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Abstract

The research on scene text recognition (STR) has made

remarkable progress in recent years with the development

of deep neural networks (DNNs). Recent studies on adver-

sarial attack have verified that a DNN model designed for

non-sequential tasks (e.g., classification, segmentation and

retrieval) can be easily fooled by adversarial examples. Ac-

tually, STR is an application highly related to security is-

sues. However, there are few studies considering the safety

and reliability of STR models that make sequential predic-

tion. In this paper, we make the first attempt in attacking

the state-of-the-art DNN-based STR models. Specifically,

we propose a novel and efficient optimization-based method

that can be naturally integrated to different sequential pre-

diction schemes, i.e., connectionist temporal classification

(CTC) and attention mechanism. We apply our proposed

method to five state-of-the-art STR models with both tar-

geted and untargeted attack modes, the comprehensive re-

sults on 7 real-world datasets and 2 synthetic datasets con-

sistently show the vulnerability of these STR models with

a significant performance drop. Finally, we also test our

attack method on a real-world STR engine of Baidu OCR,

which demonstrates the practical potentials of our method.

1. Introduction

The scene text recognition (STR) [15, 26, 37, 42] aims

at reading sequential characters of varied-length from a text

image in natural scene. STR has been an active research

field in computer vision because it is a critical element of

a lot of real-world applications, such as human computer

interaction [59], road sign recognition in the autonomous

vehicles [58], assistive reading for the blind and low-vision

people [29], etc. Developing accurate and robust STR mod-

els has been a research challenge for years, due to the huge

diversity in the visual appearance of texts, the illumination

artifacts, the complex image background, etc.
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The advantages of deep neural networks (DNNs) and

their successes in various computer vision tasks have also

boosted the development of STR in recent years [4, 20, 41,

55, 2, 56]. Most of these DNN-based works convert the

STR tasks into sequence recognition (labeling) [50] prob-

lems. Specifically, they firstly encode the input image into

a feature sequence through a certain encoding technique,

such as convolution neural network (CNN) or recurrent neu-

ral network (RNN), and then apply decoders, such as con-

nectionist temporal classification (CTC) [14, 42, 18] or at-

tention mechanism [43, 8], to predict the linguistic strings

in the image. Despite their current success, recent studies

[46, 12, 5] have shown that DNNs are extremely vulnera-

ble to adversarial examples, i.e., by adding small perturba-

tions on the input images. Intuitively, the STR also has this

problem since DNN models are prevalent in such a security-

critical scenario. For an online STR system, incorrectly rec-

ognizing even a single word may possibly change the over-

all meaning of the text image.

Current studies on adversarial examples mainly focus

on non-sequential vision tasks, such as image classification

[46, 48, 10], video classification [28, 21], object detection

[24, 57], semantic segmentation [49, 33], face recognition

[13, 38], etc. Differently, attacking STR models has rarely

been explored in the literature since STR is considered as a

sequence recognition task and STR models are more diffi-

cult to deal with than above non-sequential tasks. Attack-

ing STR models is significantly more challenging due to

three major issues: 1) The output of the modern STR mod-

els (DNN-based) is a label sequence of varied-length, rather

than a single label in the non-sequential attacks (e.g., object

classification model). As discussed in [54], the common

attack strategies in the non-sequential attacks only involve

the substitution operation (e.g., modifying the ground-truth

class label), while the sequential attacks in STR is ex-

pected to consider operations on both character level and

word level: insertion, substitution and deletion (e.g., inser-

tion: “horse” 7→ “hoarse”; substitution: “horse” 7→ “house”,

“horse” 7→ “zebra”; deletion: “horse” 7→ “hose”). 2) The

adversarial examples for attacking STR models should be

112304



Targeted Attack Untargeted Attack

Input Perturbation Adversarial Prediction Original Perturbation Adversarial Prediction

C
R

N
N

cop→ cvpr cop→ gop

2000→ 2020 2000→ 21000

nvidia→ evidia nvidia→ ividia

you→ n0 you→ youu

open→ cope open→ openn

T
R

B
A

veer→ ieee veer→ veee

2003→ 2020 2003→ 2oo

food→ fool food→ foud

ford→ more ford→ fir

hahm→ hand hahm→ haahii

Figure 1: Typical adversarial examples generated by our method to fool two latest STR models: CRNN [42] and TRBA [1]

with targeted and untargeted attack modes. Interestingly, we can mislead the models to predict “cvpr”, “ieee” and “2020”.

guided by linguistic information and each character in the

output target sequential labels needs to be well aligned, not

just in arbitrary and meaningless sequences of character. 3)

The encoder module in STR models usually leverages RNN

structures instead of CNNs to capture the sequential context

in visual features of text images.

In this paper, we make the first attempt to fool the

cutting-edge STR models that are deployed upon DNNs.

In principle, we propose a novel and efficient solution for

the adversarial attacks on both CTC-based and attention-

based STR models. We firstly prove the feasibility of at-

tacking these two kinds of models on the theoretical as-

pect. Considering the diverse and complex loss functions of

these models for sequential labeling task, the popular attack

algorithm (e.g., C&W [5], FGSM [12]) designed for non-

sequential tasks cannot be used. To this end, we develop

a novel optimization-based attacking algorithm that itera-

tively clips the perturbation value under the constraint. Be-

sides, it allows larger learning rate value with robust train-

ing procedure for boosting the attacking speed with much

fewer iterations. Our proposed algorithm can be flexibly

equipped to the objective functions of different STR mod-

els with both targeted and untargeted attack modes. Fig.

1 shows the adversarial examples and perturbations gener-

ated by our method, including both untargeted and targeted

attack modes, on two state-of-the-art STR models. The per-

turbations are displayed in gray-scale since images are com-

monly converted to gray-scale ones in these models. No-

tably, we further use our adversarial examples to attack the

real-world STR system, i.e., Baidu OCR, and observe that

the perturbations on original text images can also corrupt

the predictions of the commercial STR system.

In summary, our main contributions are:

• We propose a novel and efficient optimization-based

adversarial attack approach, which derives generic

loss functions for both CTC-based and attention-

based models with both targeted and untargeted attack

modes. It can learn adversarial examples with robust

and efficient training processes. To our best knowl-

edge, this is the very first attempt and comprehensive

study on crafting adversarial examples to fool the state-

of-the-art STR models.

• We conduct extensive experiments on 7 benchmark

datasets for evaluating the attacking effect on five

state-of-the-art STR models. Experimental results

show that our proposed method attains a remarkable

attack success rate when crafting adversarial exam-

ples for both targeted and untargeted attacks. In ad-

dition, the successful attacking results on the commer-

cial STR system further demonstrate the generalization

capability of our proposed method.

2. Related Work

Scene Text Recognition (STR). Most earlier STR methods

[37, 47] adopt a bottom-up pipeline, i.e., firstly detecting

and recognizing individual characters from certain hand-

crafted features, and then linking up the recognized char-

acters into words or text lines via dynamic programming

and language models. For the general information of text

recognition, readers can refer to the survey [53].
With the advances of DNNs in recent years, some re-

searchers [8, 26, 43] treated the STR task as a sequence

learning problem: first encoding a text image into a se-

quence of features with DNN, then directly generating char-

acter sequence with sequence recognition techniques. Note

that the recent emergence of CTC [14, 42, 30] and attention
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mechanism [43, 1] are promising to tackle this sequential

training problem by constructing the alignment between the

input images and their corresponding label sequence. These

CTC-based and attention-based STR models have achieved

state-of-the-art performance [1].

Existing studies on STR mainly focus on improving the

recognition performance, while rarely considering the is-

sues of model reliability and safety. As aforementioned in

Sec. 1, an STR model may be misled to make an incorrect

prediction with adversarial examples. To our best knowl-

edge, there are two informally published works [54, 45] that

have made an initial step on the adversary of document im-

age recognition in optical character recognition (OCR) area.

However, recognizing texts from natural images in the STR

area is more challenging. Besides, they only take the sim-

ple CTC-based approach [42] as a prototype for discussion.

On the contrary, we focus on the reliability of both CTC-

based and attention-based STR models and propose a more

generic and efficient solution to learn adversarial examples.

Adversarial Examples. In the pioneering work of [46],

Szegedy et al. have demonstrated that DNNs can be eas-

ily attacked by adversarial examples, i.e., by adding minor

perturbation that is not noticeable by human eyes. The at-

tack modes can be targeted and untargeted. Taking image

classification as an instance, the targeted attack requires a

pre-specific label that is expected to be predicted by the

classifiers; while the untargeted attack only requires that

the prediction of the classifiers differs from the ground-truth

without pre-specification.

To attack a model, an adversary is able to fully access

the model parameters and training configurations under the

white-box setting. In this case, an adversarial example is

generated by applying one-step [12] or multiple steps (e.g.,

I-FGSM [11], MI-FGSM [25]) perturbations on an input

image, along with the direction of the adversarial gradient.

However, the adversarial gradient may not be accessible to

an adversary due to the unknown model parameters, which

is called the black-box setting. More recently, learning the

universal adversarial perturbation (UAP) [35] has received

more attention as this kind of image-agnostic perturbation

is able to corrupt most natural images. Several UAP ap-

proaches [9, 33, 27] have been developed to learn perturba-

tions based on specific models or training datasets to fool

other models or datasets via various schemes such as trans-

fer attack [12, 46] and knowledge distillation [17].

Despite the increasing research attention on learning ad-

versarial examples for the non-sequential tasks, the STR as

a sequential recognition task has not been thoroughly ex-

plored yet. Recently, a few works have studied the adver-

sarial examples on the other related tasks, such as speech-

to-text [6, 52], visual question answering [36, 31] and im-

age caption [7, 51]. However, these tasks have intrinsically

different objective functions with the existing models for

STR. Therefore, we explicitly focus on the CTC-based and

attention-based STR models and propose a unified attack

algorithm to efficiently find adversarial examples with both

untargeted attack and targeted attack modes.

3. The Proposed Method

3.1. Problem Formulation

We first formally introduce the problem definition to

crafting adversarial examples for STR. Given an input scene

text image x ∈ [−1, 1]|n| with n normalized pixels, its

ground-truth sequence of labels l = {l0, l1, ..., lT }, where

T is the length of the sequence. For a STR model R, our

goal is to find an adversarial example x′ = x + δ, where δ
denotes the adversarial perturbations to x, x′ ∈ [−1, 1]|n|

ensures it to be a valid input to R. It is expected that x′ can

guide the R to predict another sequence l′ = {l′0, l
′
1, ..., l

′
T ′}

for x′, where l′ is different with l (and T ′ is unnecessarily

equal to T ), to accomplish the attack on the given image x.

Note that x′ can be either targeted or untargeted, it depends

on the attacking sequence l′ is whether pre-specific or not.

Finally, generating adversarial example x′ for x can be cast

as the following optimization problem

min
x′

L(x′, l′) + λD(x, x′),

s.t. x′ = x+ δ, x′ ∈ [−1, 1]|n|, (1)

where R(x) = l, R(x′) = l′, D(x, x′) = ‖δ‖22 is an L2 dis-

tance metric between the original image and the adversarial

image. L(·) is an attack loss function which takes different

forms in different STR models. λ is a pre-specified hyper-

parameter that balances the importance of two terms L(·)
and D(·). Intuitively, with smaller λ, the attack is more

likely to succeed but with the cost of higher distortion on

δ. In our experiment, we use the binary search scheme to

select λ. In the following sections, we present the different

form of Eq. 1 of our attack method regarding to CTC-based

(CTC) and attention-based (Attn) STR models.

3.2. Attack on CTCbased Models

The original CTC [14, 42, 30] provides an alignment-

free pipeline for training an end-to-end neural network for

sequence labeling tasks. In STR, given an input sequence l
of x, the network model R will output a sequential prob-

ability distribution y = {y1, y2, ..., yM} over the output

domain for each character {li}
T
i=1 in l, where M ≥ T .

As M is not necessarily the same as T , a valid alignment

path is adopted in CTC to remove blank and sequentially

duplicate characters in the output sequence. For example,

{c, v, v, p, blank, r} is a valid alignment for {c, v, p, r}.
Training a CTC-based model requires calculating the

probabilities of all possible valid alignment paths for the se-

quence l. Generally, the probability of one valid alignment

path π can be written as p(π|x) =
∏T

t=1 y
t
πt

, where yπt
is

the probability of a valid character in π. Let S be the set

of all possible valid alignments for the sequence l, then the
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CTC-based models require to calculate the log probability

of all the valid alignments given l, as

Lctc(x, l) = − log
∑

π∈S(l)

p(π|x). (2)

Targeted Attack on CTC-based Models. Suppose we

have a targeted sequence of labels l′, intuitively, the CTC

loss of searching the respective adversarial example x′ can

be derived as:

Lctc(x
′, l′) = − log

∑

π∈S(l′)

p(π|x′). (3)

Due to the flexible combination of characters in the

targeted sequence l′, we first expand l′ to l′ =
{l′1, l

′
t1
, l′3, ..., l

′
tk
, ..., l′T ′}, to highlight the changed k char-

acters {l′t1 , .., l
′
tk
} in l′. Then the probability of a valid path

π′ over the targeted sequence l′ is derived as:

p(π′|x′) = y1
π
′

1

× y2
π
′

t1

× ...× yk
π
′

tk

× yk+1
πk+1

...× yT
′

π
T ′
. (4)

As the position of the changed characters in l′ is known,

we can maximize the probability of the partial sequence be-

fore the last changed characters l′tk to accomplish the attack,

which is written as:

max p(π′|x′) = max(y1π′

1
×y2π′

2
× ...×ykπ′

tk

)×

T ′

∏

t=k+1

y
πT ′

t

.

(5)

We notice that
∏T ′

t=k+1 yπT ′

t

is fixed as the characters

after l′tk is unchanged, then Eq. 5 is further simplified as

max p(π
′

|x
′

) ∝ max(y1
π
′

1

× y2
π
′

2

× ...× yk
π
′

tk

). (6)

According to the above Eq. 6 and the CTC loss term for the

targeted sequence l′ in Eq. 3, the final objective function for

finding adversarial example x′ is formulated as

min
x′

((− log
∑

π′∈S(l′)

max p(π′|x′)) + λD(x, x′)). (7)

Untargeted Attack on CTC-based Models Different from

the targeted attack, the untargeted attack only requires the

attacking sequence l′ is not equal to the input sequence l. As

the definition of probability of a valid path π for l, here we

can find another path π′ that reduces (minimizes) the prob-

ability of π to find the adversarial example x′ that accom-

plishes the untargeted attack. The probability of p(π′|x′)
can be derived as

p(π′|x′) = min(y1π1
× y2π2

× ...yi+1
πi+1
× ...yTπT

), (8)

where {yπi
}Ti=1 are probabilities of characters in valid path

π.
According to the above Eq. 8 and the general CTC loss

term in Eq. 3, the final objective function for finding adver-

sarial example x′ with untargeted attack is formulated as

min
x′

((− log
∑

π′∈S(l′)

min p(π′|x′)) + λD(x, x′)). (9)

3.3. Attack on Attentionbased Models

In encoder-decoder networks with attention mechanism

e.g., [43, 1], suppose we have a ground-truth sequence

l = {l1, l2, ..., lt, ..., lT } of an input image x, where lt
indicates the index of the t-th character in the vocabu-

lary list V . The network model R commonly contains a

RNN/LSTM/BiLSTM cell f(·) that outputs the probability

p(lt|x, l1, ..., lt−1) of the t-th character lt in l according to

its hidden state ht−1 previous character lt−1, as

pt = softmax(zt), and zt = f(ht−1, lt−1), (10)

where zt := {z1t , z
2
t , ..., z

|V |
t } ∈ R

|V | is a vector of the

logits (unnormalized probabilities) for each possible char-

acter in the vocabulary. The vector pt represents a proba-

bility distribution on V with each coordinate pit defined as

pit := p(lt = i|x, l1, ..., lt−1), i ∈ [1, |V |]. Note that the

attention matrix is implicitly incorporated when computing

pt, thus the Eq. 10 is a general form in the attention-based

models. Following the definition of softmax function:

p(lt|x, l1, ..., lt−1) = exp(pltt )/
∑

i∈V

exp(pit). (11)

To maximize the probability of the ground-truth se-

quence l, we can directly take its negative log probability

− log p(l|x) as a loss function, which can be formulated as:

Latt(x, l) = − log p(l|x) = −

T
∑

t=2

log p(lt|x, l1, ..., lt−1).

(12)

Here the Eq. 11 can be directly applied to compute the last

log term in Eq. 12.
Targeted Attack on Attention-based Models. Similar as

the case of the CTC-based models, we also expand the

targeted sequence l′ to l′ = {l′1, l
′
t1
, l′3, ..., l

′
tk
, ..., l′T ′}, to

explicitly show the changed k characters {l′t1 , .., l
′
tk
} in l′

comparing with ground-truth sequence l. Considering the

attention mechanism, to achieve the attack effect, it is ex-

pected to shift attention to other “incorrect” characters dur-

ing the decoding procedure.
To simplify the derivation, we first discuss the case of

only one character l′t1 is changed in l′. To maximize the

probability p(l′|x′) of the targeted sequence l′, finding the

adversarial image x′ can be formulated according to the

above Eq. 12 as:

Latt(x
′

, l
′

) = −

T ′

∑

t=2

log p(l′t|x
′, l′1, ..., l

′
t1
, ..., l′t−1)

≈ −

T ′

∑

t=2,t 6=t1

log p(l′t|x
′, l′1, ..., l

′
t1
, ..., l′t−1)

− log p(l′t|x
′, l′1, ..., l

′
t1
). (13)

For the more general case of k changed characters

{l′t1 , ..., l
′
tk
} in l′, we can still derive the similar form as
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Eq. 13 by dividing l′ into k + 1 parts where continuously

unchanged characters are grouped. Note that in Eq. 13, the

first term is a constant value given the unchanged charac-

ters in l′ compared with l, then the final targeted attack loss

function can be rewritten as:

minLatt(x
′, l′) ∝ max

(

− log p(l′t|x
′, x′, l′1, ..., l

′
t1
)
)

.
(14)

Applying Eq. 14 to the general form of Eq. 1 , the final

objective formula of the targeted attack on attention-based

models is:

min
(

max(− log p(l′t|x, l
′
1, ..., l

′
t1
)) + λD(x, x′)

)

. (15)

Untargeted Attack on Attention-based Models. To ac-

complish the attack, we adopt the similar strategy as for the

CTC models, i.e., reducing the probability of each character

in the ground-truth l = {l1, l2, ..., lT } to find the adversarial

example x′. If any character in l obtains lower probability,

l will be attacked and changed to an untargeted sequence l′.
According to the probability definition in Eq. 12, we can

derive the loss term for (x′, l′) as:

Latt(x
′, l′) = − log p(l′|x′) = −

T ′

∑

t=2

log p(l′t|x
′, l′1, ..., l

′
t−1),

s.t. log p
(

l′t|x
′, l′1, ..., l

′
t−1

)

6= log p (lt|x, l1, ..., lt−1) , ∃t ∈ T.
(16)

Here the index t can be any position according to l. Ap-

plying Eq. 16 to Eq. 1 , the final optimization formula of

untargeted attack on attention-based model is:

min (max(− log p(l′|x′) + λD(x, x′)) . (17)

3.4. The Optimization

According to the objective functions Eq. 7, Eq.9, Eq.15,

and Eq. 17 of (un)targeted attacks on CTC and attention-

based models, we adopt the stochastic gradient descent

(SGD) algorithm to update the perturbation vector δ iter-

atively. Finally the perturbations are added on the original

images to generate adversarial examples. The detailed opti-

mization algorithm is depicted in Alg. 1.

4. Experiments

4.1. Experimental Setup

STR Models. Five state-of-the art STR models are selected

as the targets for adversarial attack, including three CTC-

based models (i.e., CRNN [42], Rosetta [3], STAR-Net [30]

) and two attention-based ones (i.e., RARE [43], TRBA

[1]). As summarized in [1], these STR models adopts dif-

ferent DNN network architectures of VGG [44] and ResNet

[16] for visual feature extraction. In addition, Bidirectional

LSTM (Bi-LSTM) is used as the (de)-selection in sequence

modeling; CTC and attention scheme (Attn) are employed

for sequence prediction.

Algorithm 1 The detailed procedure of our method to attack

STR models.

Input: Original image x, target sequence l′, a STR model

R(·), with attacking objective function L(·), attack

mode m, learning rate µ;

1: if l′ 6= NULL then

2: m← −1 // Targeted attack

3: else

4: m ← 1 // Untargeted attack

5: end if

6: Initialize δ ← 0
7: repeat

8: g ← m▽δL(x
′, l′),

9: g ← g
‖g‖

2

,

10: δ ← δ + µ ∗ g,

11: Update µ by learning rate annealing,

12: δ ← clip(δ)
13: x′ ← x+ δ
14: until R(x′) = l
Output: Adversarial image x′.

Datasets. Since it is costly to obtain enough labeled scene

text images in real scenarios, most STR models use syn-

thetic data for training. The MJSynth [19] (MJ) and Syn-

thText [15] (ST) are two widely-used synthetic datasets de-

signed for STR, which contain 8.9 and 5.5 million word box

images, respectively. Unlike the prior works that have used

diverse combinations of the two datasets, Baek et al. [1]

suggest unifying the two datasets to avoid inconsistent and

unfair comparison. Therefore, we follow their settings and

use a combination of the two datasets (i.e., MJ+ST) as our

training data, which contains 14.4 million images in total.
Moreover, 7 real-world STR datasets are used for eval-

uating a trained STR model, they are CUTE80 [40],

ICDAR2003 [32], ICDAR2013 [23], ICDAR2015 [22],

IIIT5K-Words (IIIT5K) [34], Street View Text (SVT) [47],

and SVT Perspective (SP) [39]. All these datasets have been

fairly evaluated in the latest work of [1]. Besides, we also

build 2 synthetic test datasets by randomly selecting 4000

images in each of MJ and ST datasets in our experiment.
Implementation Details. All pre-trained scene text recog-

nition models are trained based on MJ+ST, and all model

parameters are set to be the best values which are released

by [1]. We recalculate the accuracy of all pre-trained mod-

els to ensure the reliability of our experiment. We employ

the PyTorch toolkit to implement our method and all the

experiments are conducted on a desktop with one GeForce

GTX 1080 Ti GPU. In general, these STR models originally

adopt the Adam optimizer with the learning rate as 0.005

for model training. For our attacking method, we use SGD

to optimize the objective functions of all STR models and

adopt a learning rate annealing strategy to reduce learning

rate from 0.1 to 0.01, since our method can support large

learning rate with stable training procedure and fast attack-
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ing speed. For the parameter λ, we adopt a binary search

for λ ∈ [10−3, 104] and take an early-stop strategy to avoid

unnecessary iterations. The detailed analysis of our model

parameters is shown in the ablation study.

Attack Setting and Evaluation Metric. We conduct both

targeted and untargeted attacks on each test dataset. As the

attacking sequence is optional to make insertion, substitu-

tion, and deletion of the groundtruth sequence, we use the

edit distance to measure the difference between the two se-

quences. Specifically, for the untargeted attack, since the at-

tacking sequence is arbitrary, the edit distance is not fixed.

On the contrary, as the attacking sequence is pre-specific,

the edit distance is fixed, e.g., 1, 2, 3, etc, depending on the

length of the groundtruth sequence. In our experiment, we

run the attack to find an adversarial example until the edit

distance is not 0 (i.e., attack succeeds). For all datasets, we

set the maximum adversarial perturbations magnitude with

clip norm to 0.2. We use the widely-adopted metrics of 1)

success rate (SR), the ratio of successful generation of ad-

versarial examples under the perturbation bound within the

limited number of iterations; 2) the averaged L2 distance

(Dist) between the input images and the generated adver-

sarial examples; and 3) average number of iterations (Iter),

required for a successful attack (excluding failed attacks).

4.2. Overall Results

Results on Targeted Attack. We first evaluate the targeted

attack against five STR models on all testing datasets. We

consider a typical targeted attack case, i.e., the targeted se-

quence has a 2-Edit distance with the groundtruth sequence

by the substitute operation. The results in terms of origi-

nal prediction accuracy, attack success rate, average differ-

ence and average iterations can be found in Table 1. We

can clearly observe that all the STR models are vulnerable

to adversarial examples, as the SRs on them reach almost

100%. For the models with larger recognition accuracy,

e.g., STAR-Net and TRBA, more number of iterations are

needed to accomplish the attack to targeted sequence as they

have more complicate and deeper network architecture. In

general, our proposed method needs smaller number of it-

erations (e.g., 20-50) for the targeted attack on all datasets,

which is remarkably efficient than traditional attack algo-

rithms such as C&W [5] and the reported results in [54]

that usually needs hundreds (even thousands) of iterations.

Moreover, our method also achieves low distances (around

1.0) of perturbations for all models on all datasets. In most

cases, the STAR-Net model has smaller perturbations than

the other models, indicating that the adversarial examples

generated for it are more similar to the original images.

Results on Untargeted Attack. We then report the results

of untargeted attack against all STR models in Table 2, un-

der the same case of the above targeted attack. Similar to

the above results on the targeted attack with 2-Edit distance,

here all models are easily fooled by our attack method with

nearly 100% success rate. Moreover, the required numbers

of iterations for attacking all models are remarkably less

than those of the targeted attack case, i.e., less than 10 iter-

ations in general. Besides, the distances for all models are

also much smaller (less than 1.0), indicating that just slight

perturbations on the original images of all datasets would

lead to incorrect predictions.

Results on Transfer Attack. The transfer attack is to fool

models or datasets with a perturbation generated on another

model or dataset. Since the STR models are trained on

synthetic dataset MJ+ST and tested on real-world datasets,

therefore, the above untargeted and targeted attacks can

also belong to the cross-dataset transfer attack. The re-

sults in both Table 1 and Table 2 demonstrate that our at-

tack method can effectively achieve the cross-dataset trans-

fer attack. Furthermore, we conduct experiments to inves-

tigate the cross-model transfer attack, where we use the ad-

versarial examples generated from one STR model to fool

another model. Table 3 shows the results in terms of mean

SR score for the cross-model transfer attack across five dif-

ferent STR models on 7 real-world datasets. Each row in

the table shows the SRs for perturbations crafted by a given

STR model, and each column shows the succeeded rates

on another model. We can see that the attack across pair-

wise models is asymmetric, showing the diverse properties

of each model on adversarial examples generated by another

model. The CRNN model obtains the best average SR score

while the state-of-the-art TRBA method obtains the worst

scores. It indicates that CRNN can generate more effective

adversarial examples to fool the other models though it has

much simpler network architecture. Moreover, as different

feature extraction schemes (e.g., VGG and ResNet) and pre-

diction schemes (CTC and Attn) are used in the STR mod-

els, they also have an effect on the results of cross-model

transfer attack.

4.3. Further Analysis

Visualization of Perturbations. In this experiment, we in-

vestigate the changes on the learned perturbations during

optimization in our method. We choose two models: CRNN

(CTC-based) and TRBA (attention-based) as prototypes to

generate adversarial examples on the IIIT5K and CUTE80

datasets. Fig. 2 visualizes the generated perturbations and

the corresponding adversarial examples in different steps of

the optimization procedure. We can see that at the begin-

ning (e.g., iteration 1), the perturbations are too weak to

change the prediction results, with more iterations (e.g., 20-

80), the prediction results are changed with more effective

perturbations. In practice, our method will stop iteration

around 20 as the attack has accomplished.

Effect of Different Operations in Targeted Attack. In-

deed, a sequence can be modified with various operations:

insertion, substitution and deletion in the targeted attack. To

fully explore these operations, we again use the edit dis-
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CUTE08 (247 images) ICDAR03 (867 images) ICDAR13 (857 images)
Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓

CRNN (TPAMI’17) 65.5 100 1.20 14.6 92.6 100 1.33 16.0 91.0 99.94 1.35 16.7
Rosetta (KDD’18) 69.2 99.19 1.15 24.5 92.9 99.82 1.19 26.5 90.9 99.84 1.21 29.9
STAR-Net (BMVC’16) 71.7 100 1.03 26.2 94.0 100 1.08 22.3 92.8 99.94 1.12 24.5
RARE (CVPR’16) 64.0 99.59 1.27 16.9 91.2 99.91 1.41 18.2 69.4 99.94 1.43 18.6
TRBA (ICCV’19) 74.0 99.19 1.24 47.9 94.4 99.82 1.25 47.2 93.6 99.79 1.26 48.6

IIIT5K (2556 images) SVT (647 images) SVT-P (645 images)
Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓

CRNN (TPAMI’17) 82.9 99.93 1.25 16.1 81.6 99.94 1.22 15.7 70.0 99.94 1.20 15.2
Rosetta (KDD’18) 84.3 99.59 1.12 28.7 84.7 99.63 1.10 27.6 73.8 99.66 1.08 26.6
STAR-Net (BMVC’16) 87.0 99.86 1.07 24.1 86.9 99.87 1.05 23.3 77.5 99.88 1.04 22.5
RARE (CVPR’16) 81.7 99.84 1.27 16.8 80.8 99.85 1.25 16.3 69.4 99.87 1.23 15.7
TRBA (ICCV’19) 87.9 99.36 1.21 45.1 87.5 99.42 1.20 43.9 79.2 99.47 1.19 42.9

ICDAR15 (1927 images) MJ (4000 images) ST (4000 images)
Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓

CRNN (TPAMI’17) 69.4 99.97 1.12 13.6 93.9 99.59 1.36 18.6 94.8 100 1.34 16.9
Rosetta (KDD’18) 71.2 99.92 1.02 23.4 95.2 99.39 1.33 61.1 95.7 100 1.12 25.4
STAR-Net (BMVC’16) 76.1 99.97 0.96 19.4 94.9 99.39 1.26 41.6 97.1 100 1.07 27.1
RARE (CVPR’16) 70.6 99.97 0.96 19.4 88.8 100 1.62 26.8 87.3 100 1.20 13.9
TRBA (ICCV’19) 77.6 99.87 1.12 39.2 96.1 99.61 1.27 51.7 97.3 99.97 1.10 34.4

Table 1: Results of targeted attack on 7 real-world datasets and 2 synthetic datasets against five state-of-the-art STR models.

CUTE08 (247 images) ICDAR03 (867 images) ICDAR13 (857 images)
Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓

CRNN (TPAMI’17) 65.5 99.19 0.64 5.4 92.6 94.91 1.25 10.2 91.0 96.14 1.00 7.7
Rosetta (KDD’18) 69.2 100 0.25 1.6 92.9 99.76 0.31 2.4 90.9 99.88 0.33 3.1
STAR-Net (BMVC’16) 71.7 100 0.45 3.6 94.0 99.88 0.64 6.0 92.8 99.76 0.69 6.4
RARE (CVPR’16) 64.0 100 0.29 2.0 91.2 100 0.43 3.3 69.4 99.88 0.42 3.3
TRBA (ICCV’19) 74.0 100 0.39 3.0 94.4 99.76 0.56 5.1 93.6 99.88 0.57 5.1

IIIT5K (2556 images) SVT (647 images) SVT-P (645 images)
Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓

CRNN (TPAMI’17) 82.9 98.32 0.89 9.3 81.6 99.38 0.58 3.8 70.0 99.53 0.47 3.1
Rosetta (KDD’18) 84.3 99.88 0.32 2.3 84.7 100 0.27 1.8 73.8 100 0.25 1.6
STAR-Net (BMVC’16) 87.0 99.49 0.70 6.3 86.9 100 0.50 4.3 77.5 99.84 0.42 3.7
RARE (CVPR’16) 81.7 99.96 0.43 3.3 80.8 100 0.41 3.3 69.4 100 0.37 2.8
TRBA (ICCV’19) 87.9 99.96 0.56 5.1 87.5 100 0.43 3.8 79.2 100 0.35 2.9

ICDAR15 (1927 images) MJ (4000 images) ST (4000 images)
Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓ Acc ↑ SR ↑ Dist ↓ Iter ↓

CRNN (TPAMI’17) 69.4 99.84 0.43 3.0 93.9 99.09 0.89 7.4 94.8 92.26 1.15 12.9
Rosetta (KDD’18) 71.2 100 0.25 1.6 95.2 99.95 0.23 1.6 95.7 99.74 0.41 4.3
STAR-Net (BMVC’16) 76.1 100 0.38 3.2 94.9 99.87 0.62 6.0 97.1 99.77 0.56 5.5
RARE (CVPR’16) 70.6 100 0.35 2.6 88.8 99.93 0.23 1.4 87.3 99.51 0.63 5.4
TRBA (ICCV’19) 77.6 100 0.33 2.6 96.1 100 0.49 4.3 97.3 100 0.44 4.1

Table 2: Results of untargeted attack on 7 real-world datasets and 2 synthetic datasets for five state-of-the-art STR models.

CRNN Rosetta STAR-Net RARE TRBA Avg.

CRNN - 25.11 16.74 33.33 15.96 22.79
Rosetta 11.93 - 9.14 13.48 6.20 10.18
STAR-Net 15.19 16.27 - 19.37 9.76 15.14
RARE 16.27 14.41 10.38 - 9.14 12.55
TRBA 13.64 14.41 9.45 15.81 - 13.32

Table 3: Results of cross-model transfer attack.

tance to measure the difference between the targeted se-

quence and the groundtruth sequence. Table 4 shows the

attacking results of our method against five STR models on

the ICDAR15 dataset by specifying the targeted sequence

with 1 and 2-Edit distance, respectively. We can see that

our method is stable with different operations and keep the

attacking SR scores on all models with fast attacking speed.

In the 2-Edit distance case, to keep the SR score, our method

needs more iterations to accomplish the attack and the av-

erage distance is larger. The reason is that the targeted se-

quence has more inequality with the groundtruth, the per-

turbations are respectively more difficult to be learned.

1-Edit distance 2-Edit distance
SR ↑ Dist ↓ Iter ↓ SR ↑ Dist ↓ Iter ↓

CRNN 99.97 1.11 14.1 99.87 1.43 26.1
Rosetta 99.87 0.97 25.8 99.84 1.25 44.9
Star-Net 99.97 0.94 22.7 99.92 1.22 46.0
RARE 99.97 1.10 13.9 99.97 1.36 19.3
TRBA 99.76 1.16 42.1 99.51 1.41 72.2

Table 4: The results of different operations in our targeted

attack with 1, 2-Edit distance.
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Figure 2: Visualization of the perturbations and adversarial

examples obtained by our method in different optimization

steps on IIIT5K (top) and CUTE80 (bottom) datasets.

Effect of Model Parameters. We further assess the effect

of our model parameters: the learning rate µ and trade-off

coefficient λ in our method. We take the ICDAR15 dataset

as a testbed and evaluate our method on all five STR models

for the untargeted attack. Fig. 3(a) shows the numbers of it-

erations with different µ on all methods. It can be seen that

with larger µ, fewer iterations (e.g., 20-30) are required to

accomplish the attack. Note that, using large µ (e.g., [0.1,

1]) in existing models, such as C&W and [54], may lead

to collapse. However, our method is able to use a larger

value of µ . Furthermore, Fig. 3(b) illustrates the change

of perturbations with different λ. Indeed, λ controls the

importance of both perturbations and the sequence decod-

ing in the attack objective functions. With larger λ, smaller

perturbations are expected, which may lead to the failure at-

tack due to the negligible difference between the generated

adversarial examples and the original images. In practice,

λ ∈ [0.01, 10] achieves the best attacking results.
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Figure 3: The effect of parameter µ and λ in our method for

all STR models on CUTE80 dataset.

Attack on Real-world STR System. Finally, we inves-

tigate the generated adversarial examples by our method

on attacking a real-world commercial STR system, i.e.,

Baidu OCR. In particular, we select 800 images in total

from the 7 real-world datasets to generate their adversar-

ial examples using CRNN and TRBA models, then we use

the API toolkit (https://cloud.baidu.com/doc/

OCR/OCR-API.html) to make prediction. Fig. 4 shows

the overall success rate of the targeted and untargeted at-

tacks on the STR system. We can observe that the system

has a considerably high risk to be attacked, as the SR is

more than 20%. Moreover, two typical adversarial exam-

ples presented in the table show that the predicted results of

these perturbed images are completely different from the

original ones. Another potential reason is that the char-

acters’ vocabulary of the Baidu OCR system may be dif-

ferent from the ones we used for the original CRNN and

TRBA models. Nevertheless, this experiment again indi-

cates building a real-world commercial STR system also

needs to consider the issue of reliability for more robust

recognition.

Targeted Attack Untargeted Attack

CRNN
wrappers → wrapper logistic → ogistIC

TRBA
graphic → 9raphic books → OOKS

CRNN 26.70 22.31

TRBA 25.05 20.90

Figure 4: Typical adversarial examples tested on Baidu

OCR (top panel) and the overall attacking results (SR) of

the two STR models (bottom panel).

5. Conclusion

In this paper, we are the first to propose a generic and ef-

ficient attack methods against scene text recognition (STR).

We firstly derived the objective functions for attacking both

CTC-based and attention-based models with targeted and

untargeted attack modes. We then conducted extensive ex-

periments to evaluate our proposed attack method on 7 real-

world datasets, 2 synthetic datasets as well as a commercial

STR system (i.e., Baidu OCR), in which our method consis-

tently has shown high attack performance and almost com-

pletely fooled five state-of-the-art STR models with high

efficiency. Our work can therefore serve as an inspiration in

designing more robust and secure STR models against the

proposed attack schemes.
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