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to-ground-truth distance matrix. We then express both the

MOTA and MOTP [6] as differentiable functions of the

computed (soft) assignment matrix and the distance matrix.

Through DHN, the gradients from the approximated track-

ing performance measures are back-propagated to update

the tracker weights. In this way, we can train object trackers

in a data-driven fashion using losses that directly correlate

with standard MOT evaluation measures. In summary, this

paper makes the following contributions:

(i) We propose novel loss functions that are directly in-

spired by standard MOT evaluation measures [6] for

end-to-end training of multi-object trackers.

(ii) In order to back-propagate losses through the network,

we propose a new network module – Deep Hungarian

Net – that learns to match predicted tracks to ground-

truth objects in a differentiable manner.

(iii) We demonstrate the merit of the proposed loss func-

tions and differentiable matching module by training

the recently published Tracktor [4] using our proposed

framework. We demonstrate improvements over the

baseline and establish a new state-of-the-art result on

MOTChallenge benchmark datasets [32, 25].

2. Related Work

Tracking as Discrete Optimization. With the emer-

gence of reliable object detectors [13, 15, 26] tracking-by-

detection has become the leading tracking paradigm. These

methods first perform object detection in each image and

associate detections over time, which can be performed on-

line via frame-to-frame bi-partite matching between tracks

and detections [23]. As early detectors were noisy and un-

reliable, several methods search for the optimal association

in an offline or batch fashion, often posed as a network flow

optimization problem [36, 41, 49, 8, 7].

Alternatively, tracking can be posed as a maximum-a-

posteriori (MAP) estimation problem by seeking an opti-

mal set of tracks as a conditional distribution of sequential

track states. Several methods perform inference using con-

ditional random fields (CRFs) [33, 10, 35], Markov chain

Monte Carlo (MCMC) [34] or a variational expectation-

maximization [1, 2, 3]. These methods in general, use

hand-crafted descriptors for the appearance model, such

as color histograms [33, 9], optical flow based descrip-

tors [10] and/or motion models [26, 35] as association cues.

Therefore typically only a few parameters are trainable and

are commonly learned using grid/random search or tree of

parzen window estimators [5, 35]. In the case of CRF-

based methods, the weights can be trained using structured

SVM [45, 47].

Deep Multi-Object Tracking. Recent data-driven trends

in MOT leverage representational power of deep neural net-

works. Xiang et al. [48] learn track birth/death/association

policy by modeling them as Markov Decision Processes

(MDP). As the standard evaluation measures [6] are not dif-

ferentiable, they learn the policy by reinforcement learning.

Several existing methods train parts of their tracking

methods using losses, not directly related to tracking eval-

uation measures [6]. Kim et al. [21] leverages pre-learned

CNN features or a bilinear LSTM [22] to learn the long-

term appearance model. Both are incorporated into (Mul-

tiple Hypothesis Tracking) MHT framework [37]. Other

methods [16, 24, 46, 43] learn identity-preserving em-

beddings for data association using deep neural networks,

trained using contrastive [17], triplet [40] or quadruplet

loss [43]. At inference time, these are used for comput-

ing data association affinities. Approaches by [12, 50] learn

the appearance model of individual targets using an ensem-

ble of single-object trackers that share a convolutional back-

bone. A spatiotemporal mechanism (learned online using a

cross-entropy loss) guides the online appearance adaptation

and prevents drifts. All these methods are only partially

trained, and sometimes in various stages. Moreover, it is

unclear how to train these methods to maximize established

tracking metrics.

Most similar to our objective, Wang et al. [47] propose

a framework for learning parameters of linear cost associa-

tion functions, suitable for network flow optimization [49]

based multi-object trackers. They train parameters using

structured SVM. Similar to our method, they devise a loss

function, that resembles MOTA: the intra-frame loss pe-

nalizes false positives (FP) and missed targets while the

inter-frame component of the loss penalizes false associa-

tions, ID switches, and missed associations. However, their

loss is not differentiable and is only suitable for training

parameters within the proposed min-cost flow framework.

Chu et al. [11] propose an end-to-end training framework

that jointly learns feature, affinity and multi-dimensional

assignment. However, their losses are not directly based

on MOTA and MOTP. Schulter et al. [41] parameterize (ar-

bitrary) cost functions with neural networks and train them

end-to-end by optimizing them with respect to the min-flow

training objective. Different from [41], our approach goes

beyond learning the association function, and can be used

by any learnable tracking method.

Bergmann et al. [4] propose a tracking-by-regression ap-

proach to MOT. The method is trained for the object detec-

tion task using a smooth L1 loss for the bounding box re-

gressor. Empirically, their method is able to regress bound-

ing boxes in high-frame rate video sequences with no signif-

icant camera motion. Apart from the track birth and death

management, this approach is fully trainable, and thus it is

a perfect method for demonstrating the merit of our training

framework. Training this approach on a sequence-level data

using our proposed loss further improves the performance

and establishes a new state of the art on the MOTChallenge

benchmark [25].
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3. Overview and Notation
The objective of any MOT method is to predict tracks

in a video sequence. Each track Xi is associated with an

identity i, and consists of Li image bounding boxes xi
tl

∈
R

4 (2D location and size), l = 1 . . . , Li. The task of a

multi-object tracker is to accurately estimate the bounding

boxes for all identities through time.

At evaluation time, the standard metrics operate frame-

by-frame. At frame t, the Nt predicted bounding boxes,

xi1
t , . . . ,x

iNt

t must be compared to the Mt ground-truth ob-

jects, y
j1
t , . . . ,y

jMt

t . We first need to compute the corre-

spondence between predicted bounding boxes and ground-

truth objects. This is a non-trivial problem as multiple

ground-truth boxes may overlap and thus can fit to several

track hypotheses. In the following we will omit temporal in-

dex t to ease the reading. All expressions will be evaluated

with respect to time index t unless specified otherwise.

The standard metrics, proposed in [6], tackle this associ-

ation problem using bi-partite matching. First, a prediction-

to-ground-truth distance matrix D ∈ R
N×M ,1 dnm ∈ [0, 1]

is computed. For vision-based tracking, an intersection-

over-union (IoU) based distance is commonly used. Then,

the optimal prediction-to-ground-truth assignment binary

matrix is obtained by solving the following integer program

using the Hungarian algorithm (HA) [23]:

A∗ = argmin
A∈{0,1}N×M

∑

n,m

dnmanm, s.t.
∑

m

anm ≤ 1, ∀n;

∑

n

anm ≤ 1, ∀m;
∑

m,n

anm = min{N,M}.

By solving this integer program we obtain a mutually

consistent association between ground-truth objects and

track predictions. The constraints ensure that all rows and

columns of the assignment should sum to 1, thus avoiding

multiple assignments between the two sets. After finding

the optimal association, A∗, we can compute the MOTA

and MOTP measures using A∗ and D:2

MOTA = 1−

∑
t(FPt + FNt + IDSt)∑

t Mt

, (1)

MOTP =

∑
t

∑
n,m dtnma∗tnm∑
t |TPt |

, (2)

where a∗tnm is the (n,m)-th entry of A∗ at time t. The

true positives (TP) correspond to the number of matched

predicted tracks and false positives (FP) correspond to the

number of non-matched predicted tracks. False negatives

(FN) denote the number of ground-truth objects without a

match. Finally, to compute ID switches (IDS) we need to

keep track of past-frame assignments. Whenever the track

1The distance matrix D is considered without those objects/tracks that

are thresholded-out, i.e., too far from any possible assignment.
2Accounting also for the objects/tracks that were left out.

assigned to a ground truth object changes, we increase the

number of IDS and update the assignment structure.

As these evaluation measures are not differentiable,

existing strategies only optimize the trackers’ hyper-

parameters (using, e.g. random or grid search) that maxi-

mize MOTA or MOTP or a combination of both. In their

current version, MOTA and MOTP cannot be directly used

for tracker optimization with gradient descent techniques.

4. DeepMOT

The first step to compute the CLEAR-MOT [6] track-

ing evaluation measures is to perform bi-partite matching

between the sets of ground-truth objects and of predicted

tracks. Once the correspondence between the two sets is

established, we can count the number of TP, FN, and IDS

needed to express MOTA and MOTP. As the main contribu-

tion of this paper, we propose a differentiable loss inspired

by these measures, following the same two-step strategy.

We first propose to perform a soft matching between the

two sets using a differentiable function, parameterized as

a deep neural network. Once we establish the matching,

we design a loss, approximating the CLEAR-MOT mea-

sures, as a combination of differentiable functions of the

(soft) assignment matrix and the distance matrix. Alter-

native measures such as IDF1 [39] focus on how long the

tracker correctly identifies targets instead of how often mis-

matches occur. However, MOTA and IDF1 have a strong

correlation. This is reflected in our results – by optimizing

our loss, we also improve the IDF1 measure (see Sec. 5.3).

In the following, we discuss both the differentiable match-

ing module (Sec. 4.1) and the differentiable version of the

CLEAR-MOT measures [6] (Sec. 4.2).

4.1. Deep Hungarian Net: DHN

In this section, we introduce DHN, a fundamental block

in our DeepMOT framework. DHN produces a proxy Ã

that is differentiable w.r.t. D. Thus DHN provides a bridge

to deliver gradient from the loss (to be described later on) to

the tracker. We formalize DHN with a non-linear mapping

that inputs D and outputs the proxy soft assignment matrix

Ã. DHN is modeled by a neural network Ã = g(D, ωd)
with parameters ωd. Importantly, the DHN mapping must

satisfy several properties: (i) the output Ã must be a good

approximation to the optimal assignment matrix A∗, (ii)

this approximation must be differentiable w.r.t. D, (iii) both

input and output matrix are of equal, but varying size and

(iv) g must take global decisions as the HA does.

While (i) will be achieved by setting an appropriate loss

function when training the DHN (see Sec. 5.1), (ii) is en-

sured by designing DHN as a composite of differentiable

functions. The requirements (iii) and (iv) push us to design

a network that can process variable (but equal) input and

output sizes, where every output neuron has a receptive field
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partite matching, as required by MOT evaluation measures

(Sec. 5.1). To show the merit of the proposed framework,

we conduct several experiments on several datasets for eval-

uating pedestrian tracking performance (Sec. 5.2).

5.1. DHN Implementation Details

In this section, we provide insights into the performance

of our differentiable matching module and outline the train-

ing and evaluation details.

DHN Training. To train the DHN, we create a data set

with pairs of matrices (D and A∗), separated into 114,483
matrices for training and 17,880 for matrices testing. We

generate distance matrices D using ground-truth bounding

boxes and public detections, provided by the MOT chal-

lenge datasets [32, 25]. We generate the corresponding as-

signment matrices A∗ (as labels for training) using HA de-

scribed in [6]. We pose the DHN training as a 2D binary

classification task using the focal loss [28]. We compensate

for the class imbalance (between the number of zeros n0

and ones n1 in A∗) by weighting the dominant zero-class

using w0 = n1/(n0 + n1). We weight the one-class by

w1 = 1 − w0. We evaluate the performance of DHN by

computing the weighted accuracy (WA):

WA =
w1n

∗
1
+ w0n

∗
0

w1n1 + w0n0

, (10)

where n∗
1

and n∗
0

are the number of true and false positives,

respectively. Since the output of the DHN are between 0
and 1, we threshold the output at 0.5. Under these condi-

tions, the network in Fig. 2 scores a WA of 92.88%. In the

supplementary material, we provide (i) an ablation study on

the choice of recurrent unit, (ii) a discussion of alternative

architectures, (iii) an analysis of the impact of the distance

matrix size on the matching precision and (iv) we experi-

mentally assess how well the DHN preserves the properties

of assignment matrices.

DHN Usage. Once the DHN is trained with the strategy

described above, its weights are fixed: they are not updated

in any way during the training of the deep trackers.

5.2. Experimental Settings

We demonstrate the practical interest of the proposed

framework by assessing the performance of existing (deep)

multi-object trackers when trained using the proposed

framework on several datasets for pedestrian tracking. We

first ablate the loss terms and the tracking architectures. We

also evaluate the impact of the framework with respect to

other training alternatives. Finally, we establish a new state-

of-the-art score on the MOTChallenge benchmark.

Datasets and Evaluation Metrics. We use the MOT15,

MOT16, and MOT17 datasets, which provide crowded

pedestrian video sequences captured in the real-world out-

door and indoor scenarios. For the ablation study, we divide

the training sequences into training and validation. The de-

tails of the split can be found in the supplementary material.

In addition to the standard MOTP and MOTA measures [6],

we report the performance using the IDF1 [39] measure, de-

fined as the ratio of correctly identified detections over the

average number of ground-truth objects and object tracks.

We also report mostly tracked (MT) and mostly lost (ML)

targets, defined as the ratio of ground-truth trajectories that

are covered by a track hypothesis more than 80% and less

than 20% of their life span respectively.

Tracktor. Tracktor [4] is an adaptation of the Faster

RCNN [38] object detector to the MOT task. It uses a region

proposal network (RPN) and the classification/regression

heads of the detector to (i) detect objects and (ii) to fol-

low the detected targets in the consecutive frames using a

bounding box regression head. As most parts of Tracktor

are trainable, this makes this method a perfect candidate

to demonstrate the benefits of our framework. Note that

Tracktor was originally trained only on the MOTChallenge

detection dataset and was only applied to video sequences

during inference. In the following, we will refer to Track-

tor trained in this setting as Vanilla Base Tracktor. Thanks

to DeepMOT, we can train Tracktor directly on video se-

quences, optimizing for standard MOT measures. We will

refer to this variant as DeepMOT Base Tracktor.

Tracktor+ReID. Vanilla Tracktor has no notion of track

identity. Therefore [4] proposed to use an externally trained

ReID module during inference to mitigate IDS. This ex-

ternal ReID module is a feature extractor with a ResNet-50

backbone, trained using a triplet loss [40] on the MOTChal-

lenge video sequences. We will refer to this variant as +ReI-

Dext. Note that this does not give Tracktor any notion of

identity during training. This means that the DeepMOT loss

which penalizes the number of IDS will have no significant

effect on the final performance. For this reason, we pro-

pose to replace ReIDext with a lightweight ReID head that

we can train jointly with Tracktor using DeepMOT. This in

turn allows us to utilize ˜IDS and to fully optimize perfor-

mance to all components of CLEAR-MOT measures. We

refer to this variant as +ReIDhead. It takes the form of a

fully-connected layer with 128 units plugged into Tracktor.

In the supplementary material we provide details on how we

embed the ID information into the distance matrix D.

Even if such a network head has been previously used

in [46], it was trained externally using the triplet loss [40].

To the best of our knowledge, we are the first to optimize

such an appearance model by directly optimizing the whole

network for tracking evaluation measures.

MOT-by-SOT. To demonstrate the generality of our

method, we propose two additional simple trainable base-
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Method MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

V
an

. Base 59.97 89.50 70.84 35.13 27.66 276 31827 326

+ReIDext 60.20 89.50 71.15 35.13 27.80 276 31827 152

D
ee

p
M

O
T Base 60.43 91.82 71.44 35.41 27.25 218 31545 309

+ReIDext 60.62 91.82 71.66 35.41 27.39 218 31545 149

+ReIDhead 60.66 91.82 72.32 35.41 27.25 218 31545 118

Table 1. Impact of the different ReID strategies for the two training

strategies on Tracktor’s performance.

lines to perform MOT by leveraging two existing off-

the-shelf (trainable) single-object trackers (SOTs): GO-

TURN [18] and SiamRPN [27]. During inference we ini-

tialize and terminate tracks based on object detections. For

each object, the SOTs take a reference image at time t−1 of

the person and a search region in image t as input. Based on

this reference box and search region, the SOTs then regress

a bounding box for each object independently.

Track Management. In all cases, we use a simple (non-

trainable) track management procedure. We (i) use detector

responses to initialize object tracks in regions, not covered

by existing tracks (can be either public detections or Faster

RCNN detection responses in the case of Tracktor); (ii) we

regress tracks from frame t − 1 to frame t using either a

SOT or Tracktor and (iii) we terminate tracks that have no

overlap with detections (SOT baseline) or invoke the clas-

sification head of Tracktor, that signals whether a track is

covering an object or not. As an alternative to direct termi-

nation, we can set a track as invisible for K frames.

5.3. Results and Discussion

Beyond Bounding Box Regression. In Tab. 1, we first

establish the Vanilla Base Tracktor performance on our val-

idation set and compare it to the DeepMOT Base Track-

tor. This experiment (i) validates that our proposed training

pipeline based on DHN delivers the gradient to the trackers

and improves the overall performance, and (ii) confirms our

intuition that training object trackers using a loss that di-

rectly correlates with the tracking evaluation measures has

a positive impact. Note that the impact on IDS is minimal,

which may be on the first sight surprising, as our proposed

loss penalizes IDS in addition to FP, FN, and bounding box

misalignment.

We study this by first evaluating the impact of applying

external ReID module, i.e., +ReIDext. As can be seen in

Tab. 1, ReIDext has a positive impact on the performance,

as expected, in terms of MOTA (+0.23% and +0.19%) and

IDS (−174 and −160) compared to Base for Vanilla and

DeepMOT training respectively. To further demonstrate the

interest of a ReID module, we also report the +ReIDhead

architecture trained with DeepMOT. Importantly, +ReID-

head cannot be trained in the Vanilla setting due to the lack

of mechanisms to penalize IDS. Remarkably, +ReIDhead

trained end-to-end with Tracktor does not only improve

over the Base performance (MOTA +0.23%, IDS ↓ 191),

Training loss MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

Vanilla 60.20 89.50 71.15 35.13 27.80 276 31827 152

Smooth L1 60.38 91.81 71.27 34.99 27.25 294 31649 164

dMOTP 60.51 91.74 71.75 35.41 26.83 291 31574 142

dMOTA 60.52 88.31 71.92 35.41 27.39 254 31597 142

dMOTA+dMOTP - ˜IDS 60.61 92.03 72.10 35.41 27.25 222 31579 124

dMOTA+dMOTP 60.66 91.82 72.32 35.41 27.25 218 31545 118

Table 2. Ablation study on the effect the training loss on Tracktor.

but it also outperforms +ReIDext (MOTA ↑ 0.04 and IDS

↓ 31). Very importantly, the lightweight ReID head con-

tains a significantly lower number of parameters (≈ 131 K)

compared to the external ReID module (≈ 25 M).

Finally, in addition to improve the performance measures

for which we optimize Tracktor, DeepMOT consistently im-

proves tracking measures such as IDF1 (↑ 1.17 improve-

ment of DeepMOT+ReIDhead over Vanilla+ReIDext).

We conclude that (i) training existing trackers using our pro-

posed loss clearly improves the performance and (ii) we can

easily extend existing trackers such as Tracktor to go be-

yond simple bounding box regression and incorporate the

appearance module directly into the network. All modules

are optimized jointly in a single training.

DeepMOT Loss Ablation. Next, we perform several ex-

periments in which we study the impact of different com-

ponents of our proposed loss (Eq. 9) to the performance of

Tracktor (DeepMOT+ReIDhead). We outline our results

in Tab. 2. In addition to Vanilla+ReIDext (representing the

best performance trained in Vanilla settings), we also re-

port results obtained by training the same architecture using

only the Smooth L1 loss (see Fig. 4). We train the regres-

sion head with Smooth L1 loss using a similar training pro-

cedure as for DeepMOT (see Sec. 4.3), to regress predicted

bounding boxes to the ones at current time step of their as-

sociated tracks. This approach is limited in the sense that

we cannot (directly) penalize FP, FN and IDS.

The Smooth L1 training, when compared to Vanilla,

has a positive impact on almost all performance measures,

except for MT, FP, and IDS. However, both Vanilla and

Smooth L1 are outperformed almost systematically for

all performance measures by the various variants of the

DeepMOT loss. Remarkably, when using dMOTA term in

our loss, we significantly reduce the number of IDS and FP.

Training with dMOTP has the highest impact on MOTP,

as it is the case when training with Smooth L1. When

only optimizing for dMOTA, we have a higher impact

on the MOTA and IDF1 measure. Remarkably, when

training with (dMOTA+dMOTP ), we obtain a consistent

improvement on all tracking evaluation measures with

respect to Vanilla and Smooth L1. Finally, we asses the

impact of ˜IDS, by setting the weight γ to 0 (Eq. 7) (line

dMOTA+dMOTP - ˜IDS). In this settings, the trackers

exhibits a higher number of IDS compared to using the full

loss, confirming that the latter is the best strategy.
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Training MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

G
O

T
U

R
N Pre-trained 45.99 85.87 49.83 22.27 36.51 2927 39271 1577

Smooth L1 52.28 90.56 63.53 29.46 34.58 2026 36180 472

DeepMOT 54.09 90.95 66.09 28.63 35.13 927 36019 261

S
ia

m
R

P
N Pre-trained 55.35 87.15 66.95 33.61 31.81 1907 33925 356

Smooth L1 56.51 90.88 68.38 33.75 32.64 925 34151 167

DeepMOT 57.16 89.32 69.49 33.47 32.78 889 33667 161

T
ra

ck
to

r Vanilla 60.20 89.50 71.15 35.13 27.80 276 31827 152

Smooth L1 60.38 91.81 71.27 34.99 27.25 294 31649 164

DeepMOT 60.66 91.82 72.32 35.41 27.25 218 31545 118

Table 3. DeepMOT vs. Smooth L1 using MOT-by-SOT baselines

and Tracktor.

Method MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

M
O

T
1
7

DeepMOT-Tracktor 53.7 77.2 53.8 19.4 36.6 11731 247447 1947

Tracktor [4] 53.5 78.0 52.3 19.5 36.6 12201 248047 2072

DeepMOT-SiamRPN 52.1 78.1 47.7 16.7 41.7 12132 255743 2271

SiamRPN [27] 47.8 76.4 41.4 17.0 41.7 38279 251989 4325

DeepMOT-GOTURN 48.1 77.9 40.0 13.6 43.5 22497 266515 3792

GOTURN [18] 38.3 75.1 25.7 9.4 47.1 55381 282670 10328

eHAF [42] 51.8 77.0 54.7 23.4 37.9 33212 236772 1834

FWT [19] 51.3 77.0 47.6 21.4 35.2 24101 247921 2648

jCC [20] 51.2 75.9 54.5 20.9 37.0 25937 247822 1802

MOTDT17 [29] 50.9 76.6 52.7 17.5 35.7 24069 250768 2474

MHT DAM [21] 50.7 77.5 47.2 20.8 36.9 22875 252889 2314

M
O

T
1
6

DeepMOT-Tracktor 54.8 77.5 53.4 19.1 37.0 2955 78765 645

Tracktor [4] 54.4 78.2 52.5 19.0 36.9 3280 79149 682

DeepMOT-SiamRPN 51.8 78.1 45.5 16.1 45.1 3576 83699 641

SiamRPN [27] 44.0 76.6 36.6 15.5 45.7 18784 82318 1047

DeepMOT-GOTURN 47.2 78.0 37.2 13.7 46.1 7230 87781 1206

GOTURN [18] 37.5 75.4 25.1 8.4 46.5 17746 92867 3277

HCC [31] 49.3 79.0 50.7 17.8 39.9 5333 86795 391

LMP [44] 48.8 79.0 51.3 18.2 40.1 6654 86245 481

GCRA [30] 48.2 77.5 48.6 12.9 41.1 5104 88586 821

FWT [19] 47.8 75.5 44.3 19.1 38.2 8886 85487 852

MOTDT [29] 47.6 74.8 50.9 15.2 38.3 9253 85431 792

Table 4. We establish a new state-of-the-art on MOT16 and

MOT17 public benchmarks by using the proposed DeepMOT.

MOT-by-SOT Ablation. Using DeepMOT, we can turn

trainable SOT methods into trainable MOT methods by

combining them with the track management mechanism (as

explained in Sec. 5.2) and optimize their parameters using

our loss. In Tab. 3, we outline the results of the two MOT-

by-SOT baselines (GOTURN [18] and SiamRPN [27]). For

both, we show the performance when using (i) a pre-trained

network, (ii) a network fine-tuned using the Smooth L1 loss,

and (iii) the one trained with DeepMOT.

Based on the results outlined in Tab. 3, we conclude

that training using the Smooth L1 loss improves the MOTA

for both SOTs (GOTURN: +6.29%, SiamRPN: +1.16%).

Moreover, compared to models trained with Smooth L1

loss, we further improve MOTA and reduce the number

of IDS when we train them using DeepMOT. For GO-

TURN (SiamRPN), we record a MOTA improvement of

1.81% (0.65%) while reducing the number of IDS by

211 (6). We also outline the improvements comparing

Vanilla+ReIDext Tracktor trained with Smooth L1 loss,

and DeepMOT+ReIDhead Tracktor trained using Deep-

MOT. These results further validate the merit and generality

of our method for training deep multi-object trackers.

MOTChallenge Benchmark Evaluation We evaluate the

trackers trained using our framework on the MOTChallenge

benchmark (test set) using the best-performing configura-

tion, determined previously using the validation set. Dur-

ing training and inference, we use the camera motion com-

pensation module, as proposed by [4], for the three trained

trackers. We discuss the results obtained on MOT16-17.

MOT15 results and parameters are in the supplementary.

We follow the standard evaluation practice and compare

our models to methods that are officially published on the

MOTChallenge benchmark and peer-reviewed. For MOT16

and MOT17, we average the results obtained using the three

sets of provided public detections (DPM [15], SDP [14] and

Faster R-CNN [38]). As in [4], we use these public detec-

tions for track initialization and termination. Importantly,

in the case of Tracktor, we do not use the internal detection

mechanism of the network, but only public detections.

As can be seen in Tab. 4, DeepMOT-Tracktor establishes

a new state-of-the-art on both MOT17 and MOT16. We im-

prove over Tracktor (on MOT17 and MOT16, respectively)

in terms of (i) MOTA (0.2% and 0.4%), (ii) IDF1 (1.5%
and 0.9%) and (iii) IDS (125 and 37). On both benchmarks,

Vanilla Tracktor is the second best-performing method, and

our simple SOT-by-MOT baseline DeepMOT-SiamRPN is

the third. We observe large improvements over our MOT-

by-SOT pre-trained models and models trained using Deep-

MOT. For GOTURN, we improve MOTA by 9.8% and

9.7% and we significantly reduce the number of IDS by

6536 and 2071, for MOT17 and MOT16 respectively. Sim-

ilar impact on DeepMOT-SiamRPN is observed.

6. Conclusion

In this paper, we propose an end-to-end MOT train-

ing framework, based on a differentiable approximation of

HA and CLEAR-MOT metrics. We experimentally demon-

strate that our proposed MOT framework improves the per-

formance of existing deep MOT methods. Thanks to our

method, we set a new state-of-the-art score on the MOT16

and MOT17 datasets. We believe that our method was the

missing block for advancing the progress in the area of end-

to-end learning for deep multi-object tracking. We expect

that our training module holds the potential to become a

building block for training future multi-object trackers.
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[24] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad

Schindler. Learning by tracking: Siamese cnn for robust tar-

get association. CVPR Workshops, 2016. 1, 2
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