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Abstract

Deep Convolutional Neural Networks (CNNs) have

achieved remarkable results on Single Image Super-

Resolution (SISR). Despite considering only a single degra-

dation, recent studies also include multiple degrading ef-

fects to better reflect real-world cases. However, most of

the works assume a fixed combination of degrading effects,

or even train an individual network for different combi-

nations. Instead, a more practical approach is to train

a single network for wide-ranging and variational degra-

dations. To fulfill this requirement, this paper proposes a

unified network to accommodate the variations from inter-

image (cross-image variations) and intra-image (spatial

variations). Different from the existing works, we incor-

porate dynamic convolution which is a far more flexible al-

ternative to handle different variations. In SISR with non-

blind setting, our Unified Dynamic Convolutional Network

for Variational Degradations (UDVD) is evaluated on both

synthetic and real images with an extensive set of varia-

tions. The qualitative results demonstrate the effectiveness

of UDVD over various existing works. Extensive experi-

ments show that our UDVD achieves favorable or compa-

rable performance on both synthetic and real images.

1. Introduction

Single image super-resolution (SISR) has posed a great

challenge of image quality in the recent advance of com-

puter vision. The goal of SISR is to reconstruct a High-

Resolution (HR) image from a Low-Resolution (LR) image.

This inverse property makes it a highly ill-posed problem.

Deep Convolutional Neural Networks (CNNs) [1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14] have been widely adopted to

solve SISR problem, and achieve significant success. Nev-

ertheless, most of the methods assume a single fixed com-

bination of degrading effects, e.g., blurring and bicubicly

downsampling. Such assumption limits their capability to

handle practical cases with multiple degradations.

Several CNN base methods [15, 17, 18, 19, 20] are pro-

posed in the context of SISR with multiple degradations.

These methods address this problem with very diverse set-

tings and formulations. Shocher et al. [15] train a small

image-specific network to deal with different degradations
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Figure 1. The SISR problem with variational degradations. Image

“castle (102061)” in BSD100 [16] with scale factor 2 is used. The

HR image applies Gaussian blur with variant kernel width ε, bicu-

bicly downsampling and white Gaussian noise with variant level σ

to generate LR image.

for a certain image. In this approach, an individual network

has to be trained whenever there is variation of degrada-

tions, e.g., different degrading effects across images. To

address the problem of variational degradations, Zhang et

al. [17] propose SRMD and train a single network to han-

dle multiple variations, including blur and noise. Note that

the types of degrading effect are predefined, which is also

known as non-blind setting. To the best of our knowledge,

SFTMD [18] is one of the most recent works for blind set-

ting, which proposes Spatial Feature Transform (SFT) and

Iterative Kernel Correction (IKC) to deal with a limited set

of blind degradations. Following the most related work,

SRMD [17], this paper adopts the same setting and formu-

lation in which a single unified network is trained for varia-

tional degradations.

To handle variations of degrading effects, a unified net-

work is expected to accommodate two types of variations,

cross-image variations (inter-image) and spatial variations

(intra-image). Fig. 1 illustrates an example of the problem

of variational degradations in SISR. In Fig. 1, different de-

grading effects are applied to different regions of a bench-

marking image in BSD100 [16]. Compare to the meth-

ods trained with a fixed degradation setting, RCAN [14]

and ZSSR [15], the proposed method achieves similar qual-

ity (red patches) while effectively adapt to other variations

(green, purple and blue patches in Fig. 1). On the other

hand, in RCAN [14] and ZSSR [15], unsatisfying quality
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can be observed due to its unawareness of variations. Fur-

ther discussions and comparisons with a wide range of ex-

isting works will be addressed in Section 4.

Different from the most directly comparable approach,

SRMD [17], this paper exploits dynamic convolutions to

better solve the non-blind SISR problem with variational

degradations. Dynamic convolution is a far more flexi-

ble operation than the standard one. A standard convolu-

tion learns kernels that minimize the error across all pixel

locations at once. While, dynamic convolution uses per-

pixel kernels generated by the parameter-generating net-

work [21]. Moreover, the kernels of standard convolution

are content-agnostic which are fixed after training. In con-

trast, the dynamic ones are content-adaptive which adapt to

different input even after training. By the aforementioned

properties, dynamic convolution demonstrates itself a bet-

ter alternative to handle variational degradations. In this

paper, we incorporate dynamic convolutions and propose

a Unified Dynamic Convolutional Network for Variational

Degradations (UDVD).

The contributions of this work are summarized as fol-

lows: (1) We propose UDVD, a unified dynamic convolu-

tional network for non-blind SISR with variational degra-

dations. (2) We further propose two types of dynamic con-

volutions to improve performance. And we integrate multi-

stage loss to gradually refine images throughout the consec-

utive dynamic convolutions. (3) We perform comprehen-

sive analysis of the performance impact of dynamic con-

volutions and investigate a number of configurations of dy-

namic convolutions. Extensive experiments show that the

proposed UDVD achieves favorable or comparable perfor-

mance on both synthetic and real images.

This paper is organized as follows. Section 2 discusses

related works. Section 3 introduces the proposed UDVD

and its implementation details. Section 4 presents experi-

mental results. Conclusions are discussed in Section 5.

2. Related Work

Single Image Super-Resolution. In the past few years,

various CNNs based techniques had been proposed for

SISR. Among these works, SRCNN [1] was the first to

adopt a three-layer CNN architecture and achieved supe-

rior performance against the previous non-CNN works. In-

spired by SRCNN, Kim et al. proposed a deeper network

VDSR [2] which contains 20 convolution layers and added

global residual connection for residual learning [22]. The

authors in [3, 4, 5] investigated the use of recursive blocks

to increase the depth with parameter sharing. However, the

bicubicly interpolated LR images used in these methods

cause additional computation cost. To address this prob-

lem, FSRCNN [9] and ESPCNN [10] directly mapped LR

images to HR images by adding transpose convolution lay-

ers and sub-pixel convolution layers at the end of the net-

work. To cope with the ever decreasing of input resolution,

EDSR [11] and RDN [12] leveraged an even larger model.

DBPN [13] further proposed iterative upsample and down-

sample unit for large scaling factors. Recently, RCAN [14]

integrated residual-in-residual structure and channel atten-

tion mechanism to weight channel-wise features.

Multiple Degradations. Among the studies of SISR,

most of the works were trained on a single and fixed degra-

dation e.g., bicubic downsampling, which strongly lim-

its the applicability in practical scenarios. In the context

of multiple and diverse degradations, Shocher et al. [15]

trained a small image-specific network to deal with differ-

ent degradations for a certain image. The authors in [19, 20]

used Generative Adversarial Networks (GANs) to tackle

degradations in an unsupervised way. Zhang et al. [17] pro-

posed SRMD, a single network to handle multiple degra-

dations, including blur and noise. Gu et al. [18] proposed

SFTMD, and applied Spatial Feature Transform (SFT) and

Iterative Kernel Correction (IKC) for a subset of blind

degradations. Different from the most directly comparable

approach, SRMD [17], we exploit dynamic convolutions

to better solve the SISR problem with variational degrada-

tions. When compared to SRMD [17], the proposed method

achieves favorable performance on both synthetic and real

images.

Dynamic Kernel Network. In recent researches, dy-

namic kernels in convolution layer had been widely-used in

many applications. Brabandere et al. [21] firstly exploited

parameter-generating network to generate dynamic kernels

for every pixel. Dynamic kernel network had made the

trained network more flexible and gained successes in var-

ious applications, such as denoising [23, 24, 25, 26], video

super-resolution [27] and video interpolation [28, 29]. This

paper adopts a simple fully-convolution backbone to predict

per-pixel kernels for dynamic convolutions. With the exper-

iments in Section 4, this paper validates that the flexibility

of dynamic convolutions can be used to tackle variational

degradations of SISR.

3. Proposed Method

In this section, the problem of variational degradations

of SISR is formulated. We then introduce the architecture

and implementation details of the proposed UDVD. Next,

the design of different types of dynamic convolutions and

multistage loss are further discussed.

3.1. Problem Formulation

This paper focuses on SISR with the degrading effects,

including blurring, noise and downsampling. These degrad-

ing effects can simultaneously happen to a practical use

case [30]. The degradation process is formulated as:

ILR = (IHR ⊗ k) ↓s + n, (1)
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Figure 2. The network architecture of the proposed UDVD framework.

where IHR and ILR indicates HR and LR image respec-

tively, k represents a blur kernel, n stands for additive noise,

⊗ marks convolution operation, and ↓s denotes downsam-

pling operation with scale factor s. We consider Isotropic

Gaussian blur kernel, which is one of the widely used ker-

nels in recent studies [17, 18, 30]. For additive noise,

most of the studies adopt Additive White Gaussian Noise

(AWGN) with covariance (noise level) [17, 18]. Bicubic

downsampler is considered for downsampling operation.

By controlling the parameters of degrading effects, one can

synthesize more realistic degradations for SISR training.

Non-blind setting. In this paper, a non-blind setting is

adopted. Assume given ground truth degradations, non-

blind results provide the upper bounds for blind methods

in which the degradations are estimated. Such bounding

observation are supported as shown by Table 2 of [15], Ta-

ble 1 of [18] and Table 1 of [20]. As mentioned above,

improvements in non-blind setting elevate the performance

upper bound for blind methods [18, 20]. Any degradation

estimation methods can be prepended to extend our method

on blind setting.

3.2. Unified Dynamic Convolutional Network for
Variational Degradation (UDVD)

The framework of the UDVD is illustrated in Fig. 2. The

framework consists of a feature extraction network and a

refinement network. The feature extraction network man-

ages to extract high-level features of the input image, such

as global context, local details and so on. The refinement

network is then learn to enhance and upsample the image

together with the extracted high-level features.

Training with Variational Degradations. Given a HR

image, the degrading process is executed as follows, apply-

ing isotropic Gaussian blur kernel of size p × p, bicubicly

downsampling the image, and finally adding AWGN with

noise level σ. The generated LR image is of size C×H×W ,

where C denotes the number of channels, H and W de-

note the height and width of the image. Similar to [17], we

project the blur kernel to a t-dimensional vector by using

Principal Component Analysis (PCA) technique. We then

concatenate an extra dimension of noise level σ to get a

(1 + t) vector. Such vector is then stretched to get a degra-

dation map D of size (1 + t)×H ×W . Last, we concate-

nate the LR image I0 with the degradation map D of size

(C +1+ t)×H ×W as input for UDVD. Note that t is set

to 15 by default.

Feature Extraction Network. In UDVD, the input is first

forwarded to the feature extraction network to extract high-

level features. And then, the high-level features and the in-

put image are sent to the refinement network to generate HR

image. The feature extraction network contains N residual

blocks which are composed of convolutions and Rectified

Linear Units (ReLU), as shown in Fig. 2. In this work, the

kernel size of convolution layers is set to 3 × 3, and the

channels is set to 128.

Refinement Network. With the extracted feature maps,

the refinement network further allocates M dynamic blocks

for feature transformation. Note that a dynamic block can

be optionally extended to perform upsampling with a spe-

cific rate r. The implementation details of dynamic convo-

lutions will be covered in Section 3.3. In a dynamic block

m, as illustrated in Fig. 2, the input image Im−1 is sent to

three 3 × 3 convolution layers with 16, 16 and 32 chan-

nels respectively, and then concatenated with the high-level

feature maps F from the feature extraction network. The

resultant feature maps are then forwarded to two paths.
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Figure 3. Types of dynamic convolutions. (a) A typical dynamic

convolution refines the image quality while keeps resolution. (b) A

dynamic convolution further upsamples the image with a specific

upsample rate r.

The first path is a 3× 3 convolution layer to predict per-

pixel kernels. The generated per-pixel kernels are stored in

a tensor with k× k in channel dimension, where k is kernel

size for per-pixel kernels (Fig. 3(a)). When upsampling is

of interested, the channel dimension is k×k× r× r, where

r is upsample rate (Fig. 3(b)). Note that k is set to 5 for

the default setting. The predicted per-pixel kernels are then

used to perform dynamic convolution operation on Im−1 to

generate the output Om.

The second path contains two 3 × 3 convolution layer

with 16 and 3 channels to generate the residual image Rm

for enhancing high frequency details as describe in [27].

The residual image Rm is then added to the output of

dynamic convolution operation Om for output image Im.

Note that sub-pixel convolution layer is used to align the

resolutions between paths.

3.3. Types of Dynamic Convolutions

Fig. 3 illustrates two types of dynamic convolutions. In

general, typical dynamic convolutions are used when input

and output resolution are identical, shown in Fig. 3(a). De-

pending on use cases, upsampling can also be integrated

into dynamic convolution as shown in Fig. 3(b).

Dynamic Convolution. In a typical dynamic convolution,

convolutions are conducted by using per-pixel kernels K of

kernel size k × k. Such operation can be expressed as:

Iout(i, j) =

∆∑

u=−∆

∆∑

v=−∆

Ki,j(u, v) · Iin(i−u, j− v), (2)

where Iin and Iout represent input and output image respec-

tively. i and j are the coordinates in image, u and v are the

coordinates in each Ki,j . Note that ∆ = ⌊k/2⌋. These per-

pixel kernels perform weighted sum across nearby pixels

and enhance the image quality pixel by pixel. In default

setting, there are H × W kernels and the corresponding

weights are shared across channels. By introducing an ad-

ditional dimension C with Eq. 2, dynamic convolution can

be extended for independent weights across channels.

Integration with Upsampling. To integrate with upsam-

pling, r2 convolutions are conducted on the same corre-

sponding patch to create r×r new pixels. The mathematical

form of such operation is defined as:

Iout(i× r + x, j × r + y) =

r∑

x=0

r∑

y=0

∆∑

u=−∆

∆∑

v=−∆

Ki,j,x,y(u, v) · Iin(i− u, j − v),

(3)

where x and y are in the coordination of each r × r output

block (0 ≤ v, u ≤ r − 1). Here, the resolution of Iout is

r times the resolution of Iin. We exploit r2HW kernels

to generate rH × rW pixels as Iout. When integrated with

upsampling, the weights are shared across channels to avoid

the curse of dimensionality [31].

3.4. Multistage Loss

Similar to previous work [8, 32], we adopt a multistage

loss at the outputs of dynamic blocks. The losses are cal-

culated in between the HR image IHR and the intermediate

images at each dynamic block. The loss is defined as:

Loss =

M∑

m=1

F (Im, IHR) (4)

where M is the number of dynamic blocks and F is loss

function such as L2 loss and perceptual loss. To obtain a

high quality resultant image, we then minimize the sum of

the losses from each dynamic block.

4. Experiments

In this section, we discuss the experimental results and

setups. Section 4.1 elaborates the details of dataset and

training setups. Different configurations of the proposed

UDVD are compared in Section 4.2. Section 4.3 illustrates

the learned dynamic kernels. Section 4.4 evaluates UDVD

with different applicational settings using synthetic images.

Real image evaluations are in Section 4.5.
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Methods PSNR SSIM

Baseline 29.45 0.8350

UDVD U 29.56 0.8384

UDVD DU 29.58 0.8393

UDVD UD 29.61 0.8400

UDVD UDD w/o multistage loss 29.58 0.8385

UDVD UDD 29.67 0.8410

Table 1. Average PSNR and SSIM values for various UDVD con-

figurations on Set5. Degradation parameters include scaling factor

×3, kernel width 1.3 and noise level 15 . The best results are

highlighted in red color.

4.1. Datasets and Training Setups

We collect high-quality 2K images from DIV2K [33] and

Flickr2K [34] for training. The degraded images are syn-

thesized according to Eq. 1. As listed in Eq. 1, the pro-

cess applies a sequence of degrading effects on high-quality

images, saying blurring, bicubicly downsampling and then

adding noise. Following previous works [17, 18], we use

isotropic Gaussian blur kernels. The range of kernel width

is set to [0.2, 3.0], and the kernel size is fixed to 15 × 15.

For noise, we use AWGN with noise level in range [0, 75].
Uniform sampling is used to generate all the parameters.

During training, degraded LR images are cropped into

patches of size 48×48. While the corresponding HR images

are cropped into patches of 96×96, 144×144 and 192×192
for scale factors 2, 3, and 4, respectively. The patches are

augmented by randomly horizontal flipping, vertical flip-

ping, and 90o rotating. We set the mini-batch size to 32.

Adam optimizer [35] is used together with the multistage

L2 loss introduced in Section 3.4. The learning rate is ini-

tialized to 10−4 and decreased by half for every 2 × 105

steps. We conduct all the experiments on a server equipped

with NVIDIA RTX 2080 Ti GPU.

We validate UDVD on datasets Set5 [36], Set14 [37],

BSD100 [16] and real images [38, 39]. Same as in [12, 14,

17], all models are trained on RGB space. The evaluations

of PSNR and SSIM metrics are on the Y channel in YCbCr.

4.2. Comparison of UDVD Configurations

Table 1 summarizes the quantitative comparisons of dif-

ferent UDVD configurations. The baseline configuration

contains only the feature extraction network (15 residual

blocks) and a sub-pixel layer. Whereas, in the refinement

network, different configurations of dynamic convolutions

are compared. In these configurations, D represents the

block containing a typical dynamic convolution (as shown

in Fig. 3(a)), and U marks the integration of upsampling

(listed in Fig. 3(b)). As in Table 1, dynamic blocks improve

the performance over the baseline configuration. Especially,

the UD configuration achieves better performance over its

counterparts. The ablation experiments in Table 1 also

demonstrate the effectiveness of the proposed multistage

loss. In the following of this paper, we use UDVD UDD

ε=1.6, σ=0 ε=0.2,σ=0

ε=1.6,σ=10 ε=0.2,σ=10

Degraded Image

(a) Dynamic kernels of original image

(b) Dynamic kernels of degraded image

(c) Absolute difference between (a), (b)

Figure 4. The predicted per-pixel kernels in second dynamic block

of UDVD. (a) The kernels learned from lr image. (b) The kernels

learned from image with spatially variant degradation of Gaussian

blur kernel width ε and noise level σ. (c) The absolute difference

between (a) and (b).

for scale factors 2 and 3. While, UDVD UUDD (two sepa-

rated upsampling steps) is used for scale factor 4.

4.3. Visualizing Dynamic Kernels

UDVD generates dynamic kernels to adapt to both image

contents and different degradations. Fig. 4(a) demonstrates

that different kernels are generated for different contents.

Likewise, Fig. 4(b) shows that the generated kernels further

adapt to the applied degradations. As shown in Fig. 4(c),

the adaptation behavior is varying among different degra-

dations regardless of contents. These observations confirm

that UDVD is capable of handling spatial variations by gen-

erating dynamic kernels considering the spatial differences

of content and degradation.

4.4. Experiments on Synthetic Images

We evaluate the proposed UDVD with a number of appli-

cational settings, covering both variational and fixed degra-

dations. Synthetic images are generated for these settings.

Note that we compared UDVD with a comprehensive set of

other methods in non-blind setting only. Details are elabo-

rated in the following paragraphs.

Variations of Multiple Degradations. The proposed

UDVD are evaluated with diverse variations of degrading

effects, including bicubicly downsampling, isotropic Gaus-

sian blur kernels and AWGN. We consider scale factors

2, 3, and 4 for bicubicly downsampling. For isotropic

Gaussian blur, kernel widths 0.2, 1.3 and 2.6 are consid-

ered. Noise levels 15 and 50 are considered for AWGN.

Table 2 compares UDVD to previous works on widely-used

dataset, Set5 [36], Set14 [37] and BSD100 [16]. Due to

the unawareness of multiple degradations, RDN [12] and

RCAN [14] produce unsatisfying PSNR when compared

to other methods. For multiple degradations based meth-

ods, we compare UDVD to two well known methods, IR-

CNN [40], and SRMD [17]. As in Table 2, UDVD con-

stantly achieves better PSNR, even at the hardest test case

(kernel width 2.6 and noise level 50).
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Methods Kernel width Noise level
Set5 Set14 BSD100

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

RDN [12]

0.2 15

26.23 25.57 24.48 25.44 24.40 23.45 25.03 24.04 23.13

RCAN [14] 26.05 25.46 24.83 25.3 24.29 23.64 24.95 23.92 23.33

IRCNN [40] 32.60 30.08 28.35 - - - - - -

SRMD [17] 32.76 30.43 28.79 30.14 27.82 26.48 29.23 27.11 25.95

UDVD 32.96 30.68 29.04 30.43 28.14 26.82 29.38 27.27 26.08

RDN [12]

1.3 15

25.01 24.98 24.33 24.08 23.92 23.39 23.85 23.67 23.09

RCAN [14] 24.9 24.94 24.58 24.04 23.88 23.53 23.84 23.62 23.26

IRCNN [40] 29.96 28.68 27.71 - - - - - -

SRMD [17] 30.98 29.43 28.21 28.34 27.05 26.06 27.52 26.45 25.63

UDVD 31.16 29.67 28.43 28.63 27.36 26.37 27.64 26.58 25.74

RDN [12]

2.6 15

23.18 23.28 23.07 22.34 22.40 22.31 22.44 22.52 22.35

RCAN [14] 23.13 23.29 23.24 22.34 22.41 22.42 22.47 22.5 22.48

IRCNN [40] 26.44 25.67 24.36 - - - - - -

SRMD [17] 28.48 27.55 26.82 26.18 25.58 25.06 25.81 25.29 24.86

UDVD 28.73 27.80 26.98 26.48 25.87 25.33 25.93 25.41 24.96

RDN [12]

0.2 50

17.23 16.85 16.51 17.04 16.58 16.21 16.90 16.38 15.99

RCAN [14] 17.08 16.13 16.64 16.84 15.68 16.35 16.66 15.54 16.1

IRCNN [40] 28.20 26.25 24.95 - - - - - -

SRMD [17] 28.51 26.48 25.18 26.70 25.01 23.95 26.13 24.74 23.86

UDVD 28.63 26.65 25.34 27.00 25.32 24.24 26.27 24.87 23.98

RDN [12]

1.3 50

16.97 16.70 16.41 16.75 16.45 16.14 16.64 16.29 15.95

RCAN [14] 16.82 15.98 16.54 16.55 15.56 16.28 16.42 15.47 16.06

IRCNN [40] 26.69 25.20 24.42 - - - - - -

SRMD [17] 27.43 25.82 24.77 25.63 24.47 23.64 25.26 24.33 23.63

UDVD 27.54 25.99 24.92 25.88 24.75 23.91 25.36 24.45 23.74

RDN [12]

2.6 50

16.50 16.31 16.08 16.30 16.09 15.88 16.29 16.03 15.77

RCAN [14] 16.36 15.6 16.22 16.12 15.24 16.02 16.07 15.23 15.88

IRCNN [40] 22.98 22.16 21.43 - - - - - -

SRMD [17] 25.85 24.75 23.98 24.32 23.53 22.98 24.30 23.68 23.18

UDVD 26.00 24.85 24.11 24.60 23.81 23.23 24.41 23.79 23.27

Table 2. Average PSNR values on variations of multiple degradations. We use the provided official code to compute the results, except

IRCNN. For IRCNN, results are extracted from the publication [40]. The best results are highlighted in red color.

Methods Kernel width Noise level
Set5 Set14 BSD100

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

SRMD [17]
[0.2, 2] 5

33.56 31.67 30.01 29.79 28.06 26.77 27.54 26.00 24.98

UDVD 33.77 32.00 30.63 30.74 28.93 27.76 29.61 27.99 26.90

SRMD [17]
0.2 [5, 50]

29.70 27.80 26.53 28.02 26.20 24.98 27.39 25.75 24.81

UDVD 30.78 28.61 27.15 28.90 26.85 25.62 27.98 26.20 25.19

SRMD [17]
[0.2, 2] [5, 50]

28.53 27.06 26.05 26.97 25.62 24.66 26.46 25.33 24.59

UDVD 29.37 27.74 26.57 27.63 26.28 25.23 26.89 25.71 24.95

Table 3. Average PSNR values on spatial variations of degradations. We use the official code of SRMD to compute its results. The best

results are highlighted in red color.

Spatial Variations of Degradations. In order to validate

the advantages of dynamic convolution, we further extend

the experiments to consider spatial variations of degrada-

tions. The degraded LR images are synthesized with the

kernel width and noise level, which are gradually increas-

ing in the corresponding range [0.2, 2] and [5, 50] from

left to right. We compare our UDVD to the most re-

lated work, SRMD [17], which handles the spatial varia-

tions without dynamic convolutions. As in Table 3, UDVD

constantly outperforms SRMD for all the settings on all

the dataset, Set5 [36], Set14 [37] and BSD100 [16]. In

summary, UDVD delivers a noticeable PSNR improvement

over SRMD. The qualitative comparison is also illustrated

in Fig. 5. In Fig. 5, without considering spatial varia-

tions, RCAN can only handle a fixed degradation (red block

represents lighter degradation), but fails at the other one

(blue block represents heavier degradation). Although both

SRMD and UDVD are capable to deal with spatial vari-

ations, UDVD still produces sharper and clearer recon-

structed image. These results demonstrate that UDVD is

capable to handle not only multiple degradations but also

their spatial variations.
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PSNR/SSIM

PSNR/SSIM

(a) Ground Truth

24.50/0.7148

20.56/0.3831

(b) Bicubic

26.03/0.7546

17.68/0.3068

(c) RCAN [14]

28.06/0.8005

22.33/0.4608

(d) SRMD [17]

28.45/0.8052

22.52/0.4856

(e) UDVD(Ours)

Figure 5. The visual results of image “zebra” (first row) and image “bamboo” (second row) with scale factor 3 on spatially variant blur

and noise degradations.

Methods Kernel width
Set5 Set14 BSD100

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

ZSSR [15]

0.2

34.94 29.29 28.87 31.04 28.05 27.15 31.42 28.24 26.68

IRCNN [40] 37.43 33.39 31.02 - - - - - -

SRMDNF [17] 37.79 34.13 31.96 33.33 30.04 28.35 32.05 28.97 27.49

SFTMD w/o SFT [18] 31.74 30.90 29.40 27.57 26.40 26.18 27.24 26.43 26.34

SFTMD [18] 38.00 34.57 32.39 33.68 30.47 28.77 32.09 29.09 27.58

UDVD 38.01 34.49 32.31 33.64 30.44 28.78 32.19 29.18 27.70

ZSSR [15]

1.3

33.37 28.67 27.44 31.31 27.34 26.15 30.31 27.30 25.95

IRCNN [40] 36.01 33.33 31.01 - - - - - -

SRMDNF [17] 37.44 34.17 32.00 33.20 30.08 28.42 31.98 29.03 27.53

SFTMD w/o SFT [18] 30.88 30.33 29.11 27.16 25.84 25.93 26.84 25.92 26.20

SFTMD [18] 37.46 34.53 32.41 33.39 30.55 28.82 32.06 29.15 27.64

UDVD 37.36 34.52 32.37 33.39 30.50 28.85 32.00 29.23 27.75

ZSSR [15]

2.6

29.89 27.80 27.69 27.72 26.42 26.06 27.32 26.47 25.92

IRCNN [40] 32.07 31.09 30.06 - - - - - -

SRMDNF [17] 34.12 33.02 31.77 30.25 29.33 28.26 29.23 28.35 27.43

SFTMD w/o SFT [18] 24.22 28.44 28.64 22.99 24.19 25.63 23.07 24.42 25.99

SFTMD [18] 34.27 33.22 32.05 30.38 29.63 28.55 29.35 28.41 27.47

UDVD 33.74 33.15 31.99 30.08 29.58 28.55 28.93 28.49 27.55

Table 4. Average PSNR values on noise-free degradations. We use the official code to compute the results, except SFTMD and IRCNN.

For SFTMD and IRCNN, results are extracted from the publications [18, 40]. The best two results are highlighted in red and blue colors.

Noise-Free Degradations and Variations. In this exper-

iment, we train UDVD for noise-free degradations (re-

move noise degradations) to enable extensive comparisons

to other works. Table 4 summarizes the PSNR results for

noise-free UDVD and the competitive methods.Compare to

SRMDNF [17] and SFTMD [18], UDVD achieves com-

parable results in most cases and outperforms both the

methods when large scale factor on BSD100 [16]. Note

that SFTMD [18] benefits mostly from the Spatial Fea-

ture Transform (SFT) which applies an affine transforma-

tion on the degradation information rather than concatenat-

ing it with input image. Without losing generality, UDVD

can also be extended to adopt SFT layers for further im-

provements.

Fixed Degradations. To compare with state-of-the-art

fixed degradation based methods, we evaluate UDVD on

two widely used fixed degradations BI and DN. BI only

includes bicubicly downsampling. While DN applies bicu-

bicly downsample and then add AWGN with noise level 30.

Table 5 lists PSNR and SSIM results on BI and DN with

scale factor 3. In Table 5, except SRMD [17] and UDVD,

all the rest methods train different and specific models for

BI and DN respectively. While SRMD [17] and UDVD

exploits a single model to handle both BI and DN degra-

dations. With only a single model, UDVD still produces

competitive results on BI and superior results on DN. This

verifies that a single UDVD can adapt to various degrada-

tions and achieve promising results.
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Methods
Set5 Set14 BSD100

BI DN BI DN BI DN

Bicubic 30.39/0.8308 24.01/0.5369 27.55/0.7271 22.87/0.4724 27.21/0.6918 22.92/0.4449

SRCNN [1] 32.75/0.8944 25.01/0.6950 29.30/0.8074 23.78/0.5898 28.41/0.7736 23.76/0.5538

VDSR [2] 33.67/0.9150 25.20/0.7183 29.78/0.8244 24.00/0.6112 28.83/0.7893 24.00/0.5749

SRMD∗ [17] 33.86/0.9232 28.30/0.8123 29.80/0.8342 26.34/0.7025 28.87/0.8001 25.84/0.6561

RDN [12] 34.71/0.9280 28.47/0.8151 30.57/0.8447 26.60/0.7107 29.26/0.8079 25.93/0.6573

RCAN [14] 34.74/0.9299 - 30.65/0.8482 - 29.32/0.8111 -

UDVD∗ 33.99/0.9240 28.52/0.8186 30.04/0.8371 26.65/0.7146 28.94/0.8016 25.99/0.6632

Table 5. Average PSNR/SSIM values on fixed degradations. “∗” indicates a unified model for BI and DN. We use the provided official

code to compute the results, except SRCNN and VDSR. For SRCNN and VDSR, results are extracted from the publications [1, 2, 12]. The

best two results are highlighted in red and blue colors.

(a) Real LR (b) RCAN [14] (c) ZSSR [15] (d) SRMD [17] (e) UDVD(Ours)

Figure 6. The qualitative results of real image “chip” with scale factor 4 (first row) and “frog” with scale factor 3 (second row).

Real Image LR

ε=0.6, σ=5 ε=1.0, σ=5 ε=0.6, σ=10 ε=1.0, σ=10

Figure 7. The qualitative results of real image with scale factor 2,

variant Gaussian blur kernel width ε and noise level σ.

4.5. Experiments on Real Images

Besides the experiments of synthetic test images in Sec-

tion 4.4, we further extend the experiments to real im-

ages. There is no ground-truth degradations for real im-

ages. Hence, manual grid search on degradation parame-

ters is performed as in [17] to obtain visually satisfying re-

sults. Fig. 6 illustrates the qualitative comparisons on the

widely used real image “chip” [38] and “frog” [39] for

UDVD, RCAN [14], ZSSR [15] and SRMD [17]. Most of

the compared methods produce noticeable artifacts. RCAN

produces blur edges and cannot deal with noise. ZSSR

tends to produce over-smoothed results. Although SRMD

successfully removes these artifacts, but it fails to recover

sharp edges. In contrast, the proposed UDVD reconstructs a

sharper and clearer quality. Fig. 7 illustrates images recon-

structed by UDVD with different degradation estimations.

One can observe that different patches (blue and red) have

favorable reconstructed results on different degradation esti-

mations. This confirms the existence of variational degrada-

tions in real images. In summary, Fig. 6 and Fig. 7 confirm

the effectiveness of UDVD for real images.

5. Conclusion

In summary, this paper presents a Unified Dynamic Con-

volutional Network for Variational Degradations (UDVD).

We further introduce two types of dynamic convolutions

to improve performance. Multistage loss is also applied

to gradually refine images throughout the consecutive dy-

namic convolutions. With only a single network, the pro-

posed UDVD efficiently handles a wide range of degrada-

tion variations for real-world images, including cross-image

and spatial variations. UDVD is evaluated on both syn-

thetic and real images with diverse variations of degrading

effects. Comprehensive experiments are conducted to com-

pare UDVD with various existing works. Through qualita-

tive results, we confirm the effectiveness of dynamic convo-

lutions over various existing works. Extensive experiments

show that the proposed UDVD achieves favorable or com-

parable performance on both synthetic and real images.
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