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Abstract

Recently, extensive researches have been proposed to ad-

dress the UDA problem, which aims to learn transferrable

models for the unlabeled target domain. Among them,

the optimal transport is a promising metric to align the

representations of the source and target domains. How-

ever, most existing works based on optimal transport ignore

the intra-domain structure, only achieving coarse pair-wise

matching. The target samples distributed near the edge

of the clusters, or far from their corresponding class cen-

ters are easily to be misclassified by the decision bound-

ary learned from the source domain. In this paper, we

present Reliable Weighted Optimal Transport (RWOT) for

unsupervised domain adaptation, including novel Shrink-

ing Subspace Reliability (SSR) and weighted optimal trans-

port strategy. Specifically, SSR exploits spatial prototypi-

cal information and intra-domain structure to dynamically

measure the sample-level domain discrepancy across do-

mains. Besides, the weighted optimal transport strategy

based on SSR is exploited to achieve the precise-pair-wise

optimal transport procedure, which reduces negative trans-

fer brought by the samples near decision boundaries in the

target domain. RWOT also equips with the discriminative

centroid clustering exploitation strategy to learn transfer

features. A thorough evaluation shows that RWOT outper-

forms existing state-of-the-art method on standard domain

adaptation benchmarks.

1. Introduction

Deep learning recently has achieved remarkable success

in diverse computer vision tasks such as image classifica-

tion, object detection and semantic segmentation with the

help of large-scale labeled datasets [43]. Unfortunately, it

is always expensive and time-consuming to collect exten-

sive amounts of labeled data. To avoid labeling efforts,

domain adaptation [26] serves as a promising solution to

enhance the learning performance on a label-scarce domain

(i.e., target domain) by transferring knowledge from a label-

rich domain (i.e., source domain). The target domain may
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contain data collected from different perspectives or by dif-

ferent sensors, leading to a large domain gap.

For unsupervised domain adaptation, a major line of

work reduces the domain gap by learning domain invariant

feature representation, such as Maximum Mean Discrep-

ancy (MMD) [38, 30], Correlation Alignment (CORAL)

[36, 24] and Kullback-Leiber divergence (KL) [51]. Be-

sides, another promising direction is based on the adversar-

ial training [1, 37], where a discriminator (domain classi-

fier) is trained to distinguish between the source and target

representations. Meanwhile, duo to its ability of encoding

class-structure in distributions, the optimal transport that

minimizes a global transportation effort or cost between dis-

tributions, has been widely used to reduce the domain shift

under complex distributions [5, 33, 47, 40]. However, exist-

ing optimal transport approaches in domain adaptation do

not consider intra-domain structure [44] of both domains,

only achieving coarse pair-wise matching. Moreover, some

images that are significantly dissimilar across domains in

the feature space may cause a gross mismatch during opti-

mal transport procedure, leading to negative transfer.

To address the aforementioned issues, we propose a Re-

liable Weighted Optimal Transport (RWOT) for domain

adaptation. Inspired by the prototypical networks which

has achieved significant performance in domain adaptation

[27], we exploit the prototypical information in the feature

space to mitigate the wrong transport procedure. Besides,

we also take into account the discriminative feature learn-

ing to benefit the adaptation performance, which has been

widely used to learn the deep invariant features [49, 52].

Our proposed RWOT, therefore, consists of Shrinking Sub-

space Reliability (SSR) and weighted optimal transport

strategy, which can be seen in Figure 1. Moreover, we

demonstrate the necessity of shrinking subspace reliability

and the procedure of weighted optimal transport strategy.

RWOT also equips with a discriminative centroid exploita-

tion strategy to improve transfer performance. The main

contributions of this paper are:

(1) We propose shrinking subspace reliability to measure

the sample-level domain discrepancy across domains by ex-

ploiting spatial prototypical information and intra-domain

structure dynamically. The method can be used as a pre-
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Figure 1. An overview of the proposed RWOT approach. Chromatic: Source samples; Gray: Target samples. Colorful imaginary lines:

hyperplane learned from source domain. Red dots: shared class centers. Different kinds of shapes: different classes. (a) An example of

unsupervised domain adaptation, where hard-aligned target samples distributed near the decision boundary, causing negative transfer. (b)

The classification results of previous methods. (c) RWOT, with shrinking subspace reliability and discriminative centroid loss, exploits

spatial prototypical information and intra-domain structure. (d) The final situation, our proposal achieves intra-class compactness and

inter-class separability in the source and target domains. Best viewed in color.

processing step for existing domain adaptation techniques,

improving efficiency significantly.

(2) We devise a weighted optimal transport strat-

egy based on shrinking subspace reliability to achieve

the precise-pair-wise optimal transport, reducing negative

transfer brought by the samples near decision boundaries in

the target domain. A discriminative centroid exploitation

strategy is proposed to learn deep discriminative features.

(3) We analytically demonstrate that the combination of

shrinking subspace reliability and optimal transport strat-

egy can make deep features more distinguished and signif-

icantly enhance robustness and efficacy. Experimental re-

sults show that RWOT works stably in various datasets and

outperforms existing methods.

2. Related work

Most of the discrepancy-based alignment methods are

based on minimizing a divergence that measures the dis-

crepancy between the source and target distributions. A

representative work Maximum Mean Discrepancy (MMD)

[38] aligns the source and target domains. Domain Adap-

tation Network (DAN) [21] utilizes multi-kernel strategies

[11] in computing MMD to obtain a better performance.

Another work Deep Correlation Alignment (Deep CORAL)

[36] aligns the covariance of the source and target fea-

tures. Weighted-MMD (WDAN) [46] introduces class-

specific auxiliary weights into the original MMD to exploit

the class prior probability on the source and target domains.

Recent Joint Discriminative Domain Adaptation (JDDA)

[4] claims that discriminative feature representations can

enhance the performance of domain alignment. Contrastive

Adaptation Network (CAN) [17] optimizes a new metric

to explicitly model the intra-class domain discrepancy and

the inter-class domain discrepancy. Deep Transfer Network

(DTN) [49] utilizes pseudo label in conditional alignment.

Easy-TL [43] programs intra-domain structures and Trans-

ferrable Prototypical Networks (TPN) [27] exploits proto-

typical distance [35] to avoid misclassification. Wang et al.

[44, 42, 41] dynamic evaluate the importance of marginal

and conditional distributions for distribution alignment.

Adversarial learning is another critical category to per-

form domain adaptation. GANs [12] have a generator that

captures data distribution and a discriminator that predicts

whether a sample is from the real data distribution or the

generator. Based on this, to maximally confuse the domain

classifier, Domain Adversarial Neural Network (DANN) [1]

is proposed with a feature extractor. Deep Adversarial Met-

ric Learning [9] considers distance metric in adversarial do-

main adaptation. Later, several extensions were proposed,

such as Multi-Adversarial Domain Adaption (MADA) [28],

and Conditional Domain Adversarial Networks (CDANs)

[22] enable the alignment of multi-modal distributions.

Domain-Symmetric Networks [50] learns invariant features

in the domain adaptation. DANN [48] dynamically aligns

the adversarial representations.

Optimal transport has been applied in domain adaptation

to align the representations in the source and target domains

with associated theoretical guarantees. Wasserstein Dis-

tance Guided Representation Learning (WDGRL) [34] uses

Wasserstein distance as a core loss in promoting similarities

between embedded representations by the dual formulation

of the problem. The most famous attempt is Deep Joint

Optimal Transport (DeepJDOT)[7], which applies the cou-

pling matrix γ to transport the source samples to the target

domain by an estimated mapping, achieving high accuracy

on many transfer tasks. However, only adopting pure square

root as a cost matrix for computing coupling γ will be quite

weak, especially for hard-aligned samples in a more com-

plicated task. Recently, researchers propose a feature selec-

tion procedure [10] that is implemented in optimal transport

to leverage domain shift, but it is mainly based on the en-

tropy regularization that cannot reduce negative transfer.

3. Reliable Weighted Optimal Transport

Most existing works resolve unsupervised domain adap-

tation by matching the shifted marginal distributions of

source and target domains [22, 23]. A sophisticated ap-

proach is to formally define a statistical distance in the prob-
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Figure 2. The architectures of Reliable Weighted Optimal Transport (RWOT), where Gf is the feature generator, Gy is the adaptive

classifier; Lg is the proposed weighted optimal transport loss based on shrinking subspace realibility, Lp is the discriminative centroid

loss, Lcls is the standard cross-entropy loss; α and β are hyper-parameters. The shrinking subspace realibility cost matrix Q is designed

to balance the contribution of spatial prototypical information and intra-domain structures dynamicly during the training: (a) The decision

boundary learned from source domain is not reliable to classify target samples, and the source samples are pushed to the spatial prototypes

of corresponding classes correctly. (b) The decision boundary obtain reliable intra-domain structure of target samples, achieving better

performance. Best viewed in color.

abilistic metric space and learn the optimal transport cou-

pling to minimize that distance [7, 5, 33]. However, despite

the great success, there is a common intrinsic limitation

of this line of work: optimal transport is coarse pair-wise

matching. Each image is reasoned as a whole to be trans-

ferred or not, without exploiting its intra-domain structures.

In this work, following the settings of unsupervised

domain adaptation, we define a source domain Ds =
{(xs

i , y
s
i )}

ns

i=1 with ns labeled samples and a target domain

Dt = {(xt
i)}

nt

i=1 with nt unlabeled samples. The source

and target domains follow joint probability distributions p
and q respectively, and note that p 6= q. The discrepancy be-

tween these two distributions raises the key technical chal-

lenge of domain adaptation. The goal of this paper is to de-

sign a deep neural network that enables end-to-end training

of a transferable feature generator and an adaptive classifier

to minimize the distribution discrepancy across domains.

Following earlier works [7, 4], we choose two-stream

siamese CNN architecture with shared weights. We pro-

pose Reliable Weighted Optimal Transport (RWOT) for

unsupervised domain adaptation, which is an end-to-end

method that learns a feature generator Gf and a classifier

Gy , as illustrated in Figure 2. The main parts of RWOT

are Shrinking Subspace Reliability (SSR) and weighted op-

timal transport strategy. The shrinking subspace reliability

exploits spatial prototypical information and intra-domain

structures, which is demonstrated to be of the great benefit

of domain alignment and final classification. The weighted

optimal transport strategy based on SSR achieves precise

pair-wise matching to reduce negative transfer. Moreover,

RWOT can learn discriminative transfer information by pro-

posed centroid loss. In the following sections, we present

the details of RWOT.

3.1. Shrinking Subspace Reliability

In a previous study [4], domain adaptation methods ig-

nore the situation that target samples distributed near the

edge of the clusters, or far from their corresponding class

centers are easily to be misclassified by the hyperplane

learned from the source domain. Inspired from self-labeling

for domain adaptation [43], we exploit spatial prototypes

of each class learned from labeled source data to assign

the target samples a “pseudo” label. Considering nega-

tive transfer caused by target samples distributed near the

edge of clusters, we propose Shrinking Subspace Reliabil-

ity (SSR) to measure the sample-level domain discrepancy

across domains, including spatial prototypical information

to normalize prototypical distance and intra-domain struc-

ture computes the probability of target sample i belonging

to the class k.

For quantifying spatial prototypical information in both

domains, we define c
s as the class centers of deep features

in the source domain, and c
s ∈ R

C×d, where C denotes the

number of classes in Ds. d is the number of output neurons

in the bottleneck layer. The spatial prototypical information

is defined by matrix D ∈ R
n×C as:

D(i, k) =
e−d(Gf (x

t
i),c

s
k))

∑C
m=1 e

−d(Gf (xt
i),c

s
m))

, (1)

where d(Gf (x
t
i), c

s
k)) is the distance between the target

sample Gf (x
t
i) and k-th source class center csk, where k ∈

{1, 2, ..., C}. n represents the batch-size for training. Com-

pared with single kernel methods to measure the discrep-

ancy of both domains monotonously, we focus on multiple

kernels [13] to enhance the transferability of feature rep-

resentation for deep domain adaptation comprehensively.

Therefore, the multi-kernel formulation of d(Gf (x
t
i), c

s
k))

can be defined as:

d(Gf (x
t
i), c

s
k)) =K(csk, c

s
k)− 2K(Gf (x

t
i), c

s
k)+

K(Gf (x
t
i), Gf (x

t
i)),

(2)

The characteristic kernel associated with the feature map φ,

the kernel K(xs,xt) = 〈φ(xs), φ(xt)〉, is defined as the
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convex combination of m PSD kernels {Ku}:

K =

{

K =

m
∑

u=1

βuKu :

m
∑

u=1

βu = 1, βu ≥ 0, ∀u

}

, (3)

where K denotes the multi-prototypical kernel set. The con-

straints on coefficients {βu} are imposed to guarantee that

the derived multi-kernel K is characteristic. As studied the-

oretically in Gretton et al. [13], the multi-kernel K can uti-

lize different kernels to ensure lower test error, leading to

a principled approach for optimal prototypical distance rep-

resentations.

To convey the likelihood of intra-domain information by

the pseudo classification probability of target samples, we

define the sharpen probability annotation matrix M as:

M(i, k) = P

(

y = k|Softmax

(

Gy(Gf (x
t
i))

τ

))

, (4)

where M ∈ R
n×C , and M(i, k) denotes the probability of

the target samples i belongs to the label class k. τ is the

temperature hyper-parameter [15] to obtain discriminative

probability and reduce domain shift.

The purpose of shrinking subspace reliability is to quan-

titatively evaluate the importance of both spatial prototypi-

cal information, D(i, k), and the intra-domain structure of

target samples, M(i, k). Formally, SSR is defined by Q as:

Q(i, k) =
dA(k)D(i, k) + (2− dA(k))M(i, k)

∑C
m=1

(

dA(m)D(i,m) + (2− dA(m))M(i,m)
)
,

(5)

where Q(i, k) weights the uncertainty of a target sample

i belonging to class k. The motivation for the numera-

tor of Eq 5: while both D(i, k) and M(i, k) measure the

likelihood of target sample i having a label k, D(i, k) is

a distance measuring target sample i in the deep feature

space to the class center csk defined in the source domain,

and M(i, k) is measured by the classifier Gy . During the

early training stage, D(i, k) is much more reliable than the

pseudo label given by classifier Gy . Fortunately, we can use

the A -distance dA to adjust the weights.The A -distance,

dA(k)(D
s
k,D

t
k) = 2(1− 2ǫ(hk)), followed from the defini-

tion of [3, 44], measures the discrepancy between the source

and target domains. ǫ(hk) is the error of a linear SVM clas-

sifier hk discriminating the two domains. In the context of

transfer learning, during the early training stage, the target

domain is expected to be quite different from the source do-

main in the deep feature space, and one can have a near

perfect classifier hk, or ǫ(hk) → 0 and dA(k) → 2. The

second term of numerator in Eq 5 vanishes, and the net-

work is mainly trained through the first term. Finally, when

the distributions of two domains coincide with each other,

the classifier hk cannot differentiate between two domains,

and thus ǫ(hk) = 0.5 and dA(k) = 0. Now we can rely on

Gy , and the second term M(i, k) is the main contributor.

The dynamic process is shown in Figure 2.

3.2. Weighted Optimal Transport

Optimal transport for domain adaptation performs the

alignment of the sample representations in the source and

target domains. However, existing optimal transport strate-

gies fail to utilize the intra-domain structures, causing nega-

tive transfer arising from ambiguity coarse pair-wise match-

ing. Therefore, to reduce the wrong pair-wise transport

procedure, we devise the weighted optimal transport strat-

egy by exploiting the proposed SSR. The optimization

of weighted optimal transport is based on weighted Kan-

torovich problem [2] which seeks for a general coupling

γ ∈ X (Ds,Dt) between Ds and Dt:

γ
∗ = argmin

γ∈X (Ds,Dt)

∫

Ds×Dt

R(xt
, y(xs))C(xs

,x
t) dγ(xs

,x
t),

(6)

whereX (Ds,Dt) denotes the probability distribution be-

tween Ds and Dt. y(xs) is the label of source data x
s

and R(xt, y(xs)) represents the adaptive matrix based on

deep reliable prior knowledge according to the intra-domain

structures. The cost function matrix C(xs, xt) = ||xs −
x
t||k denotes the cost to move probability mass from x

s

to x
t, where k = 2 [7, 6]. In our optimal transport prob-

lem, the weighted optimal transport strategy needs to esti-

mate the adaptive transport coupling γ∗ between two distri-

butions and achieve feature transformation by minimizing

the cost of γ∗. Here is the discrete reformulation:

γ
∗ = argmin

γ∈X (Ds,Dt)
〈γ,Z〉F = argmin

γ∈X (Ds,Dt)
〈γ,R · C〉F , (7)

where γ∗ ∈ R
n×n is the weighted ideal coupling matrix

between the source and target domains, representing as a

joint probability measure. 〈·, ·〉F is the Frobenius dot prod-

uct and Z ∈ R
n×n is the adaptive cost function matrix.

Choosing different weighted cost matrix will bring totally

different pairwise matching [8]. It is crucial to utilize deep

reliable prior knowledge R(x, y).
Considering SSR cost matrix Q which evaluates the spa-

tial prototypical information and the intra-domain structure

of target samples, we first propose a precise-pair-wise op-

timal transport mechanism by exploiting SSR. The discrete

formulation of adaptive cost matrix Z can be defined as:

Z(i, j) =
∣

∣

∣

∣

∣

∣
Gf (x

s
i )−Gf (x

t
j)
∣

∣

∣

∣

∣

∣

2
· (1−Q(j, ysi )), (8)

The further constraints of the (1 − Q(j, ysi )) help to re-

solve the pairing ambiguity of traditional optimal transport

strategy. As the bottleneck layer encodes both semantic

and spatial information, discriminative representations al-

low a speedy computation of a transportation coupling with

significant performance gains. With the above analysis,

weighted optimal transport optimizes jointly in this feature

space by reducing sample-wise distance of the same classes.
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Then, the solution to this problem can be achieved by min-

imizing the following objective function:

Lg =
∑

i,j

γ∗
i,j(||Gf (x

t
i)−Gf (x

s
j)||

2

+ F1(Softmax(Gy(Gf (x
t
i)), y

s
j )),

(9)

where F1 is the cross-entropy function.

3.3. Discriminative Centroid Exploitation

The motivation of discriminative domain alignment is

that samples belonging to the same class should be as closer

as possible in the feature space. Inspired by the Center Loss

[45], we propose discriminative centroid loss Lp for unsu-

pervised domain adaptation as below:

Lp =

n
∑

i=1

∣

∣

∣

∣Gf (x
s
i )− c

s
ys
i

∣

∣

∣

∣

2

2

+

C
∑

k=1

n
∑

i=1

Q(i, k)
∣

∣

∣

∣

∣

∣
Gf (x

t
i)− c

s
k

∣

∣

∣

∣

∣

∣

2

2

+ λ

C
∑

k1,k2=1,k1 6=k2

max(0, ν −
∣

∣

∣

∣c
s
k1

− c
s
k2

∣

∣

∣

∣

2

2
),

(10)

where λ is a hyper-parameter and ν is a constraint margin to

control the distance between the paired inter-class samples.

And c
s
ys
i
, as the ysi -th class center in the source domain, can

be approximately evaluated by averaging deep features of

several batch-size samples as

c
s
k =

1

S

Nb
∑

i=1

Gf (x
s
i )φ(y

s
i , k), (11)

where φ(ysi , k) = 1 if ysi = k, otherwise φ(ysi , k) = 0.

S =
∑Nb

i=1 φ(y
s
i , k) and k ∈ {1, 2, · · · , C} is the class in-

dicator. Ideally the class centers should be calculated based

on all the samples while the procedure is time-consuming.

Herein, we compute the class centers using Nb samples,

where Nb = mb × n, and mb ∈ {3, 4, 5} is recommended.

3.4. Training

In this section, we introduce the training process of

RWOT. We first define the standard classification loss of

the source domain to train a classifier as follow:

Lcls =
1

ns

ns
∑

i=1

F1(Gy(Gf (x
s
i )), y

s
i ), (12)

Considering weighted optimal transport based on shrinking

subspace reliability and discriminative centroid loss, the to-

tal training objective of RWOT can be described as:

min
Gy,Gf

Lcls + αLp + βLg, (13)

where α, β denote hyper-parameters that respectively trade-

off the contribution of weighted optimal transport strat-

egy and discriminative domain alignment under different

datasets. The training process is shown in Algorithm 1.

Algorithm 1 The optimization strategy of RWOT

Require: source data as Ds = {(xs
i , y

s
i )}

ns

i=1, target data

as Dt = {(xt
i)}

nt

i=1. T is set as the total number of

training iterations, and n represents the batch-size for

training. Nb is the number of samples to compute the

source class centers in Eq 11.

1: Initialize two-stream CNN architectures.

2: for i = 1 to T do

3: Randomly choose Nb source samples {(xs
i , y

s
i )}

Nb

i=1.

4: Calculate class centers c
s
j in the source domain ac-

cording to the Eq.(11).

5: Randomly choose source samples {(xs
i , y

s
i )}

n
i=1 ∈

Ds and target samples {(xt
i)}

n
i=1 ∈ Dt.

6: Calculate spatial prototypical matrix D following

Eq.(1) and sharpen probability annotation matrix M

following Eq.(4). Update shrinking subspace relia-

bility cost matrix Q following Eq.(5).

7: Calculate Lg following Eq.(9), Lp according to

Eq.(10), and Lcls according to Eq.(12).

8: Update parameters of Gy and Gf following Eq.(13).

9: end for

4. Experiment

We conduct experiments to evaluate our approach with

state-of-the-art domain adaptation methods.

4.1. Setup

Digits contains three standard digit classification datasets:

MNIST [19], USPS[16] and SVHN [25]. Each dataset

consists of 10 classes of digits, ranging from 0 to 9. We

follow previous work [4] to construct three transfer tasks:

USPS→MNIST, MNIST→USPS and SVHN→MNIST.

Office-31 [32] is a standard domain adaptation dataset

which contains 4110 images from 31 categories with three

domains: Amazon (A), with images collected from ama-

zon.com, Webcam (W) and DSLR (D), with images shot

by web camera and digital SLR camera respectively. By

permuting the three domains, we obtain six transfer tasks:

A→W, A→D, D→W, W→D, D→A and W→A.

ImageNet-Caltech is a large dataset built with ImageNet-

1K [31] and Caltech-256. They share 84 classes, thus

we select the same classes in both domains and form two

transfer tasks: ImageNet (84) → Caltech (84) and Caltech

(84)→ ImageNet (84).

Office-Home [39] is a well organized, standard benchmark

for visual domain adaptation, consisting of 15,500 images
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Table 1. Classification accuracy (%) on Office-31 and ImageNet-Caltech dataset for unsupervised domain adaptation (ResNet)

Method
Office-31 ImageNet-Caltech

Avg
A→W A→D D→W W→D D→A W→A Avg I→C C→I

ResNet [14] 70.0±0.3 65.5±0.4 96.1±0.2 99.3±0.3 62.8±0.4 60.5±0.1 75.7 91.5±0.3 78.0±0.3 84.8

DeepCORAL [36] 83.0±0.1 71.5±0.2 97.9±0.2 98.0±0.2 63.7±0.3 64.5±0.2 79.8 92.0±0.4 85.5±0.2 88.8

DANN [1] 81.5±0.3 74.3±0.2 97.1±0.1 99.6±0.4 65.5±0.2 63.2±0.2 80.2 96.2±0.3 87.0±0.1 91.6

ADDA [37] 86.2±0.3 78.8±0.4 96.8±0.2 99.1±0.2 69.5±0.1 68.5±0.1 83.2 96.5±0.3 89.1±0.2 92.8

CDAN [22] 94.1±0.1 92.9±0.2 98.6±0.1 100.0±0 69.3±0.1 71.0±0.3 87.7 97.7±0.3 91.3±0.3 94.5

TPN [27] 91.2±0.3 89.9±0.2 97.7±0.2 99.5±0.1 70.5±0.2 73.5±0.1 87.1 96.1±0.2 90.8±0.3 93.5

DeepJDOT [7] 88.9±0.3 88.2±0.1 98.5±0.1 99.6±0.2 72.1±0.4 70.1±0.4 86.2 95.0±0.1 85.3±0.2 90.2

RWOT-M 92.5±0.1 89.5±0.2 99.2±0.2 100.0±0 75.1±0.2 74.5±0.2 88.5 95.9±0.1 90.1±0.2 93.0

RWOT-D 93.9±0.1 92.4±0.3 99.4±0.3 100.0±0 76.2±0.2 76.1±0.3 89.6 97.4±0.3 92.4±0.2 94.9

RWOT-C 94.7±0.2 94.0±0.2 99.4±0.2 100.0±0 77.1±0.2 77.4±0.3 90.4 97.7±0.1 92.7±0.2 95.2

RWOT 95.1±0.2 94.5±0.2 99.5±0.2 100.0±0 77.5±0.1 77.9±0.3 90.8 97.9±0.1 92.7±0.2 95.3

Table 2. Classification accuracy (%) on VisDA-2017 dataset for unsupervised domain adaptation (ResNet)

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

ResNet [14] 70.6 51.8 55.8 8.9 67.9 7.6 48.3 54.5 71.1 27.9 64.6 5.6 54.5

DANN [1] 75.9 70.5 65.3 17.3 72.8 38.6 58.0 77.2 72.5 40.4 70.4 44.7 58.6

SWD [20] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

TPN [27] 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4

DeepJDOT [7] 85.4 73.4 77.3 87.3 84.1 64.7 91.5 79.3 91.9 44.4 88.5 61.8 77.4

RWOT 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0

Table 3. Classification accuracy (%) on Digits dataset for unsuper-

vised domain adaptation (LeNet)

Method S→M M→U U→M Avg

LeNet [19] 68.3±0.3 65.3±0.5 66.2±0.2 66.6

DANN [1] 85.5±0.4 84.9±0.6 86.3±0.3 85.6

ADDA [37] 89.2±0.4 85.4±0.4 96.5±0.4 90.4

DeepCORAL [36] 88.3±0.2 84.1±0.3 93.6±0.2 88.7

DeepJDOT [7] 96.1±0.3 96.3±0.5 96.7±0.2 96.4

RWOT-M 97.2±0.2 97.5±0.3 96.8±0.4 97.1

RWOT-D 97.9±0.2 98.0±0.1 97.3±0.3 97.7

RWOT-C 98.5±0.1 98.5±0.2 97.5±0.2 98.1

RWOT 98.8±0.1 98.5±0.2 97.5±0.2 98.3

in 65 object classes in office and home settings, with four

dissimilar domains: Artistic images (Ar), Clip Art (Cl),

Product images (Pr) and Real-World (Rw).

VisDA-2017 [29] is a large-scale computer vision dataset

with two domains: Synthetic, renderings of 3D mod-

els from different angles and different lighting conditions;

Real, real-world images. It has 280K images in 12 classes.

This scale brings challenges to domain adaptation.

We compare the proposed RWOT model with state-of-

the-art domain adaptation methods: (1) ResNet-50 [14]. (2)

Domain Adversarial Neural Network (DANN) [1] matches

different domains by making them indistinguishable for

a domain discriminator. (3) Adversarial Discriminative

Domain Adaptation (ADDA) [37] designs a robust two-

stage unsupervised domain adaptation model based on ad-

versarial learning objectives. (4) Deep Correlation Align-

ment (DeepCORAL) [36] applies correlational matrix for

marginal alignment in deep domain adaptation. (5) Con-

ditional Domain Adversarial Network (CDAN) [22] de-

signs a conditional alignment network based on adversar-

ial learning. (6) Deep Joint Distribution Optimal Transport

(DeepJDOT) [7] adapts optimal transport strategy in deep

domain adaptation. (7) Transferrable Prototypical Network

(TPN) [27] explores the prototypical information for dis-

criminative feature alignment. (8) Sliced Wasserstein Dis-

crepancy (SWD) [20] utilizes the Wasserstein Distance in

domain alignment.

4.2. Implementation Details

Standard protocols for unsupervised domain adaptation

have been followed. For Office-31 and VisDA dataset,

ResNet-50 [14] is used as the backbone network and the

models are fine-tuned from ResNet-50 pretrained on Ima-

geNet. For experiments on digits dataset, we use the sam-

ple LeNet architecture following previous work [4]. We

perform five random experiments and record the averaged

accuracy for all transfer tasks.

For RWOT, we adopt a Gaussian kernel K(a, b) =
exp(−||Gf (a)−Gf (b)||/σ) with the bandwidth σ set to the

median pair-wise distances on the training data. Following

existing works [21, 13], we consider a family of m Gaussian

kernels {ku}
m
u=1 by varying bandwidth σu between 2−8σ

and 28σ with a multiplicative step-size of 2
1

2 . The multi-

kernel strategy can measure prototypical distances and cap-

ture useful transferable information. We use all labeled
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Figure 3. The t-SNE visualization of SVHN→MNIST and A→D tasks. Figure (a-d) represents category information (Each color denotes

a class). Figure (e-h) represents domain information (Blue: Source domain; Red: Target domain).

source examples and unlabeled examples for training.

We optimize the network by the Stochastic Gradient De-

scent (SGD) optimizer with a momentum of 0.9 and batch-

size 128, namely total 256 images from the source and

target domains. The learning rate and progressive train-

ing strategies are the same as [7]. Note that λ, as the

hyper-parameter in centroid clustering, is set to 0.001 and

the constraint margin ν is fixed as 50 throughout experi-

ments. The constraint temperature parameter τ is fixed as

0.5. As for trade-off hyper-parameters α ∈ [10−3, 1] and

β ∈ [10−2, 10], we select α = 0.01 and β = 0.1 for all

transfer tasks. And we choose mb = 4 for class center

computation. In our experiments, we compare the average

accuracy of each method on five random experiments.

4.3. Result and Discussion

The unsupervised adaptation results on six Office-31 and

two ImageNet-Caltech transfer tasks are reported in Table

1. For a fair comparison, the results for most comparison

methods are from their original papers. We can observe that

RWOT significantly outperforms all previous methods on

most tasks. It is worth noting that our proposal improves the

classification accuracy substantially on hard transfer tasks,

e.g. A→D and D→A, and achieves comparable classifica-

tion performance on easy transfer tasks, e.g. D→W and

W→D, where source and target are similar. Compared with

DeepJDOT, the proposed framework exploits spatial proto-

typical information and aligns discriminative representation

of each class centers of both domains, achieving intra-class

compactness and inter-class separability.

The results on VisDA-2017 are shown in Table 2. Due

to the large domain gap between the source and target

domains, we observe that the comparison methods obtain

poor performance in some classes. The RWOT approach

achieves performance boost in total, indicating that our ar-

chitecture of reliable weight optimal transport via SSR is

able to transfer more dissimilar categories. Considering the

large size of VisDA-2017 dataset, our proposal gains signif-

icant improvement.

We further compare RWOT with previous approaches on

the Digits dataset, as reported in Table 3. In contrast to

Office-31 datasets, Digits dataset has a much larger domain

size. We observe that RWOT overpasses all comparison

methods on most transfer tasks and achieves almost state-

of-the-art performance. It is remarkable that our proposal

promotes the classification accuracy substantially on hard

transfer tasks, e.g. SVHN→MNIST, where the source and

target domains are substantially different (in scale, back-

ground clutter, blurring, slanting). The significant results

suggest that RWOT is robust to a large domain gap and able

to learn more transferable representations for unsupervised

domain adaptation. Due to the limit of space, the results of

Office-Home and ImageNet-Caltech are shown in the Sup-

plementary Material.

4.4. Analysis

Ablation Study. To tooth apart the separate contribu-

tions of the weighted optimal transport strategy and dis-

criminative centroid loss, we compare RWOT with Deep-

JDOT and three variants of RWOT on Office-31 and Dig-

its datasets: (1) RWOT-M, the variant only with reliable

intra-domain structure (Ls + βLg , Q=M). (2) RWOT-

D, the variant only with spatial prototypical information

(Ls + βLg , Q=D). (3) RWOT-C, the variant without cen-

troid loss (Ls + βLg). RWOT-C without SSR is essen-

tially DeepJDOT. Since RWOT-C and all the variants of

RWOT outperform DeepJDOT in each task of our exper-

iments significantly, and RWOT-C works better on those

difficult tasks than RWOT-M and RWOT-D, it demonstrates

that SSR weighted optimal transport is vital to match the
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Figure 4. Analysis of domain discrepancy and model parameter w.r.t. α and β on A→D task.
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Figure 5. Comparison between RWOT and other state-of-

the-art approaches in the convergence performance on the

SVHN→MNIST (left) and the A→D (right) tasks.

source and target samples associated with the same class.

Moreover, RWOT also improves with a large room over all

three variants and DeepJDOT, validating the complement of

weighted optimal transport strategy and discriminative cen-

troid loss.

Feature visualization. To show the feature transfer-

ability, we visualize the t-SNE embeddings [18] of the

bottleneck representation by DeepJDOT and RWOT on

SVHN→MNIST and A→D tasks. Figure 3(a)-3(c) dis-

play that the features learned by DeepJDOT for different

categories are mixed up. Figure 3(e)-3(g) shows that the

domains are not well aligned while even worse, the tar-

get samples are aligned to the entire source data with pos-

sibly wrong classes, causing negative transfer. Note that,

Figure 3(f)-3(h) show that the representations generated by

RWOT achieves exactly 31 clusters with clear boundaries

on A→D task. The significant visualization results suggest

that our proposal is able to match the complex structures

of the source and target domains and maximize the margin

between different classes.

Distribution Discrepancy. The domain adaptation the-

ory [3] suggests proxy A-distance as a measure of cross-

domain discrepancy. We adopt dA(i)(D
s
i , D

t
i) = 2(1 −

2ǫ(hi)) to analyze the distance between two domains. Note

that, ǫ(hi) is the generalization error of a linear classifier h
discriminating the source domain Ds

i and the target domain

Dt
i [22]. Figure 4(a) demonstrates the maximum discrep-

ancy (maxi dA(i)) and average discrepancy (avgidA(i)) on

A→D task with the features of Source only, DeepJDOT,

CDAN, TPN and RWOT. A much smaller discrepancy of

either maximum or average has been observed by using

RWOT features than compared approach features, which

implies an effective reduction in domain gap. Figure 4(b)

shows the convergence performance of our approach via

A-distance of the training process on A→D. We observe

that RWOT achieves rapid convergence performance and

significantly lower A-distance due to it considers the intra-

domain structure of the same classes in training.

Parameter Sensitivity. We evaluate the effects of the

parameter α, β which balances the contribution of weighted

optimal transport strategy and discriminative centroid loss,

respectively. Figure 4(c) shows the variation of average ac-

curacy as α or β on A→D task. We find that the accuracy

increases first and then decreases as α or β increases, which

demonstrates a proper trade-off can improve transfer perfor-

mance. The wide-range significant performances validate

the robustness and flexibility of RWOT.

Convergence. To illustrate the convergence of RWOT,

we evaluate the test errors of all comparison methods on

SVHN→MNIST and A→D tasks, as shown in Figure 5.

The result reveals that our achieves stable convergence per-

formance and significantly lower test error on the target do-

main. What is more, the trend of convergence curve sug-

gests that RWOT considers spatial prototypical information

and intra-domain structure. Such a phenomenon implies

that RWOT can be trained efficiently and stably than pre-

vious domain adaptation methods.

5. Conclusions

This paper presented Reliable Weighted Optimal Trans-

port (RWOT) for unsupervised domain adaptation with

powerful Shrinking Subspace Reliability (SSR) and dis-

criminative centroid loss. It exploits spatial prototypical

information and intra-domain structure to reduce negative

transfer brought by the samples near decision boundaries in

the target domain. The proposed centroid loss also substan-

tially enhances the performance of the hard-aligned samples

in the more difficult transfer tasks. Comprehensive exper-

iments show that our proposal outperforms state-of-the-art

results on various domain adaptation datasets.
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