end if

6: sp← LevelRoot(parent[s])
7: if sp = b and chg = 1 then Break loop end if

8: if b =⊥ then

9: ProcessSmall(s, sp); s← sp; chg ← 1
10: else

11: bp← LevelRoot(parent[b])
12: if gray[s] = gray[b] or sp =⊥ or gray[sp] >

gray[b] then

13: for r ∈ {s, b} do

14: if discon ers [Index (r)] 6= r then

15: Disconnect(r,merged set) // See Alg. 2

16: discon ers [Index (r)]← s

17: end if

18: end for

19: ChangeNode(b, s) // See Alg. 2

20: parent[s]← b; s← b; b← sp; chg ← 1
21: else

22: ProcessSmall(s, sp); s← sp; chg ← 1
23: end if

24: end if

25: end while

26: ref [node]←⊥, where node ∈ merged set

3.3. MSER Recognition

We use 4 rules to recognize MSERs: 1) the area is in the

range of [min p,max p]; 2) it is stable that its variation is

smaller than var; 3) it is maximally stable. 4) it is obviously

larger than its child MSERs by 1 + dvar times.

In rule 2, we use δ to calculate the variation var of an

ER. var is defined as var = |R(+δ)|−|R|
|R| [37, 2], where |R|

denotes the area of ER R, R(+δ) is the ER +δ levels up

which contains R, and |R + δ| − |R| is the area difference

of the two regions. We first calculate the variations of all

ERs and simultaneously apply rule 1 and 2 to filter ERs in

parallel. Rule 3 and 4 can not be applied in parallel because

parent and child information is used at the same time.

3.4. Pixel Extraction

Once MSERs are recognized, we first extract the pixels

in top MSERs (see Fig. 4 (c)) through visiting the doubly

linked list in parallel. The extracted pixels are stored in a

block of continuous memory. Then each MSER records the

begin and end indexes in the continuous memory.
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Algorithm 2 Help functions.

1: procedure Disconnect(a,merged set)
2: real tail← RealTail(tail[a])
3: if prev[head[a]] 6=⊥ then

4: next[prev[head[a]]]← next[real tail] end if

5: if next[real tail] 6=⊥ then

6: prev[next[real tail]]← prev[head[a]] end if

7: p← LevelRoot(parent[a])
8: if p 6=⊥ then

9: p real tail← RealTail(tail[p])
10: area[p]← area[p]− t area[a]
11: if tail[a] = tail[p] or p real tail = real tail then

12: ref [real tail]← prev[head[a]]
13: Add real tail to merged set end if

14: end if

15: tail[r]← real tail; prev[head[r]], next[tail[r]]←⊥
16:

17: procedure LevelRoot(r)
18: while gray[parent [r]] = gray [r] do r ← parent [r]
19: end while return r

20:

21: procedure ChangeNode(a, b)
22: next[tail [a]]← head [b]; prev[head [b]]← tail [a]
23: tail [a]← tail[b]
24: area[a]← area[a] + area[b]; t area[a]← area[a]
25:

26: procedure ProcessSmall(s, sp)
27: if sp 6=⊥ and discon ers [Index (s)] = s then

28: Disconnect(sp); discon ers [Index (s)]← s

29: ChangeNode(sp, s) end if

30:

31: procedure RealTail(a)
32: while ref [a] 6=⊥ do a← ref [a] end while return a

33:

34: procedure Index(a, split par)
35: return partition [a] < split par ? 0 : 1

4. Fast MSER V2

Fast MSER V2 is different from Fast MSER V1 in two

aspects (more details of V2 can be found in our code).

First, V2 uses a labelled image instead of a linked list (the

data-structure of an ER does not contain the linked nodes),

thereby merging sub-trees easily with the merging algo-

rithm [39]. Second, V2 first adds the coordinates of self-

pixels (see Fig. 6) to their corresponding MSERs through

visiting a labelled image (this process can be easily per-

formed in partition parallel). If a pixel corresponds to a

non-MSER Rn (recognized as a non-MSER), the MSER

with the smallest gray-level in the parent ERs of Rn is its

corresponding MSER. In Fig. 6, self-pixels are sequentially

extracted (row-major order) to MSER 4, 6, 1, 6, 2, 6, 5, 5

Figure 11. Illustration of 3 images (left) from ICDAR dataset and

2 images (right) from DetectorEval dataset.

and 3. Note that the memory addresses of MSER 6 are relo-

cated 3 times, resulting in slower pixel extraction. Then V2

iterates over the MSERs in the MSER array (sorted by gray-

level from small to large), and adds their MSER indexes

(instead of replicating their pixels) to their parent MSERs.

Note that this process can not be performed in parallel be-

cause it visits the MSER array sequentially.

5. Experimental Validation

The proposed algorithm was implemented in C++. Tim-

ings were performed on a Lenovo laptop with a 4-core Intel

i7-6700HQ processor and 8GB of RAM memory. We use

two measures: execution time and memory usage. Note that

if not mentioned otherwise, execution time and memory us-

age are the averages on each image.

5.1. Datasets

In order to evaluate Fast MSER V1 and V2 on images

with various sizes, several images with a fixed size are se-

lected and then resized to different sizes. We use two real-

world image datasets: the test set of focused scene text in

ICDAR robust reading competition [15] (ICDAR dataset),

and the feature detector evaluation sequences of [22] (De-

tectorEval dataset). ICDAR dataset consists of 233 images

with various sizes from 350 × 200 to 3888 × 2592, while

DetectorEval dataset contains 49 images with various sizes

from 800× 640 to 1000× 700. We resize all the images in

the two datasets to a fixed size of 3888 × 2592 (the image

size is about 10M, where M denotes mega-pixel). Then we

generate the dataset with 5 scales of images from the size

of 2M (corresponding to the size of 1732× 1154) to 10M.

Each image contains 3 channels: R, G and B. We would like

to compare channel parallel MSER algorithms on our com-

puter with 4 cores (executing a thread on each core), and

thus add a gray-scale channel for each image. In this way,

an image (4 channels) with the size of 10M actually has 40
mega-pixel. Some image examples are shown in Fig. 11.

To avoid process scheduling, execution times were pro-

duced by running five independent times on the images of

each size and taking the fastest run [28].

5.2. Parameter Configurations

We use two configurations: TextDetection (min p = 20,

max p = 0.25 × N , var = 0.5, dvar = 0.1, δ = 1)

and DetectorEval (min p = 20, max p = 0.25 × N ,

var = 0.25, dvar = 0.2, δ = 5). Configurations only
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Category 2M 4M 6M 8M 10M

ICDAR 22.2 29.1 32.5 36.5 39.8
ICDAR Sort 20 26.8 29.3 33.6 34.6
DE 22 30.8 32.5 40.78 43.8
DE Sort 20 25.5 30.2 33 34.7

Table 1. Execution times (millisecond) of our novel sub-tree merg-

ing algorithm on images with different sizes. ICDAR and DE de-

note that the merging algorithm runs on ICDAR and DetectorEval

dataset respectively. The suffix “Sort” indicates that the merging

algorithm runs with the sorted ER pairs (see Sec.3.2).

affect the execution times on the MSER recognition and

pixel extraction. TextDetection [45] is used in scene text

detection tasks. δ is set to 1 that makes it possible to detect

most challenging cases [13]. Less MSERs are recognized

under DetectorEval because the criteria for an ER to be rec-

ognized as an MSER is more strict (var, dvar and δ are

different in the two configurations).

In our experiments, we only show the results on ICDAR

dataset under TextDetection and the results on DetectorEval

dataset under DetectorEval (actually, the results under the

same configuration on the two datasets are similar).

5.3. Tests of Merging Times

The sub-tree merging process in V1 is very fast ((taking

about 1 ms on processing an image with 10 mega-pixels),

here we only evaluate the merging process in V2. Tab. 1

shows that the merging process with the sorted ER pairs is

faster than the merging process without the sorted ER pairs,

which demonstrates that it is necessary to sort the ER pairs

before merging two sub-trees.

5.4. Comparison of Memory Usage

The memory usage of MSER algorithms are mainly de-

fined by the input image size. Fig. 13 shows the memory us-

age of different algorithms. CV-MSER+ is our implemen-

tation that fully optimizes CV-MSER by replacing the vec-

tor data-structures (allocating memory is slow) with pointer

arrays, and exploiting continuous memory to store output

MSERs instead of storing MSERs independently (releasing

memory is time consuming). The algorithms with “CP” are

channel parallel versions.

For non-parallel algorithms, ID-MSER dynamically al-

locates the running memory in the component tree construc-

tion, resulting in the least memory usage and slow compo-

nent tree construction. The data-structure of an ER in VF-

MSER is very simple because it does not extract the pixels

in MSERs. Compared to CV-MSER, CV-MSER+ uses less

memory because the region only stores its parent region in-

stead of storing its parent and child regions.

For parallel algorithms, V1 and V2 use significantly less

memory than other parallel algorithms. Both V1 and V2 dy-

namically allocate the array of ERs. Compared to V1, V2

uses less memory because it uses a labelled image instead of

a doubly linked list. V2 uses the minimal memory of all par-

allel algorithms. Note that CPCV-MSER, CPCV-MSER+,

CPVF-MSER and CPID-MSER use 4 times as much mem-

ory as their non-parallel versions.

5.5. Tests of Execution Times

In Fig. 12(a), the speeds (mega-pixel per second)

of those on 10M images are 0.36 (CV-MSER), 7.94
(CV-MSER+), 0.43 (VF-MSER), 4.41 (ID-MSER), 0.98
(CPCV-MSER), 18.78 (CPCV-MSER+), 1.05 (CPVF-

MSER), 15.51 (CPID-MSER), 27.15 (Fast MSER V1) and

25.23 (Fast MSER V2). V1 and V2 are 28 and 26 times

faster than CPCV-MSER, and only use 1
9 and 1

18 running

memory of CPCV-MSER. Compared to CV-MSER+, V1

and V2 reach the speed-ups of 3.42 and 3.18.

As a standard MSER, VF-MSER takes too much time.

ID-MSER is not fully optimized. Although both of them

does not extract the pixels in MSERs, they and their paral-

lel versions are all slower than Fast MSER. CV-MSER+ is

much faster than CV-MSER because it is fully optimized.

In Fig. 12(b), the conclusions are similar to the conclu-

sions in Fig. 12(a). All algorithms in Fig. 12(b) are faster

because less MSERs are recognized under DetectorEval.

We also investigate the performance of V1 and V2 with

respect to different δ (a key parameter in MSER algo-

rithms). As can be seen in Fig. 14, lower δ implies sig-

nificantly more detected MSERs (the pixel extraction may

takes more running time), while higher δ implies less de-

tected MSERs (the pixel extraction may takes less time).

Compared to CV-MSER+, the speed-ups of V1 are 3.42
(δ = 1), 3.28 (δ = 2), 3.25 (δ = 3), 3.09 (δ = 4) and 3.09
(δ = 5). While the speed-ups of V2 are 3.18, 3.17, 3.21,

3.07 and 3.06. Thus, the larger δ, the lower speed-ups.

5.6. Tests of Execution Times on Different Steps

In Tab. 2, compared to CV-MSER+, V1 and V2 reach

the speed-ups of 2.8 and 2.95 in the component tree con-

struction, and reach the speed-ups of 6.7 and 3.6 in the

pixel extraction, which demonstrates the efficiency of our

algorithms. However, the speed-ups in MSER recognition

are 1.1 and 1.2 because minimal suppression of variation is

not parallel. Since MSER recognition takes less time, the

speed-up of whole V1 and V2 are still the high values of

3.42 and 3.18. V1 is faster than V2 in the pixel extraction

(see the reason in Sec. 4), but is slightly slower than V2 in

other stages. Thus, when less MSERs are recognized (in

smooth images or under a configuration with a high δ and a

small var) or the pixel extraction is not needed, we prefer

to use V2. Note that V2 also uses less memory than V1.

Compared to CV-MSER+, V1 and V2 reduce 85% and

72% execution time in the pixel extraction. The average
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Figure 12. Execution times on the two datasets under the two configurations.

Figure 13. Comparison of memory usage on all algorithms. Notice

that the memory usage of ID-MSER and Fast MSER V2 are so

close that their lines overlapped.

Figure 14. Execution times (second) of Fast MSER V1 and V2

with respect to different δ on the 10M images in ICDAR dataset.

The other parameters are the same as configuration TextDetection.

memory sizes of the pixels in MSERs in an image pro-

duced by CV-MSER+ and Fast MSER (V1 and V2) are

1.3GB and 296MB. Our two novel pixel extraction meth-

ods both compress the memory of the pixels in MSERs by

78%, thereby reducing memory release time by 82%. As a

Standard MSER, VF-MSER takes much time in component

tree construction. ID-MSER is not fully optimized and is

slower than other Linear MSER algorithms.

In Tab. 3, the conclusions are similar to Tab. 2. Note

that, compared to CV-MSER+, V1 and V2 only reduce pixel

extraction time by 75% and 40% because less MSERs are

Algorithms Init Tree Reco Extr Rele

CV-MSER 0.339 3.4 0.133 83.1 22.86
CV-MSER+ 0.002 3.116 0.083 1.399 0.441
VF-MSER 0.001 91.75 0.058 \ 0.025
ID-MSER 0.046 8.807 0.156 \ 0.024
Fast MSER V1 0.002 1.107 0.074 0.209 0.081
Fast MSER V2 0.001 1.054 0.068 0.385 0.077

Table 2. Execution times (second) in different steps on the 10M

images in ICDAR dataset under TextDetection. Init, Tree, Reco,

Extr and Rela indicate algorithm initialization, component tree

construction, MSER recognition, pixel extraction and memory re-

lease. About 147 thousand MSERs are recognized in an image.

Algorithms Init Tree Reco Extr Rele

CV-MSER 0.306 4.015 0.101 14.27 3.97
CV-MSER+ 0.002 4.184 0.07 0.518 0.173
VF-MSER 0.001 57.68 0.024 \ 0.025
ID-MSER 0.061 9.45 0.571 \ 0.02
Fast MSER V1 0.002 1.19 0.051 0.132 0.058
Fast MSER V2 0.001 1.15 0.05 0.312 0.048

Table 3. Execution times (second) in different steps on the 10M

images in DetectorEval dataset under DetectorEval. About 33

thousand MSERs are recognized in an image.

recognized under DetectorEval.

6. Conclusion

In this paper, we have proposed Fast MSER V1 and

V2. V1 integrates a novel sub-tree merging algorithm and

a novel pixel extraction method, while V2 uses an existing

sub-tree merging algorithm and another novel pixel extrac-

tion method. V1 and V2 are 28 and 26 times faster than

OpenCV MSER and use less memory. In future work, we

will improve the speed-up in MSER recognition, and fur-

ther reduce the running memory of V1 and V2.
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