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Abstract

Low-light images typically suffer from two problems.

First, they have low visibility (i.e., small pixel values). Sec-

ond, noise becomes significant and disrupts the image con-

tent, due to low signal-to-noise ratio. Most existing low-

light image enhancement methods, however, learn from

noise-negligible datasets. They rely on users having good

photographic skills in taking images with low noise. Un-

fortunately, this is not the case for majority of the low-light

images. While concurrently enhancing a low-light image

and removing its noise is ill-posed, we observe that noise

exhibits different levels of contrast in different frequency

layers, and it is much easier to detect noise in the low-

frequency layer than in the high one. Inspired by this ob-

servation, we propose a frequency-based decomposition-

and-enhancement model for low-light image enhancement.

Based on this model, we present a novel network that first

learns to recover image objects in the low-frequency layer

and then enhances high-frequency details based on the re-

covered image objects. In addition, we have prepared a new

low-light image dataset with real noise to facilitate learn-

ing. Finally, we have conducted extensive experiments to

show that the proposed method outperforms state-of-the-art

approaches in enhancing practical noisy low-light images.

1. Introduction

Low-light imaging is very popular, for various purposes,

e.g., night-time surveillance and personal scenery imaging

at sunset. However, the visibility of low-light images in the

standard RGB (sRGB, 24 bits/pixel) space does not match

with human perception, due to quantization. This low

visibility hinders vision tasks (e.g., object detection [31]

and tracking [8]), or image editing tasks (e.g., image mat-

ting [45]). Hence, recovering low-light images is essential.

Typical image enhancement methods [46, 51, 24, 7, 40,

34, 48, 4] propose to recover low-light images to match with

human perception. These methods rely on users to have

good photographic skills in taking images with low noise,

so that these methods can focus on learning to manipulate
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(a) sRGB input (b) Hist. eq. (c) Low-freq. (d) High-freq.

(e) DeepUPE [40] (f) DSLR [24] (g) Ground truth (h) Ours

Figure 1. Given a low-light sRGB image of 24-bit color depth (a),

typical enhancement methods cannot produce a pleasant image

with details recovered and noise suppressed (b, e, f). To illustrate

our idea, we apply a Gaussian filter to decompose (b) into a low-

frequency layer (c) and a high frequency layer (d), and observe

that the low-frequency layer preserves sufficient information for

recovering objects and colors, which can then be used to enhance

high-frequency details. This inspires us to learn a decomposition-

and-enhancement method for low-light images (h).

the tones, colors or contrasts of the images. As such, they

cannot be used to enhance majority of the practical low-

light images with noise, which are taken by casual users.

Figure 1 shows one example, where image contents are not

only buried by low pixel intensity values, but also disrupted

by noise, due to the inherent low signal-to-noise ratio (SNR)

at low light [6]. Existing enhancement methods may either

enhance both the noise and scene details (Figure 1(b, f)), or

fail to recover the low visibility of low-light images (Fig-

ure 1(e)). In addition, these enhanced images still have low

SNRs, providing limited useful contextual information for

detecting noise from scene details. Hence, they fail existing

image denoising methods [11, 49, 50, 27, 37, 32, 19].

In this paper, we address the low-light sRGB image en-

hancement problem, which involves two issues: image en-

hancement as well as denoising. Our motivation is based

on two observations. First, the image low-frequency lay-

er preserves more information, e.g., objects and colors, and

is less affected by noise (Figure 1(c)) than the image high-

frequency layer (Figure 1(d)). This suggests that it is easier

to enhance the low-frequency image layer than to direct-

ly enhance the whole image. Second, the very low intrin-

sic dimensionality of image primitives makes it possible for

neural networks to learn a full knowledge of image prim-

itives [29, 41]. Hence, given the low-frequency informa-
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(a) Input (b) Hist. eq. (c) WVM [14] (d) DeepUPE [40] (e) CAPE [25] (f) LIME [20]

(g) HDRCNN [12] (h) DRHT [46] (i) DSLR [24] (j) SID [6] (k) Ground truth (l) Ours

Figure 2. While existing methods ((c) to (j)) generally fail to enhance the input noisy low-light image (a), our method produces a sharper

and clearer result with objects and details recovered (l).

tion of primitives, it is possible for a network to reconstruct

the whole primitives by inferring the corresponding high-

frequency information. With such a prior, we can then learn

to enhance high-frequency details from the recovered low-

frequency layer.

These two insights inspire us to learn a frequency-based

low-light image decomposition-and-enhancement model.

To this end, we propose a novel neural network that lever-

ages an Attention to Context Encoding (ACE) module to

adaptively select low-frequency information for recovering

the low-frequency layer and noise removal in the first stage,

and select high-frequency information for detail enhance-

ment in the second stage. We also propose a Cross Do-

main Transformation (CDT) module to leverage multi-scale

frequency-based features for noise suppression and detail

enhancement in the two stages. As shown in Figure 2, our

method can enhance the noisy low-light sRGB image with

contents/details recovered and noise suppressed.

In summary, the main contributions of this work are:

1. We propose a novel frequency-based decomposition-

and-enhancement model for enhancing low-light im-

ages. It first recovers image contents in the low-

frequency layer while suppressing noise, and then re-

covers high-frequency image details.

2. We propose a network, with an Attention to Context

Encoding (ACE) module to decompose the input im-

age for adaptively enhancing the high-/low-frequency

layers and a Cross Domain Transformation (CDT)

module for noise suppression and detail enhancement.

3. We prepare a low-light image dataset with real noise

and corresponding ground truth images, to facilitate

the learning process.
Extensive experiments verify the superior performance of

the proposed method over the state-of-the-art approaches.

2. Related work

Low-light image enhancement. A line of methods en-

hance low-light images using different image-to-image re-

gression functions. Represented by histogram equaliza-

tion [36] and gamma correction, global and local contrast

enhancement operators are proposed based on detecting se-

mantic regions (e.g., face and sky) [25], matching region

templates [23] or contrast statistics in image boundaries

and textured regions [38]. Advanced deep learning based

methods learn the mapping functions from high-quality us-

er retouched images or images taken using high-end cam-

eras, using bilateral learning [15], intermediate HDR super-

vision [46], adversarial learning [24, 7], or reinforcement

learning [34, 48]. Another line of works are retinex-based

image enhancement methods [20, 14, 51, 5, 40, 47], which

decompose the input low-light image into illumination and

reflectance, and then enhance the illumination of the image.

However, existing enhancement methods may fail to re-

cover low-light images, due to their low SNRs, as shown in

Figure 2. The key reason is that these methods [24, 34, 7,

48, 46] typically assume the images to be taken by photo-

graphic experts with insignificant noise levels. Hence, they

are unable to enhance noisy low-light images.

Recently, there are also some enhancement method-

s [6, 22] proposed to directly retouch the camera raw data

into high quality output images. Particularly, Chen et al. [6]

proposed to learn raw-to-image models to generate noise-

suppressed, enhanced images from noisy raw images. How-

ever, models trained on the raw domain cannot be applied

to regular sRGB images, which is the most widely adopted

color space [10], as the linear raw data is significantly dif-

ferent from the non-linear sRGB data [44]. Besides, raw

data is usually unavailable due to the lack of expertise or

unknown protocols. In this paper, we focus on enhancing

noisy low-light sRGB images.

Image denoising. Single image denoising is an active

research topic in computer vision, and it often functions as

pre-/post-processing for other vision tasks. Many methods

have been developed based on image priors such as self-

similarity [3, 11], sparsity [13, 30], and low rank [18, 43].

Deep learning has also been widely applied to the denoising

problem [33, 49, 50, 27, 37, 32]. These denoisers typically

learned from synthetic datasets that assumed additive, white

or Gaussian noise. They often fail to remove real noise,

which exhibits different patterns. Recent works attempted

to improve the performances of denoisers in denoising real
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Figure 3. Overview of the proposed model. In the first stage, the network enhances the low-frequency contents of input image I with noise

suppressed, and then amplifies it to produce I
a. In the second stage, the network infers the high-frequency details from I

a to produce the

output enhanced image I
c.

images, by synthesizing noise in the raw data domain [2],

constructing real image dataset [1], developing joint train-

ing strategy of both synthetic and real images [19], or unsu-

pervised learning [28].

However, it is non-trivial to remove noise from low-light

images simply by pre-/post-processing with existing de-

noising methods. On the one hand, low pixel values make it

difficult to provide sufficient contextual information for de-

tecting/removing noise before enhancing the low-light im-

ages. On the other hand, noise can be unpredictably ampli-

fied after applying existing enhancement methods, produc-

ing images that still have low SNRs and hence difficult for

further denoising. To address this limitation, we propose

in this paper to learn a deep enhancement model to enhance

the low-light images while removing noise, in an end-to-end

recurrent manner.

3. Proposed Model

Our method is inspired by two observations. First, it is

easier to enhance the low-frequency layer of a noisy low-

light image, compared to directly enhancing the whole im-

age. This is because noise in the low-frequency layer is eas-

ier to detect and then suppress. Image illumination/colors

can then be properly estimated by analyzing the global

properties of the image low-frequency layer. Second, it is

known that primitive parts of natural images, e.g., edges and

corners, have very low intrinsic dimensionality [29]. Such

low dimensionality implies that a small number of image

examples are sufficient to represent the image primitives

well [41]. Hence, given the low-frequency information of

the primitives, we may be able to infer the corresponding

high-frequency information.

Based on these two observations, our proposed model, as

shown in Figure 3, has two main stages. In the first stage,

we propose to learn a low-frequency image enhancement

function C(·), and then an amplification function A(·) for

color recovery. By jointly modeling the mapping from C(·)
to A(·), the network does not have to learn both global in-

formation (e.g., illumination) and local information (e.g.,

color) at the same time, resulting in a more effective en-

hancement. Formally, given a low-light sRGB image I , the

first stage enhancement can be written as:

Ia = αA(C(I)) · C(I), (1)

where Ia is the amplified low-frequency layer. Note that

A is different from the illumination map in retinex-based

methods, as we estimate a relative amplification map to a

learnable global ratio α from the enhanced content C. In

other words, αA(·) can be interpreted as an error map that

enhances C in the self-attention manner.

In the second stage, we propose to learn high-frequency

detail enhancement function D(·), based on Ia from the

first stage, instead of directly restoring the high-frequency

details from the original input image I , which is noisy. D(·)
is then modeled in a residual manner, and the final enhanced

image can be obtained as:

Ic = Ia +D(Ia). (2)

Figure 4 visualizes the output of each step of our model.

Our model uses two novel modules, the Attention to

Context Encoding (ACE) module and the Cross Domain

Tranformation (CDT) module. They are explained below.

3.1. ACE Module

The goal of the ACE module is to learn frequency-aware

features for image decomposition. To do this, we extend the

non-local operation [42], originally proposed for encoding

long-range relations, to select frequency adaptive contextu-

al information. Figure 5 shows the block diagram.

We use the first ACE module in Figure 3 for explanation.

Given the input features xin ∈ RH×W×C , we first use two

2283



(a) Input (b) Hist. eq. (c) Naive Reg. (d) C (e) A (f) Ia (g) D (h) Ic (i) Ground truth

Figure 4. Internal visualization (d-h) verifies the effectiveness of the proposed model, against naive image-to-image regression (c).

Figure 5. Overview of the proposed ACE module. It aims to de-

compose the image into frequency-based layers for adaptive en-

hancement in the two stages.

groups of dilated convolutions (with kernel size/dilation rate

of 1/1 and 3/2), denoted as fd1 and fd2, to extract features in

different receptive fields. We then compute a contrast-aware

attention map Ca between these two features as:

Ca = sigmoid(fd1(xin)− fd2(xin)). (3)

Ca indicates the pixel-wise relative contrast information,

where pixels of high contrasts are regarded as belonging to

the high-frequency layer. We then compute the inverse map

Ca = 1 − Ca to select features from xin to represent the

low-frequency contents as: xc = Ca ·xin. We further shrink

the selected features xc via max-pooling to obtain compact

features x↓
c and to reduce GPU memory and computation-

s for establishing the non-local pixel-to-pixel dependence.

Formally, given x↓
c ∈ RH′×W ′×C , the non-local context

encoding process can be written as:

xr
c = g(x↓

c)
⊤
× h(x↓

c)× f(x↓
c)

⊤, (4)

where g, h, f represent groups of operations (convolution,

reshaping and matrix transpose) that first compute a pix-

el affinity table M ∈ RH′W ′×H′W ′

and then compute

non-locally enhanced features xr
c by considering the rela-

tions of each pixel to all other pixels. Finally, we obtain

the frequency-aware non-locally enhanced features xout =
Unpool(xr

c)+xc in a residual manner to facilitate the learn-

ing process. Note that the two ACE modules in Figure 3

share their weights. The second ACE module uses the

contrast-aware attention map Ca, instead of the inverse map

Ca, to learn the image details from the features representing

the high-frequency layer. Figure 6 shows two ACE attention

maps (Ca from the first stage and Ca from the second stage)

and their corresponding decomposed feature maps (xc from

the first stage and xc from the second stage).

3.2. CDT Module

A good understanding of the global properties of low-

light images can help recover the lighting and image con-

tents. To do this, we propose the CDT module, as shown

(a) Input (b) Hist. eq. (c) Ours (d) GT

(e) Ca (f) Ca (g) xc (h) xc

Figure 6. Visual example of attention maps in the two-stage ACE

module and the decomposed feature maps. Ca (1st stage) tends to

highlight background regions, while Ca (2nd stage) attends more

to foreground objects for reconstructing high-frequency details.

Figure 7. Overview of the proposed CDT module. It aims to in-

crease the receptive fields while bridging the gap between the low-

light domain and the enhanced domain.

in Figure 7, to increase the receptive fields while bridging

the gap between features in the low-light domain and in the

enhanced domain. Sharing a similar spirit as [39] in in-

creasing the receptive fields for more global information,

the CDT module is specially designed to concurrently ad-

dress the domain gap problem, i.e., frequency-aware fea-

tures extracted in the noisy low-light domain versus those

in the enhanced domain.

Specifically, in the first stage, the noisy features from the

encoder xen are first spatially reweighed via the self-derived

inverse contrast-aware map Ca to filter out high contrast

information, before concatenating with features xde from

the corresponding decoder. We then compute global scal-

ing vectors v from the concatenated features [xen, xde], for

adaptively re-scaling the features from different domains in

a channel-wise manner. In the second stage, we use the

contrast-aware attention map Ca, instead of the inverse map

Ca, to learn image details, similar to the ACE module.

3.3. Proposed Dataset

To facilitate the learning of the proposed model, we have

prepared a new low-light dataset of real noisy low-light and

ground truth sRGB image pairs.

Noise in low-light. We prepare our training data based

on the SID dataset [6], which consists of raw data and

ground truth image pairs. This raw data was collected
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when imaging in low-light with short exposure time (typ-

ically 0.1s or 0.04s). Their corresponding ground truth im-

ages were taken with long exposure time (typically 10s or

30s), where noise is negligible. However, the linear camera

raw data is significantly different from the non-linear sRGB

data, particularly in terms of noise [2] and image intensi-

ty [46]. As a result, models trained on raw data cannot be

directly applied to sRGB images. To address this problem,

we have considered several key steps (i.e., exposure com-

pensation, white balance and de-linearization) in the image

formation pipeline, and manipulated their operations in or-

der to model real-world noisy low-light sRGB images taken

from different cameras.

Exposure compensation. Auto-exposure algorithms

aim to automatically determine the exposure time and cam-

era gain based on the light intensity perceived by the sensor.

They are usually black-boxes and vary across cameras. To

augment the diversity of this exposure time, we randomly

sample the exposure compensation value from the range of

[0EV, 2EV ] at intervals of 0.5EV .

White balance. White balance algorithms aim to correct

unrealistic casts via estimating the per-channel gain [16].

They are also unknown and vary across cameras. We

augment it by randomly choosing the color temperature

from the range of [2100K, 4000K], which represents the

color temperatures of typical household lighting and Sun-

rise/Sunset lighting, according to the Kelvin temperature

color chart [9].

De-linearization. As the non-linearity introduced by the

camera response function varies across cameras and is diffi-

cult to reverse-engineer [17], we apply the gamma function

as the de-linearization function, as suggested in [12].

Using the above settings, we have produced a total of

4,198 image pairs for training and 1,196 image pairs for

testing. Experimental results in Figures 9 and 10 show that

the proposed network trained on our data can generalize

well on images from other image formation pipelines.

3.4. Training

Loss function. We use L2 loss to measure the recon-

struction accuracy in the two-stage training process. Specif-

ically, in the first stage, to encourage our network to focus

on predicting the low frequency components of the input

image, we prepare the corresponding ground truth, denoted

as I
gt
f , by using the guided filter [21] to filter out the high-

frequency details while maintaining the main structures and

contents of the ground truth image. Formally, the recon-

struction loss can be written as:

Lacc = λ1

∥

∥

∥
C − I

gt
f

∥

∥

∥

2

+ λ2

∥

∥Ic − Igt
∥

∥

2
, (5)

where C, Ic, I
gt
f , Igt are the reconstructed image content,

the recovered image, ground truth of the low-frequency lay-

er, and ground truth of the enhanced image, respectively. λ1

and λ2 are balancing parameters.

We also incorporate the perceptual loss by comparing the

VGG feature distances of Ic and Igt, using L1 loss, as:

Lvgg = λ3

∥

∥Φ(Ic)− Φ(Igt)
∥

∥

1
, (6)

where Φ is the VGG net, and λ3 is a balancing parameter.

4. Experiments

We have implemented the proposed model in the Py-

torch framework [35], and tested it on a PC with an i7

4GHz CPU and a GTX 1080Ti GPU. As we train our mod-

el from scratch, the network parameters are initialized ran-

domly, except the learnable amplification ratio α, which is

initialized to 1. Standard augmentation strategies, i.e., scal-

ing, cropping, and horizontal flipping, are adopted. During

training, we randomly crop patches of resolutions 512×384
from the scaled images of resolution 2048× 1536. For loss

minimization, we adopt the ADAM optimizer [26] for 400

epochs, with an initial learning rate of 3e−4 and divided by

10 at the 250th epoch. λ1, λ2 and λ3 are set to 1, 1, and

0.1, respectively. It takes 0.33s for the proposed network to

process one image of resolutions 1024× 768.

To evaluate the performance of the proposed method

on enhancing low-light images, we quantitatively and vi-

sually compare our method to 9 state-of-the-art enhance-

ment methods with available codes, including JieP [5],

LIME [20], WVM [14], DSLR [24], CAPE [25],

DRHT [46], DeepUPE [40], HDRCNN [12] and SID [6].

We use PSNR and SSIM for quantitative measurement.

4.1. Comparing to State­of­the­Arts

Visual comparisons. We first visually compare result-

s of the proposed method to the state-of-the-art image en-

hancement methods. Figure 8 shows the results of different

methods on three input low-light images (a, m, A), which

were taken by a Sony camera. We can see that WVM [14]

and DeepUPE [40] fail to enhance these images (c, d, o, p,

C, D). Since they are based on decomposing the input im-

age into reflectance and illumination, when an input image

is of low-light, they are unable to decompose it accurately.

LIME [20] can enhance the images (f, r, F), as it direct-

ly estimates the illumination map without decomposing the

input image. However, it enhances both details and noise

together. Similarly, the gamma correction based method

CAPE [25] also jointly enhances the details and noise to-

gether (e, q, E). DRHT [46] fails to enhance the noisy low-

light images (h, t, H), as noise can deteriorate both the HDR

reconstruction and tone mapping processes. DSLR [24] is

trained to regress a low-quality image into a high-quality

one. While it can somewhat enhance the images, it fails

to remove noise (i, u, I). Since the original SID [6] model
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(a) Input (b) Hist. eq. (c) WVM [14] (d) DeepUPE [40] (e) CAPE [25] (f) LIME [20]

(g) HDRCNN [12] (h) DRHT [46] (i) DSLR [24] (j) SID [6] (k) Ground truth (l) Ours

(m) Input (n) Hist. eq. (o) WVM [14] (p) DeepUPE [40] (q) CAPE [25] (r) LIME [20]

(s) HDRCNN [12] (t) DRHT [46] (u) DSLR [24] (v) SID [6] (w) Ground truth (x) Ours

(A) Input (B) Hist. eq. (C) WVM [14] (D) DeepUPE [40] (E) CAPE [25] (F) LIME [20]

(G) HDRCNN [12] (H) DRHT [46] (I) DSLR [24] (J) SID [6] (K) Ground truth (L) Ours

Figure 8. Visual results of state-of-the-art methods and ours on input low-light images (a, m, A). Red boxes indicate the noisy regions

where most existing methods fail. The input images were taken by a Sony camera.

(trained on raw domain) cannot be directly applied to sRGB

images, we re-train it on the sRGB images. We can see that

the SID model tends to remove noise and details, resulting

in blurred images (j, v, J). In contrast, our results (l, x, L)

show that the proposed method can successfully enhance

the image content and details while suppressing noise.

Figure 9 shows results of another three input low-light

images (taken by an iPhone camera). While state-of-the-art

methods generally fail to remove noise and enhancing con-

tents/details at the same time, our method produces visually

more convincing results, even for the more challenging tex-

tured images (l, x). Figures 8 and 9 demonstrate the good

generalization ability of the proposed model/dataset on im-

ages taken by different types of cameras.

Quantitative comparisons. We have also quantitative-

ly compared our method to the state-of-the-art enhancement

methods. As shown in Table 1, the proposed method outper-

forms these existing enhancement methods by a large mar-

gin. Note that we have also pre-processed the input images

before feeding them to two methods [14, 5], by amplify-

ing these image pixel intensities with pre-defined ratios as

in [6] or by applying histogram equalization. However, the

results are the same as those without pre-processing. This

indicates that enhancing noisy low-light images via decom-

posing images into reflectance and illumination is not suit-

able. In contrast, our frequency-based decomposition-and-

enhancement can successfully decouple the image enhance-

ment and denoising problem.

We also compare our method with SID [6], which was

originally proposed to enhance low-light images in the raw

domain, in both sRGB and raw domains. Specifically, in

the sRGB domain, we apply two strategies: directly us-

ing the original SID model trained on raw images (denot-

ed as SID), and using a retrained SID model on sRGB im-

ages in our training set (denoted as SID∗). In the raw do-

main, we retrain our model using the raw data. We can

see that our method outperforms SID [6] in both sRGB

and raw domains. We further compare our method to the

newest method [40] in both sRGB (retrained on our dataset)

and raw domains. These results show that our model is

more effective in enhancing low-light images with noise,

than directly learning the image-to-image [6] or image-to-

illumination [40] regression models.

Finally, we compare our method to different combi-

nations of existing enhancement and denoising methods.

Specifically, we choose one classic denoising method B-
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(a) Input (b) Hist.eq. (c) WVM [14] (d) DeepUPE [40] (e) CAPE [25] (f) LIME [20]

(g) HDRCNN [12] (h) DRHT [46] (i) DSLR [24] (j) SID [6] (k) JieP [5] (l) Ours

(m) Input (n) Hist.eq. (o) WVM [14] (p) DeepUPE [40] (q) CAPE [25] (r) LIME [20]

(s) HDRCNN [12] (t) DRHT [46] (u) DSLR [24] (v) SID [6] (w) JieP [5] (x) Ours

(A) Input (B) Hist.eq. (C) WVM [14] (D) DeepUPE [40] (E) CAPE [25] (F) LIME [20]

(G) HDRCNN [12] (H) DRHT [46] (I) DSLR [24] (J) SID [6] (K) JieP [5] (L) Ours

Figure 9. Visual results of state-of-the-art methods and ours on input low-light images (a, m, A). Red boxes indicate the noisy regions

where most existing methods fail. The input images were taken by an iPhone camera. Results of our method in here as well as in Figure 8

demonstrate the generalization ability of the method on different camera types.

M3D [11] and one recent deep learning based denoising

method xDnCNN [27] to pre-/post-process the low-light

images (in the test set) before/after they are processed by

enhancement method LIME [20]. We choose LIME [20] as

it has the third best performance among the existing meth-

ods in Table 1. Although SID∗ [6] and DeepUPE∗ [40] have

better performance, they are already trained on our dataset

to remove noise. Hence, we do not use them here. Table 2

shows the results. We can see that directly applying ex-

isting denoising methods as a pre-/post-processing step to

enhancement methods does not work well. As noise is al-

ready deeply buried into the image contents and details in

low-light images, separately enhancing and denoising these

images do not perform well. Instead, we suppress the noise

in the low-frequency layer and then enhance the contents

and details adaptively, producing better performances. Fig-

ure 10 shows some visual examples of combining existing

enhancement and denoising methods. We can see that de-

noising followed by enhancement produces blurry results

(e, f), due to the significant removal of image details in the

denoising step. Although enhancement followed by denois-

ing can produce relatively sharper results (g, h) in compari-

(a) Input (b) Hist. eq. (c) LIME [20] (d) Ours

(e) BM3D+ [11] (f) xDnCNN+ [27] (g) +BM3D [11] (h) +xDnCNN [27]

Figure 10. Comparison to different combinations of LIME [20]

and two denoising methods (BM3D [11] and xDnCNN [27]).

“X+” indicates using LIME for post-processing, while “+X” in-

dicates using LIME for pre-processing. Red boxes indicate the

noisy regions where most existing methods fail.

son to (e, f), respectively, the results are more noisy as both

noise and details are enhanced in the enhancement step. It

is also interesting to note that none of these methods can

recover the colors (caused by noise) well, e.g., the purplish

color of the tree. In contrast, our method can produce a

sharp image (d), with noise suppressed and color recovered.
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Input Method PSNR↑ SSIM ↑

sRGB

Hist. eq. 12.08 0.2236

CAPE [25] 15.05 0.2306

JieP [5] 11.93 0.0381

WVM [14] 11.95 0.0382

DeepUPE [40] 14.44 0.2208

DeepUPE∗ [40] 21.55 0.6531

DRHT [46] 11.85 0.0969

HDRCNN [12] 12.64 0.1102

DSLR [24] 17.25 0.4229

LIME [20] 17.76 0.3506

SID [6] 15.35 0.2418

SID∗ [6] 21.16 0.6398

Ours 22.13 0.7172

RAW
SID [6] 28.88 0.7870

DeepUPE [40] 29.13 0.7915

Ours 29.56 0.7991

Table 1. Comparison to the state-of-the-art enhancement methods.

Best performance is marked in bold. Note that an ∗ indicates that

the model is retrained on our sRGB traning set.

Input Method PSNR↑ SSIM↑

sRGB

LIME [20] 17.76 0.3506

LIME [20] + BM3D [11] 17.90 0.3610

LIME [20] + xDnCNN [27] 17.75 0.3511

BM3D [11] + LIME [20] 17.41 0.3273

xDnCNN [27] + LIME [20] 17.75 0.3511

Ours 22.13 0.7172

Table 2. Comparison to different combinations of enhancemen-

t and denoising methods. Best performance is marked in bold.

4.2. Internal Analysis

We begin by studying the effectiveness of the proposed

ACE module. The first two rows of Table 3 show that

removing the ACE module or replacing it by a non-local

block [42] causes a performance drop, as noise can no

longer be filtered out via image decomposition. This veri-

fies the effectiveness of the proposed ACE module in learn-

ing to select beneficial features and suppress harmful fea-

tures before encoding the non-local contexts. Similarly, re-

moving the CDT module also causes a performance drop,

which demonstrates the importance of having a large recep-

tive fields while bridging the gap between the low-light and

enhanced domains. We further note a performance drop

caused by replacing contrast-aware map Ca of the CDT

modules with Ca of the ACE module, which verifies the ne-

cessity of modeling multi-level contrast-aware information

for noisy low-light images. We can also see that incorpo-

rating perceptual loss leads to better results as it provides

regularization in the feature space.

Finally, we study the pipeline choices. We train our mod-

el to learn to enhance images using just one stage (denoted

as Single Shot). We also train our model by directly us-

ing ground truth images to supervise the output of the first

stage (denoted as I
gt
f → Igt), instead of using the ground

truth of the low-frequency layer. Results are shown in the

Input Method PSNR↑ SSIM ↑

sRGB

w/o ACE 21.34 0.6439

ACE → NL [42] 21.49 0.6477

w/o CDT 21.47 0.6410

C
CDT
a → C

ACE
a 21.84 0.7006

w/o perceptual loss 22.03 0.7033

Single Shot 21.63 0.6713

I
gt
f → I

gt 21.76 0.6874

Ours 22.13 0.7172

Table 3. Internal analysis of the proposed method.

(a) Input (b) Hist. eq. (c) Ours

Figure 11. A failure case. When all objects in the image are far

away, our method as well as existing methods may not be able to

select useful contexts from the surrounding areas.

6th and 7th rows. It shows the advantage of learning a

two-stage model over Single Shot. We can also see that

using ground truth of the low-frequency layer to supervise

the first stage produces better results than using the ground

truth images, which verifies the importance of learning the

decomposition-and-enhancement model.

5. Conclusion and Future Work

In this paper, we have studied the noisy low-light image

enhancement problem. We have observed that noise affects

images differently in different frequency layers. Based on

this observation, we propose a novel frequency-based im-

age decomposition-and-enhancement model to adaptively

enhance the image contents and details in different frequen-

cy layers, while at the same time suppressing noise. We

have also presented a network with the proposed Attention

to Context Encoding (ACE) module for adaptively enhanc-

ing the high and low frequency layers, and Cross Domain

Transformation (CDT) module for noise suppression and

detail enhancement. To train our model, we have prepared

a new low-light image dataset. Finally, we have conduct-

ed extensive experiments to verify the effectiveness of our

method against state-of-the-art methods.

Our method does have limitations. It may fail in scenes

with small objects, in which our network may not be able

to extract meaningful contextual information from the sur-

rounding areas in order to recover the contents, as shown in

Figure 11. As a future work, we are interested in extending

our enhancement model to consider semantic layouts of the

scenes and using generative adversarial learning for synthe-

sizing image details.
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