
Grid-GCN for Fast and Scalable Point Cloud Learning

Qiangeng Xu1 Xudong Sun2 Cho-Ying Wu1 Panqu Wang2 Ulrich Neumann1

1University of Southern California 2Tusimple, Inc

{qiangenx,choyingw,uneumann}@usc.edu {xudong.sun,panqu.wang}@tusimple.ai

Abstract

Due to the sparsity and irregularity of the point cloud

data, methods that directly consume points have become

popular. Among all point-based models, graph convolu-

tional networks (GCN) lead to notable performance by fully

preserving the data granularity and exploiting point inter-

relation. However, point-based networks spend a signif-

icant amount of time on data structuring (e.g., Farthest

Point Sampling (FPS) and neighbor points querying), which

limit the speed and scalability. In this paper, we present a

method, named Grid-GCN, for fast and scalable point cloud

learning. Grid-GCN uses a novel data structuring strategy,

Coverage-Aware Grid Query (CAGQ). By leveraging the

efficiency of grid space, CAGQ improves spatial coverage

while reducing the theoretical time complexity. Compared

with popular sampling methods such as Farthest Point Sam-

pling (FPS) and Ball Query, CAGQ achieves up to 50×
speed-up. With a Grid Context Aggregation (GCA) module,

Grid-GCN achieves state-of-the-art performance on ma-

jor point cloud classification and segmentation benchmarks

with significantly faster runtime than previous studies. Re-

markably, Grid-GCN achieves the inference speed of 50fps

on ScanNet using 81920 points as input. The supplementary
1 and the code 2 are released.

1. Introduction

Point cloud data is popular in applications such as au-

tonomous driving, robotics, and unmanned aerial vehicles.

Currently, LiDAR sensors can generate millions of points

a second, providing dense real-time representations of the

world. Many approaches are used for point cloud data pro-

cessing. Volumetric models are a family of models that

transfer point cloud to spatially quantized voxel grids and

use a volumetric convolution to perform computation in the

grid space [28, 45, 28]. Using grids as data structuring

methods, volumetric approaches associate points to loca-

tions in grids, and 3D convolutional kernels gather infor-

mation from neighboring voxels. Although grid data struc-

1https://xharlie.github.io/papers/GGCN supCamReady.pdf
2https://github.com/xharlie/Grid-GCN

Figure 1: Overview of the Grid-GCN model. (a) Illustration

of the network architecture for point cloud segmentation. Our

model consists of several GridConv layers, and each can be

used in either a downsampling or an upsampling process. A

GridConv layer includes two stages: (b) For the data struc-

turing stage, a Coverage-Aware Grid Query (CAGQ) module

achieves efficient data structuring and provides point groups

for efficient computation. (c) For the convolution stage, a Grid

Context Aggregation (GCA) module conducts graph convolu-

tion on the point groups by aggregating local context.

tures are efficient, high voxel resolution is required to pre-

serve the granularity of the data location. Since compu-

tation and memory usage grows cubically with the voxel

resolution, it is costly to process large point clouds. In addi-

tion, since approximately 90% of the voxels are empty for

most point clouds[51], significant computation power may

be consumed by processing no information.

Another family of models for point cloud data process-

ing is Point-based models. In contrast to volumetric models,

point-based models enable efficient computation but suf-

fer from inefficient data structuring. For example, Point-

Net [29] consumes the point cloud directly without quan-

tization and aggregates the information at the last stage of

the network, so the accurate data locations are intact but

the computation cost grows linearly with the number of

points. Later studies [30, 47, 41, 37, 46] apply a down-

sampling strategy at each layer to aggregate information

15661

into point group centers, therefore extracting fewer repre-

sentative points layer by layer (Figure 1(a)). More recently,

graph convolutional networks (GCN) [32, 39, 21, 49] are

proposed to build a local graph for each point group in the

network layer, which can be seen as an extension of the

PointNet++ architecture [30]. However, this architecture in-

curs high data structuring cost (e.g., FPS and k-NN). Liu et

al. [27] show that the data structuring cost in three popular

point-based models [23, 47, 41] is up to 88% of the over-

all computational cost. In this paper, we also examine this

issue by showing the trends of data structuring overhead in

terms of scalability.

This paper introduces Grid-GCN, which blends the ad-

vantages of volumetric models and point-based models, to

achieve efficient data structuring and efficient computation

at the same time. As illustrated in Figure 1, our model con-

sists of several GridConv layers to process the point data.

Each layer includes two stages: a data structuring stage that

samples the representative centers and queries neighboring

points; a convolution stage that builds a local graph on each

point group and aggregates the information to the center.

To achieve efficient data structuring, we design a

Coverage-Aware Grid Query (CAGQ) module, which 1)

accelerates the center sampling and neighbor querying, and

2) provides more complete coverage of the point cloud to

the learning process. The data structuring efficiency is

achieved through voxelization, and the computational ef-

ficiency is obtained through performing computation only

on occupied areas. We demonstrate CAGQ’s outstanding

speed and space coverage in Section 4.

To exploit the point relationships, we also describe a

novel graph convolution module, named Grid Context

Aggregation (GCA). The module performs Grid context

pooling to extract context features of the grid neighbor-

hood, which benefits the edge relation computation without

adding extra overhead.

We demonstrate the Grid-GCN model on two tasks:

point cloud classification and segmentation. Specifically,

we perform the classification task on the ModelNet40 and

ModelNet10 [43], and achieve the state-of-the-art overall

accuracy of 93.1% (no voting), while being on average 5×
faster than other models. We also perform the segmen-

tation tasks on ScanNet [8] and S3DIS [1] dataset, and

achieve 10× speed-up on average than other models. No-

tably, our model demonstrates its ability on real-time large-

scale point-based learning by processing 81920 points in a

scene within 20 ms. (see Section 5.3.1).

2. Related Work

Voxel-based methods for 3D learning To extend the

success of convolutional neural network models[12, 13] on

2D images, Voxnet and its variants [28, 43, 38, 4, 6] start

to transfer point cloud or depth map to occupancy grid and

apply volumetric convolution. To address the problem of

cubically increased memory usage, OctNet[31] constructs

tree structures for occupied voxels to avoid the computation

in the empty space. Although efficient in data structuring,

the drawback of the volumetric approach is the low compu-

tational efficiency and the loss of data granularity.

Point-based methods for point cloud learning Point-

based models are first proposed by [29, 30], which pur-

sues the permutation invariant by using pooling to aggre-

gate the point features. Approaches such as kernel correla-

tion [2, 42] and extended convolutions [36] are proposed to

better capture local features. To solve the ordering ambigu-

ity, PointCNN [23] predicts the local point order, and RSNet

[14] sequentially consumes points from different directions.

The computation cost in point-based methods grows lin-

early with the number of input points. However, the cost

of data structuring has become the performance bottleneck

on large-scale point clouds.

Data structuring strategies for point data Most point-

based methods [30, 23, 37, 26] use FPS [10] to sample

evenly spread group centers. FPS picks the point that max-

imizes the distance to the selected points. If the number of

centers is not very small, the method takes O(N2) compu-

tation. An approximate algorithm [9] can be O(NlogN).
Random Point Sampling (RPS) has the smallest possible

overhead, but it’s sensitive to density imbalance. Our

CAGQ module has the same complexity as RPS, but it per-

forms the sampling and neighbors querying in one shot,

which is even faster than RPS with Ball Query or k-NN

(see Table 2). KPConv [36] uses a grid sub-sampling to

pick points in occupied voxels. Unlike our CAGQ, the strat-

egy cannot query points in the voxel neighbors. CAGQ also

has a Coverage-Aware Sampling (CAS) algorithm that op-

timizes the center selections, which can achieve better cov-

erage than FPS.

Alternatively, SO-Net [22] builds a self-organizing map.

KDNet [15] uses kd-tree to partition the spaces. PATs[48]

uses Gumble Subset Sampling to replace FPS. SPG [19]

uses a clustering method to group points as super points.

All of these methods are either slow in speed or need struc-

ture preprocessing. The lattice projection in SPLATNet

[33, 11] preserves more point details than voxel space, but

it is slower. Studies such as VoxelNet [51, 20] combines

the point-based and volumetric methods by using PointNet

[29] inside each voxel and applying voxel convolution. A

concurrent high-speed model PVCNN [27] uses similar ap-

proaches but does not reduce the number of points in each

layer progressively. Grid-GCN, yet, can down-sample a

large number of points through CAGQ, and aggregate infor-

mation by considering node relationships in local graphs.

GCN for point cloud learning Graph convolutional net-

works have been widely applied on point cloud learning

[41, 18, 17]. A local graph is usually built for each point

5662

Figure 2: Illustration of Coverage-Aware Grid Query (CAGQ). Assume we want to sample M = 2 point groups and query

K = 5 node points for each group. (a) The input is N points (grey). The voxel id and number of points is listed for each

occupied voxel. (b) We build voxel-point index and store up to nv = 3 points (yellow) in each voxel. (c) Comparison of

different sampling methods: FPS and RPS prefer the two centers inside the marked voxels. Our RVS could randomly pick any

two occupied voxels (e.g. (2,0) and (0,0)) as center voxels. If our CAS is used, voxel (0,2) will replace (0,0). (d) Context points

of center voxel (2,1) are the yellow points in its neighborhood (we use 3 × 3 as an example). CAGQ queries 5 points (yellow

points with blue ring) from these context points, then calculate the locations of the group centers.

group, and GCN aggregates point data according to rela-

tions between points. SpecConv[37] blends the point fea-

tures by using a graph Fourier transformation. Other studies

model the edge feature between centers and nodes. Among

them, [47, 26, 17, 41, 49] use the geometric relations, while

[6, 39] explore semantic relations between the nodes. Apart

from those features, our proposed Grid Context Aggrega-

tion module considers coverage and extracts the context fea-

tures to compute the semantic relation.

3. Methods

3.1. Method Overview

As shown in Figure 1, Grid-GCN is built on a set of Grid-

Conv layers. Each GridConv layer processes the informa-

tion of N points and maps them to M points. The down-

sampling GridConv (N > M) is repeated several times un-

til a final feature representation is learned. This represen-

tation can be directly used for tasks such as classification

or further up-sampled by the upsampling GridConv layers

(N < M) in segmentation tasks.

GridConv consists of two modules:

1. A Coverage-Aware Grid Query (CAGQ) module that

samples M point groups from N points. Each group in-

cludes K node points and a group center. In the upsampling

process, CAGQ takes centers directly through long-range

connections, and only queries node points for these centers.

2. A Grid Context Aggregation (GCA) module that

builds a local graph for each point group and aggregates

the information to the group centers. The M group centers

are passed as data points for the next layer.

We list all the notations in the supplementary for clarity.

3.2. CoverageAware Grid Query (CAGQ)

In this subsection, we discuss the details of the CAGQ

module. Given a point cloud, CAGQ aims to effectively

structure the point cloud, and ease the process of center

sampling and neighbor points querying. To perform CAGQ,

we first voxelize the input space by setting up a voxel size

(vx, vy, vz). We then map each point to a voxel index

V id(u, v, w) = floor(x
vx
, y
vy
, z
vz
). Here we only store up

to nv points in each voxel.

Let Ov denote all of the non-empty voxels. We then sam-

ple M center voxels Oc ⊆ Ov . For each center voxel vi,

we define its voxel neighbors π(vi) as the voxels within the

neighbor-hood of a center voxel. In Figure 2d, π(v(2, 1))
are the 3X3 voxels inside the red box. We call the stored

points inside π(vi) as context points. Since we build the

point-voxel index in the previous step, CAGQ can quickly

retrieve context points for each vi.

After that, CAGQ picks K node points from the context

points of each vi. We calculate the barycenter of node points

in a group, as the location of the group center. This entire

process is shown in Figure 2.

Two problems remain to be solved here. (1) How do we

sample center voxels Oc ⊆ Ov . (2) How do we pick K

nodes from context points in π(vi).
To solve the first problem, we propose our center voxels

sampling framework, which includes two methods:

1. Random Voxel Sampling (RVS): Each occupied voxel

will have the same probability of being picked. The

group centers calculated inside these center voxels are more

evenly distributed than centers picked on input points by

RPS. We discuss the details in Section 4.

2. Coverage-Aware Sampling (CAS): Each selected cen-

5663

ter voxel can cover up to λ occupied voxel neighbors. The

goal of CAS is to select a set of center voxels Oc such that

they can cover the most occupied space. Seeking the op-

timal solution to this problem requires iterating all combi-

nations of selections. Therefore, we employ a greedy algo-

rithm to approach the optimal solution: We first randomly

pick M voxels from Ov as incumbents; From all of the un-

picked voxels, we iteratively select one to challenge a ran-

dom incumbent each time. If adding this challenger (and in

the meantime removes the incumbent) gives us better cov-

erage, we replace the incumbent with the challenger. For a

challenger vC and an incumbent vI , the heuristics are cal-

culated as:

δ(x) =

{
1, if x = 0.

0, otherwise.
(1)

Hadd =
∑

V ∈π(VC)

δ(CV)− β ·
CV

λ
(2)

Hrmv =
∑

V ∈π(VI)

δ(CV − 1) (3)

where λ is the amount of neighbors of a voxel and CV is

the number of incumbents covering voxel V . Hadd repre-

sents the coverage gain if adding VC (penalize by a term of

over-coverage). Hrmv represents the coverage loss after re-

moving VI . If Hadd > Hrmv , we replace the incumbent by

the challenger voxel. If we set β as 0, each replacement is

guaranteed to improve the space coverage.

Comparisons of those methods are further discussed in

section 4.

Node points querying CAGQ also provides two strate-

gies to pick K node points from context points in π(vi).
1. Cube Query: We randomly select K points from con-

text points. Compared to the Ball Query used in PointNet++

[30], Cube Query can cover more space when point den-

sity is imbalanced. In the scenario of Figure 2, Ball Query

samples K points from all raw points (grey) and may never

sample any node point from voxel (2,1) which only has 3

raw points.

2. K-Nearest Neighbors: Unlike traditional k-NN where

the search space is all points, k-NN in CAGQ only need to

search among the context points, making the query substan-

tially faster (We also provide an optimized method in the

supplementary materials). We will compare these methods

in the next section.

3.3. Grid Context Aggregation

For each point group provided by CAGQ, we use a Grid

Context Aggregation (GCA) module to aggregate features

from the node points to the group center. We first construct

a local graph G(V,E), where V consists of the group center

and K node points provided by CAGQ. We then connect

each node point to the group center. GCA projects a node

Figure 3: The red point is the group center. Yellow points

are its node points. Black points are node points of the yel-

low points in the previous layer. The coverage weight is an

important feature as it encodes the number of black points

that have been aggregated to each yellow point.

point’s features fi to f̃i. Based on the edge relation between

the node and the center, GCA calculates the contribution

of f̃i and aggregates all these features as the feature of the

center f̃c. Formally, the GCA module can be described as

f̃c,i = e(χi, fi) ∗M(fi) (4)

f̃c = A({f̃c,i}, i ∈ 1, ...,K) (5)

where f̃c,i is the contribution from a node, and χi is the

xyz location of the node. M is a multi-layer perceptron

(MLP), e is the edge attention function, and A is the ag-

gregation function. The edge attention function e has been

explored by many previous studies [47, 6, 39]. In this work,

we design a new edge attention function with the follow-

ing improvements to better fit into our network architecture

(Figure 4):

Coverage Weight Previous studies [47, 26, 17, 41, 49]

use χc of the center and χi of a node to model edge attention

as a function of geometric relation (Figure 4b). However,

the formulation ignores the underlying contribution of each

node point from previous layers. Intuitively, node points

with more information from previous layers should be given

more attention. We illustrate this scenario in Figure 3. With

that in mind, we introduce the concept of coverage weight,

which is defined as the number of points that have been ag-

gregated to a node in previous layers. This value can be eas-

ily computed in CAGQ, and we argue that coverage weight

is an important feature in calculating edge attention (see our

ablation studies in Table 6).

Grid Context Pooling Semantic relation is another im-

portant aspect when calculating the edge attention. In pre-

vious works [6, 39], semantic relation is encoded by us-

ing the group center’s features fc and a node point’s fea-

tures fi, which requires the group center to be selected from

node points. In CAGQ, since a group center is calculated as

the barycenter of the node points, we propose Grid context

pooling that extracts context features fcxt by pooling from

all context points, which sufficiently covers the entire grid

space of the local graph. Grid context pooling brings the

following benefits:

• fcxt models the features of a virtual group center, which

5664

Figure 4: Different strategies to compute the contribution f̃c,i from a node ni to its center c. fi, χi are the feature maps and the

location of ni. ei is the edge feature between ni and c calculated from the edge attention function. (a) Pointnet++ [30] ignores

ei. (b) computes ei based on low dimensional geometric relation between ni and c. (c) also consider semantic relation between

the center and the node point, but c has to be sampled on one of the points from the previous layer. (d). Grid-GCN’s geo-relation

also includes the coverage weight. It pools a context feature fcxt from all stored neighbors to provide a semantic reference in ei
computing.

allows us to calculate the semantic relation between the

center and its node points.

• Even when group center is picked on a physical point,

fcxt is still a useful feature representation as it covers

more points in the neighborhood, instead of only the

points in the graph.

• Since we have already associated context points to its

center voxel in CAGQ, there is no extra point query

overhead. fcxt is shared across all edge computation in

a local graph, and the pooling is a light-weighted oper-

ation requiring no learnable weights, which introduces

little computational overhead.

GCA module is summarized in Figure 4d, and the edge at-

tention function can be model as

e = mlp(mlpgeo(χc, χi, wi),mlpsem(fcxt, fi)) (6)

4. Analysis of CAGQ

To analyze the benefit of CAGQ, we test the occu-

pied space coverage and the latency of different sam-

pling/querying methods under different conditions on Mod-

elNet40 [43]. Center sampling methods include Random

Point Sampling (RPS), Farthest Point Sampling (FPS), our

Random Voxel Sampling (RVS), and our Coverage-Aware

Sampling (CAS). Neighbor querying methods include Ball

Query, Cube query, and K-Nearest Neighbors. The condi-

tions include different numbers of input points, node num-

bers in a point group, and numbers of point groups, which

are denoted by N , K, and M . We summarize the qualita-

tive and quantitative evaluation result in Table 2 and Figure

5. The reported occupied space coverage is calculated as

the ratio between the number of voxels occupied by node

points of all groups, and the number of voxels occupied by

the original N points. Results under more conditions are

presented in the supplementary.

4.1. Space Coverage

In Figure 5a, the centers sampled by RPS are concen-

trated in the areas with higher point density, leaving most

space uncovered. In Figure 5b, FPS picks the points that

are far away from each other, mostly on the edges of the 3D

shape, which causes the gap between centers. In Figure 5c,

our CAS optimizes the voxel selection and covers 75.2% of

occupied space. Table 2 lists the percentage of space cov-

erage by RPS, FPS, RVS, and CAS. CAS leads the space

coverage in all cases (30 % more than RPS). FPS has no

advantage over RVS when K is small.

The factors that benefit CAGQ in space coverage can be

summarized as follows:

• Instead of sampling centers from N points, RVS sam-

ples center voxels from occupied space, therefore it is

more resilient to point density imbalance (Figure 5).

• CAS further optimizes the result of RVS by conducting

a greedy candidate replacement. Each replacement is

guaranteed to result in better coverage.

• CAGQ stores the same number of points in each oc-

cupied voxel. The context points are more evenly dis-

tributed, so are the K node points picked from the con-

text points. Consequently, the strategy reduces the cov-

erage loss caused by density imbalance in a local area.

4.2. Time complexity

We summarize the time complexity of different methods

in Table 1. The detailed deduction is presented in the sup-

plementary. Table 2 shows the empirical results of latency.

We see that our CAS is much faster than FPS and achieves

50× speed-up. CAS + Cube Query can even outperform

RPS + Ball Query when the size of the input point cloud is

large. This is due to the higher neighborhood query speed.

Because of better time complexity, RVS + k-NN leads the

performance under all conditions and achieves 6× speed-up

over FPS + k-NN.

5665

(a) Random Point Sampling (b) Farthest Point Sampling (c) Coverage-Aware Sampling

Figure 5: The visualization of the sampled group center and the queried node points by RPS, FPS, and CAS. The blue and green

balls indicate Ball Query. The red squares indicate Cube Query. The ball and cube have the same volume. (a) RPS covers 45.6%
of the occupied space, while FPS covers 65% and CAS covers 75.2%.

Sample

centers

RPS FPS[10] RVS* CAS*

O(N) O(NlogN) O(N) O(N)
Query

nodes

Ball Query Cube Query* k-NN[7] CAGQ k-NN*

O(MN) O(MK) O(MN) O(Mnv)

Table 1: Time complexity: We sample M centers from N

points and query K neighbors per center. We limit the max-

imum number of points in each voxel to nv . In practice,

K < N , and nv is usually of the same magnitude to K. Ap-

proximate FPS algorithm can be O(NlogN)[9]. * indicates

our methods. See the supplementary for deduction details.

5. Experiments

We evaluate Grid-GCN on multiple datasets: Mod-

elNet10 and ModelNet40[43] for object classification,

ScanNet[8] and S3DIS[1] for semantic segmentation. Fol-

lowing the convention of PVCNN [27], we report latency

and performance in each level of accuracy. We collect the

result of other models either from published papers or the

authors. All the latency results are reported under the corre-

sponding batch size and number of input points. All exper-

iments are conducted on a single RTX 2080 GPU. Training

details are listed in the supplementary.

5.1. 3D Object Classification

Datasets and settings We conduct the classification

tasks on the ModelNet10 and ModelNet40 dataset[43].

ModelNet10 is composed of 10 object classes with 3991

training and 908 testing objects. ModelNet40 includes 40

different classes with 9843 training objects and 2468 test-

ing objects. We prepare our data following the conven-

tion of PointNet[29], which uses 1024 points with 3 chan-

nels of spatial location as input. Several studies use normal

[30, 16], octree [40], or kd-tree for input, and [26, 25] use

voting for evaluation.

Evaluation To compare with different models with dif-

ferent levels of accuracy and speed, we train Grid-GCN

with 4 different settings to balance performance and speed

(Details are shown in section 5.3). The variants are in the

number of feature channels and the number of node points

in a group in the first layer (see Table 6). The results are

shown in Table 3. We report our results without voting.

For all of the four settings, our Grid-GCN model not only

achieves state-of-the-art performance on both ModelNet10

and ModelNet40 datasets, but has the best speed-accuracy

trade-off. Although Grid-GCN uses the CAGQ module for

data structuring, it has similar latency as PointNet which has

no data structuring step while its accuracy is significantly

higher than PointNet.

5.2. 3D Scene Segmentation

Dataset and Settings We evaluate our Grid-GCN on two

large-scale point cloud segmentation datasets: ScanNet[8]

and Stanford 3D Large-Scale Indoor Spaces (S3DIS) [1].

ScanNet consists of 1513 scanned indoor scene, and each

voxel is annotated in 21 categories. We follow the exper-

iment setting in [8] and use 1201 scenes for training, and

312 scenes for testing. Following the routine and evaluation

protocol in PointNet++[30], we sample 8192 points during

training and 3 spatial channels for each point. S3DIS con-

tains 6 large-scale indoor areas with 271 rooms. Each point

is labeled with one of 13 categories. Since area 5 is the only

area that doesn’t have overlaps with other areas, we follow

[35, 23, 27] to train on area 1-4 and 6, and test on area 5. In

each divided section, 4096 points are sampled for training,

and we adopt the evaluation method from [23].

Evaluation We report the overall voxel labeling accu-

racy (OA) and the runtime latency for ScanNet[8]. We

trained two versions of the Grid-GCN model, with a full

model using 1×K node points and a compact model using

0.5×K node points. Results on are reported in Table 4.

Since the segmentation tasks generally use more input

points than the classification model, our advantage of data

structuring becomes outstanding. With the same amount

of input points (32768) in a batch, Grid-GCN out-speed

PointNet++ 4.5× while maintaining the same level of ac-

curacy. Compared with more sophisticated models such

as PointCNN [23] and A-CNN [16], Grid-GCN is 25×

5666

Center sampling RPS FPS RVS* CVS* RPS FPS RVS* CVS* RPS FPS RVS* CVS*

Neighbor querying Ball Ball Cube Cube Ball Ball Cube Cube k-NN k-NN k-NN k-NN

N K M Occupied space coverage(%) Latency (ms) with batch size = 1

1024

8 8 12.3 12.9 13.1 14.9 0.29 0.50 0.51 0.74 0.84 0.85 0.51 0.77

8 128 64.0 72.5 82.3 85.6 0.32 0.78 0.44 0.68 1.47 1.74 0.52 0.72

128 32 60.0 70.1 61.0 74.7 0.37 0.53 0.96 1.18 22.23 21.08 2.24 2.74

128 128 93.6 99.5 95.8 99.7 0.38 0.69 1.03 1.17 32.48 32.54 6.85 7.24

8192

8 64 19.2 22.9 22.1 25.1 0.64 1.16 0.66 0.82 1.58 1.80 0.65 0.76

8 1024 82.9 96.8 92.4 94.4 0.81 4.90 0.54 0.87 1.53 5.36 0.93 0.97

128 256 79.9 90.7 80.0 93.5 1.19 1.19 1.17 1.41 21.5 21.5 15.19 17.68

128 1024 98.8 99.9 99.5 100.0 1.22 5.25 1.40 1.76 111.4 111.7 24.18 27.65

81920

32 1024 70.6 86.3 78.3 91.6 8.30 33.52 3.34 6.02 19.49 43.69 8.76 10.05

32 10240 98.8 99.2 100.0 100.0 8.93 260.48 4.22 9.35 20.38 272.48 9.65 17.44

128 1024 72.7 88.2 79.1 92.6 9.68 34.72 4.32 8.71 71.99 93.02 50.7 61.94

128 10240 99.7 100.0 100.0 100.0 10.73 258.49 5.83 11.72 234.19 442.87 69.02 83.32

Table 2: Performance comparisons of data structuring methods, run on ModelNet40[43]. Center sampling methods include

RPS, FPS, CAGQ’s RVS and CAS. Neighbor querying methods include Ball Query, Cube query and K-Nearest Neighbors.

Condition variables include N points, M groups and K neighbors per group. Occupied space coverage = num. of occupied

voxels of queried points / num. of occupied voxels of the original N points.

ModelNet40 ModelNet10 latency

(ms)Input (xyz as default) OA mAcc OA mAcc

OA 6 91.5
PointNet[29] 16×1024 89.2 86.2 - - 15.0

SCNet[44] 16×1024 90.0 87.6 - -

SpiderCNN[47] 8 × 1024 90.5 - - - 85.0

O-CNN[40] octree 90.6 - - - 90.0

SO-net[22] 8 × 2048 90.8 87.3 94.1 93.9 -

Grid-GCN1 16×1024 91.5 88.6 93.4 92.1 15.9

OA 6 92.0
3DmFVNet[3] 16×1024 91.6 - 95.2 - 39.0

PAT[48] 8 × 1024 91.7 - - 88.6

Kd-net[15] kd-tree 91.8 88.5 94.0 93.5 -

PointNet++[30] 16×1024 91.9 90.7 - 26.8

Grid-GCN2 16×1024 92.0 89.7 95.8 95.3 21.8

OA > 92.0
DGCNN[41] 16×1024 92.2 90.2 - 89.7

PCNN[2] 16×1024 92.3 - 94.9 - 226.0

Point2Seq[24] 16×1024 92.6 - -

A-CNN[16] 16×1024 92.6 90.3 95.5 95.3 68.0

KPConv[36] 16×6500 92.7 - - - 125.0

Grid-GCN3 16×1024 92.7 90.6 96.5 95.7 26.2

Grid-GCNfull 16×1024 93.1 91.3 97.5 97.4 42.2

Table 3: Results on ModelNet10 and ModelNet40[43]. Our

full model achieves the state-of-the-art accuracy. With model

reduction, our compact models Grid-GCN1−3 also out speed

other models. We discuss their details in the ablation studies.

and 12× faster, respectively, while achieving the state-

of-the-art accuracy. Remarkably, Grid-GCN can run as

fast as 50 to 133 FPS with state-of-the-art performance,

which is desired in real-time applications. A popular model

Input (xyz as default) OA latency (ms)

OA < 84.0
PointNet[29] 8 × 4096 73.9 20.3

OctNet[31] volume 76.6 -

PointNet++[30] 8 × 4096 83.7 72.3

Grid-GCN(0.5×K) 4 × 8192 83.9 16.6

OA > 84.0
SpecGCN[37] - 84.8 -

PointCNN[23] 12×2048 85.1 250.0

Shellnet[50] - 85.2 -

Grid-GCN(1×K) 4 × 8192 85.4 20.8

A-CNN[16] 1 × 8192 85.4 92.0

Grid-GCN(1×K) 1 × 8192 85.4 7.48

Table 4: Results on ScanNet[8]. Grid-GCN achieves 10×
speed-up on average over other models. Under batch size

of 4 and 1, we test our model with 1×K neighbor nodes. A

compact model with 0.5×K is also reported.

MinkowskiNet[5] doesn’t report the overall accuracy, there-

fore we don’t put it in the table. But its github example

shows a latency of 103ms on Scannet.

We show the quantitative results on S3DIS in Table 5

and visual result in Figure 6. Our compact version of Grid-

GCN is generally 4× to 14× faster than other models with

data structuring. Notably, even compared with PointNet

that has no data structuring at all, we are still 1.6× faster

while achieves 12% performance gain in mIOU. For our full

model, we are still the fastest and achieve 2× speed-up over

PVCNN++[27], a state-of-the-art study focusing on speed

improvement.

5667

(a) Ground Truth (b) Ours

Figure 6: Semantic segmentation results on S3DIS [1] area 5.

Input (xyzrgb as default) mIOU OA latency(ms)

mIOU< 54.0
PointNet[29] 8× 4096 41.09 - 20.9

DGCNN[41] 8× 4096 47.94 83.64 178.1

SegCloud[35] - 48.92 - -

RSNet[14] 8× 4096 51.93 - 111.5

PointNet++[30] 8× 4096 52.28 -

DeepGCNs[21] 1× 4096 52.49 - 45.63

TanConv[34] 8× 4096 52.8 85.5 -

Grid-GCN(0.5×Ch) 8× 4096 53.21 85.61 12.9

mIOU> 54.0
3D-UNet[6] 8× 963 volume 54.93 86.12 574.7

PointCNN[23] - 57.26 85.91 -

PVCNN++[27] 8× 4096 57.63 86.87 41.1

Grid-GCN(1×Ch) 8× 4096 57.75 86.94 25.9

Table 5: Results on S3DIS[1] area 5. Grid-GCN is on average

8× faster than other models. We halve the output channels of

GridConv for Grid-GCN(0.5×Ch).

5.3. Ablation Studies

In the experiment on ModelNet10 and ModelNet40[43],

our full model has 3 GridConv layers. As shown in Table 6,

we conduct reductions on the number of the output feature

channels from GridConv layers, the number of nodes K in

the first GridConv layer, and whether to use Grid context

pooling and coverage weight. On one hand, reducing the

number of channels from Grid-GCNfull gives Grid-GCN3

37% speed-up. On the other hand, reducing K and re-

moving Grid context pooling from Grid-GCN3 doesn’t give

Grid-GCN2 much speed benefit but incurs a loss on accu-

K Channels PoolingWeight OA latency

Grid-GCN0 32 (32,64,256) No No 91.1 15.4ms

Grid-GCN1 32 (32,64,256) No Yes 91.5 15.9ms

Grid-GCN2 32 (64,128,256) No Yes 92.0 21.8ms

Grid-GCN3 64 (64,128,256) Yes Yes 92.7 26.2ms

Grid-GCNfull 64 (128,256,512) Yes Yes 93.1 42.2ms

Table 6: Ablation studies on ModelNet40[43]. Our models have

3 layers of GridConv. K is the number of node points in the

first GridConv. We also change the number of the output feature

channels from these 3 layers. Grid context pooling (shorted as

pooling here) are also removed for Grid-GCN0−2. Grid-GCN0

also removes coverage weight in edge relation.

racy. This demonstrates the efficiency and effectiveness of

CAGQ and Grid context pooling. Coverage weight is useful

as well because it introduces little overhead in latency but

increases the overall accuracy.

5.3.1 Scalability Analysis

Num. of points (N) 2048 4096 16384 40960 81920

Num. of clusters (M) 512 1024 2048 4096 8192

PointNet++ 4.7 8.6 19.9 64.6 218.9

Grid-GCN 4.3 4.7 8.1 12.3 19.8

Table 7: Inference time (ms) on ScanNet[8] under different

scales. We compare Grid-GCN with PoinNet++[30] on dif-

ferent numbers of input points per scene. The batch size is 1.

M is the number of point groups on the first network layer.

We also test our model’s scalability by gradually increas-

ing the number of input points on ScanNet [8]. We compare

our model with PointNet++ [30], one of the most efficient

point-based method. We report the results in Table 7. Un-

der the setting of 2048 points, the latency of two models

are similar. However, when increasing the input point from

4096 to 81920, Grid-GCN achieves up to 11× speed-up

over PointNet++, which shows the dominating capability

of our model in processing large-scale point clouds.

6. Conclusion

In this paper, we propose Grid-GCN for fast and scal-

able point cloud learning. Grid-GCN achieves efficient

data structuring and computation by introducing Coverage-

Aware Grid Query (CAGQ). CAGQ drastically reduces data

structuring cost through voxelization and provides point

groups with complete coverage of the whole point cloud.

A graph convolution module Grid Context Aggregation

(GCA) is also proposed to incorporate the context features

and coverage information in the computation. With both

modules, Grid-GCN achieves state-of-the-art accuracy and

speed on various benchmarks. Grid-GCN, with its supe-

rior performance and unparalleled efficiency, can be used in

large-scale real-time point cloud processing applications.

5668

References

[1] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-

3D-Semantic Data for Indoor Scene Understanding. ArXiv

e-prints, Feb. 2017. 2, 6, 8

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. arXiv

preprint arXiv:1803.10091, 2018. 2, 7

[3] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fis-

cher. 3dmfv: Three-dimensional point cloud classification

in real-time using convolutional neural networks. IEEE

Robotics and Automation Letters, 3(4):3145–3152, 2018. 7

[4] Andrew Brock, Theodore Lim, James M Ritchie, and

Nick Weston. Generative and discriminative voxel mod-

eling with convolutional neural networks. arXiv preprint

arXiv:1608.04236, 2016. 2

[5] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d

spatio-temporal convnets: Minkowski convolutional neural

networks. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3075–3084,

2019. 7

[6] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning

dense volumetric segmentation from sparse annotation. In

International conference on medical image computing and

computer-assisted intervention, pages 424–432. Springer,

2016. 2, 3, 4, 8

[7] Thomas Cover and Peter Hart. Nearest neighbor pattern

classification. IEEE transactions on information theory,

13(1):21–27, 1967. 6

[8] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proc. Computer Vision and Pattern Recognition (CVPR),

IEEE, 2017. 2, 6, 7, 8

[9] Y Eldar. Irregular image sampling using the voronoi dia-

gram. PhD thesis, M. Sc. thesis, Technion-IIT, Israel, 1992.

2, 6

[10] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and

Yehoshua Y Zeevi. The farthest point strategy for progres-

sive image sampling. IEEE Transactions on Image Process-

ing, 6(9):1305–1315, 1997. 2, 6

[11] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and

Panqu Wang. Hplflownet: Hierarchical permutohedral lattice

flownet for scene flow estimation on large-scale point clouds.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3254–3263, 2019. 2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017. 2

[14] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Re-

current slice networks for 3d segmentation of point clouds.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2626–2635, 2018. 2, 8

[15] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In Proceedings of the IEEE International Conference on

Computer Vision, pages 863–872, 2017. 2, 7

[16] Artem Komarichev, Zichun Zhong, and Jing Hua. A-cnn:

Annularly convolutional neural networks on point clouds.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7421–7430, 2019. 6, 7

[17] Shiyi Lan, Ruichi Yu, Gang Yu, and Larry S Davis. Modeling

local geometric structure of 3d point clouds using geo-cnn.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 998–1008, 2019. 2, 3, 4

[18] Loic Landrieu and Mohamed Boussaha. Point cloud overseg-

mentation with graph-structured deep metric learning. arXiv

preprint arXiv:1904.02113, 2019. 2

[19] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4558–4567, 2018. 2

[20] Truc Le and Ye Duan. Pointgrid: A deep network for 3d

shape understanding. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 9204–

9214, 2018. 2

[21] Guohao Li, Matthias Müller, Guocheng Qian, Itzel C Del-

gadillo, Abdulellah Abualshour, Ali Thabet, and Bernard

Ghanem. Deepgcns: Making gcns go as deep as cnns. arXiv

preprint arXiv:1910.06849, 2019. 2, 8

[22] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-

organizing network for point cloud analysis. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 9397–9406, 2018. 2, 7

[23] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In Advances in Neural Information Processing Sys-

tems, pages 820–830, 2018. 2, 6, 7, 8

[24] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias

Zwicker. Point2sequence: Learning the shape representation

of 3d point clouds with an attention-based sequence to se-

quence network. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 8778–8785, 2019. 7

[25] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming

Xiang, and Chunhong Pan. Densepoint: Learning densely

contextual representation for efficient point cloud process-

ing. In Proceedings of the IEEE International Conference

on Computer Vision, pages 5239–5248, 2019. 6

[26] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8895–

8904, 2019. 2, 3, 4, 6

[27] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-

voxel cnn for efficient 3d deep learning. arXiv preprint

arXiv:1907.03739, 2019. 2, 6, 7, 8

[28] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition.

5669

In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 922–928. IEEE, 2015. 1,

2

[29] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 652–660,

2017. 1, 2, 6, 7, 8

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural informa-

tion processing systems, pages 5099–5108, 2017. 1, 2, 4, 5,

6, 7, 8

[31] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3577–3586, 2017. 2, 7

[32] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3693–3702, 2017. 2

[33] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2530–2539, 2018. 2

[34] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3d.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3887–3896, 2018. 8

[35] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung

Gwak, and Silvio Savarese. Segcloud: Semantic segmen-

tation of 3d point clouds. In 2017 International Conference

on 3D Vision (3DV), pages 537–547. IEEE, 2017. 6, 8

[36] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. arXiv preprint arXiv:1904.08889, 2019. 2, 7

[37] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-

tral graph convolution for point set feature learning. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 52–66, 2018. 1, 2, 3, 7

[38] Dominic Zeng Wang and Ingmar Posner. Voting for voting

in online point cloud object detection. In Robotics: Science

and Systems, volume 1, pages 10–15607, 2015. 2

[39] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and

Jie Shan. Graph attention convolution for point cloud seman-

tic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 10296–

10305, 2019. 2, 3, 4

[40] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-CNN: Octree-based Convolutional Neu-

ral Networks for 3D Shape Analysis. ACM Transactions on

Graphics (SIGGRAPH), 36(4), 2017. 6, 7

[41] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics (TOG), 38(5):146, 2019. 1, 2, 3, 4, 7, 8

[42] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9621–9630, 2019. 2

[43] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912–1920, 2015. 2, 5, 6, 7, 8

[44] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional shapecontextnet for point cloud recognition. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4606–4615, 2018. 7

[45] Christopher B Choy Danfei Xu, JunYoung Gwak, and Kevin

Chen Silvio Savarese. 3d-r2n2: A unified approach for sin-

gle and multi-view 3d object reconstruction. arXiv preprint

arXiv:1604.00449, 2016. 1

[46] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir

Mech, and Ulrich Neumann. Disn: Deep implicit surface

network for high-quality single-view 3d reconstruction. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 32, pages 492–502. Curran As-

sociates, Inc., 2019. 1

[47] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 87–102, 2018.

1, 2, 3, 4, 7

[48] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,

Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point

clouds with self-attention and gumbel subset sampling. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3323–3332, 2019. 2, 7

[49] Kuangen Zhang, Ming Hao, Jing Wang, Clarence W de

Silva, and Chenglong Fu. Linked dynamic graph cnn: Learn-

ing on point cloud via linking hierarchical features. arXiv

preprint arXiv:1904.10014, 2019. 2, 3, 4

[50] Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung.

Shellnet: Efficient point cloud convolutional neural net-

works using concentric shells statistics. arXiv preprint

arXiv:1908.06295, 2019. 7

[51] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, 2018. 1, 2

5670

