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Abstract

This paper presents a fast and parsimonious parsing

method to accurately and robustly detect a vectorized wire-

frame in an input image with a single forward pass. The

proposed method is end-to-end trainable, consisting of three

components: (i) line segment and junction proposal gen-

eration, (ii) line segment and junction matching, and (iii)

line segment and junction verification. For computing line

segment proposals, a novel exact dual representation is pro-

posed which exploits a parsimonious geometric reparameter-

ization for line segments and forms a holistic 4-dimensional

attraction field map for an input image. Junctions can be

treated as the “basins” in the attraction field. The pro-

posed method is thus called Holistically-Attracted Wireframe

Parser (HAWP). In experiments, the proposed method is

tested on two benchmarks, the Wireframe dataset [15] and

the YorkUrban dataset [8]. On both benchmarks, it obtains

state-of-the-art performance in terms of accuracy and effi-

ciency. For example, on the Wireframe dataset, compared

to the previous state-of-the-art method L-CNN [41], it im-

proves the challenging mean structural average precision

(msAP) by a large margin (2.8% absolute improvements),

and achieves 29.5 FPS on single GPU (89% relative im-

provement). A systematic ablation study is performed to

further justify the proposed method. The source code is

publicly available1.

1. Introduction

1.1. Motivations and Objectives
Line segments and junctions are prominent visual patterns

in the low-level vision, and thus often used as important

cues/features to facilitate many downstream vision tasks such

as camera pose estimation [24, 25, 11], image matching [36],

image rectification [37], structure from motion (SfM) [4, 22],

∗Corresponding author
1https://github.com/cherubicxn/hawp

(a) Image (b) Learned Lines (c) HAWP (score>0.9)

(d) Junction Proposals (e) Enumerated Lines (f) L-CNN (score>0.9)

Figure 1. Illustration of the proposed HAWP in comparison with

L-CNN [41] in wireframe parsing. The two methods adopt the

same two-stage parsing pipeline: proposal (line segments and junc-

tions) generation and proposal verification. They use the same

junction prediction in (d) and verification modules. The key differ-

ence lies in the line segment proposal generation. L-CNN bypasses

directly learning line segment prediction module and resorts to a

sophisticated sampling based approach for generation line segment

proposals in (e). Our HAWP proposes a novel line segment predic-

tion method in (b) for more accurate and efficient parsing, e.g., the

parsing results of the window in (c) and (f).

visual SLAM [19, 39, 42], and surface reconstruction [17].

Both line segment detection and junction detection remain

challenging problems in computer vision [32, 34, 35]. Line

segments and junctions are often statistically coupled in

images. So, a new research task, wireframe parsing, is

recently emerged to tackle the problem of jointly detecting

meaningful and salient line segments and junctions with

large-scale benchmarks available [15]. And, end-to-end

trainable approaches based on deep neural networks (DNNs)

are one of the most interesting frameworks, which have
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shown remarkable performance.

In wireframe parsing, it can be addressed relatively better

to learn a junction detector with state-of-the-art deep learning

approaches and the heatmap representation (inspired by its

widespread use in human pose estimation [23, 29, 40]). This

motivated a conceptually simple yet powerful wireframe

parsing algorithm called L-CNN [41], which achieved state-

of-the-art performance on the Wireframe benchmark [15].

L-CNN bypasses learning a line segment detector. It devel-

ops a sophisticated and carefully-crafted sampling schema to

generate line segment proposals from all possible candidates

based on the predicted junctions, and then utilizes a line seg-

ment verification module to classify the proposals. A large

number of proposals are entailed for achieving good results

at the expense of computational costs. And, ignoring line

segment information in the proposal stage may not take full

advantage of the deep learning pipeline for further improving

performance.

On the other hand, without leveraging junction informa-

tion in learning, the recently proposed attraction field map

(AFM) based approaches [34, 35] are the state-of-the-art

methods for line segment detection. AFM is not strictly

end-to-end trainable. The reparameterization of pixels in the

lifting process is for lines, instead of line segments (i.e., we

can only infer a line with a given displacement vector, and

that is why the squeezing module is needed).

In this paper, we are interested in learning an end-to-end

trainable and fast wireframe parser. First, we aim to develop

an exact dual and parsimonious reparameterization scheme

for line segments, in a similar spirit to the AFM [34], but

without resorting to the heuristic squeezing process in infer-

ence. Then, we aim to tackle wireframe parsing by leverag-

ing both line segment and junction proposals to improve both

accuracy and efficiency and to eliminate the carefully-crafted

sampling schema as done in L-CNN [41].

1.2. Method Overview
In general, a parsing algorithm adopts two phases as pro-

posed in the generic image parsing framework [28]: proposal

generation and proposal verification, which are also realized

in the state-of-the-art object detection and instance segmen-

tation framework [12, 26, 14]. The current state-of-the-art

wireframe parser, L-CNN [41] follows the two-phase parsing

paradigm. The proposed method in this paper also adopts the

same setup. As illustrated in Fig. 1 and Fig. 2, the proposed

method consists of three components:

i) Proposal initialization: line segment detection and junc-

tion detection. Given an input image, it first passes through

a shared feature backbone (e.g., the stacked Hourglass net-

work [23]) to extract deep features. Then, for junction detec-

tion, we adopt the same head regressor based on the heatmap

representation as done in L-CNN [41] (Section 4.2), from

which the top-K junctions are selected as initial junction

proposals. For computing line segment proposals, a novel
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Figure 2. Illustration of the architecture of our proposed HAWP.

It consists of three components, proposal initialization, proposal

refinement and proposal verification. See text for details.

method is proposed (Section 4.1).

ii) Proposal refinement: line segment and junction match-

ing. The matching is to calculate meaningful alignment

between line segment initial proposals and junction initial

proposals. In the refinement (Section 4.3), a line segment

proposal is kept if its two end-points are supported by two

junction proposals. If a junction proposal does not find any

support line segment proposal, it will be removed.

iii) Proposal verification: line segment and junction clas-

sification. The verification process is to classify (double-

check) the line segments and junctions from the proposal

refinement stage. We utilize the same verification head clas-

sifier (Section 4.4) as done in L-CNN [41], which exploits

a Line-of-Interest (LOI) pooling operation to compute fea-

tures for a line segment, motivated by the Region-of-Interest

(ROI) pooling operation used in the popular two-stage R-

CNN frameworks [12, 26, 14].

Geometrically speaking, the proposed wireframe parser

is enabled by the holistic 4-D attraction field map and the

“basins” of the attraction field revealed by junctions. We thus

call the proposed method a Holistically-Attracted Wire-

frame Parser (HAWP). The proposed HAWP is end-to-end

trainable and computes a vectorized wireframe for an input

image in single forward pass. The key difference between

our HAWP and the current state-of-the-art L-CNN [41] ap-

proach is the novel line segment reparameterization and its

end-to-end integration in the parsing pipeline. Our HAWP

outperforms L-CNN by a large margin in terms of both ac-

curacy and efficiency (Section 5).

2. Related Work and Our Contributions
The fundamental problem in wireframe parsing is to learn

to understand the basic physical and geometric constraints of

our world. The problem can date back to the pioneering work

of understanding Blocks World by Larry Roberts [27, 13] at

the very beginning of computer vision. We briefly review

two core aspects as follows.

Representation of Line Segments. There is a big gap

between the mathematically simple geometric representation

of line segments (at the symbol level) and the raw image data

(at the signal level). A vast amount of efforts have been de-
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voted to closing the gap with remarkable progress achieved.

Roughly speaking, there are three-level representations of

line segments developed in the literature: (i) Edge-pixel

based representations, which are the classic approaches and

have facilitated a tremendous number of line segment detec-

tors [3, 21, 5, 9, 30, 7, 30, 2, 7]. Many of these line segment

detectors suffer from two fundamental issues inherited from

the underlying representations: the intrinsic uncertainty and

the fundamental limit of edge detection, and the lack of struc-

tural information guidance from pixels to line segments. The

first issue has been eliminated to some extent by state-of-the-

art deep edge detection methods [33, 20]. (ii) Local support

region based representations, e.g., the level-line based sup-

port region used in the popular LSD method [30] and its

many variants [1, 7]. The local support region is still defined

on top of local edge information (gradient magnitude and ori-

entation), thus inheriting the fundamental limit. (iii) Global

region partition based representation, which is recently pro-

posed in the AFM method [34]. AFM does not depend on

edge information, but entails powerful and computationally

efficient DNNs in learning and inference. AFM is not strictly

an exact line segment representation, but a global region par-

tition based line representation. The issue is addressed in

this paper by proposing a novel holistic AFM representation

that is parsimonious and exact for line segments.

Wireframe Parsing Algorithm Design. The recent

resurgence of wireframe parsing, especially in an end-to-end

way, is driven by the remarkable progress of DNNs which en-

ables holistic map-to-map prediction (e.g., from raw images

to heatmaps directly encoding edges [33] or human key-

points [31], etc.). As aforementioned, the general framework

of parsing is similar between different parsers. Depending on

whether line segment representations are explicitly exploited

or not, the recent work on wireframe parsing can be divided

into two categories: (i) Holistic wireframe parsing, which in-

clude data-driven proposal generation for both line segments

and junctions, e.g., the deep wireframe parser (DWP) [15]

presented along with the wireframe benchmark. DWP is

not end-to-end trainable and relatively slow. (ii) Deduc-

tive wireframe parsing, which utilizes data-driven proposals

only for junctions and resorts to sophisticated top-down sam-

pling methods to deduce line segments based on detected

junctions, e.g., PPG-Net [38] and L-CNN [41]. The main

drawbacks of deductive wireframe parsing are in two-fold:

high computational expense for line segment verification,

and over-dependence on junction prediction. The proposed

HAWP is in the first category, but enjoys end-to-end training

and real-time speed.

Our Contributions. This paper makes the following

main contributions to the field of wireframe parsing:

- It presents a novel holistic attraction field to exactly

characterize the geometry of line segments. To our

knowledge, this is the first work that facilitates an exact

dual representation for a line segment from any dis-

tant point in the image domain and that is end-to-end

trainable.

- It presents a holistically-attracted wireframe parser

(HAWP) that extracts vectorized wireframes in input

images in a single forward pass.

- The proposed HAWP achieves state-of-the-art perfor-

mance (accuracy and efficiency) on the Wireframe

dataset [15] and the YorkUrban dataset [8].

3. Holistic Attraction Field Representation

In this section, we present the details of our proposed

holistic attraction field representation of line segments. The

goal is to develop an exact dual representation using geo-

metric reparameterization of line segments, and the dual

representation accounts for non-local information and en-

ables leveraging state-of-the-art DNNs in learning. By an

exact dual representation, it means that in the ideal case

it can recover the line segments in closed form. Our pro-

posed holistic attraction field representation is motivated by,

and generalizes the recent work called attraction field map

(AFM) [34].

We adopt the vectorized representation of wireframes in

images [15], that is we use real coordinates for line segments

and junctions, rather than discrete ones in the image lattice.

Denote by Λ and D ⊂ R
2 the image lattice (discrete) and the

image domain (continuous) respectively. A line segment is

denoted by its two end-points, l̈ = (x1,x2), where x1,x2 ∈
D (2-D column vector). The corresponding line equation

associated with l̈ is defined by, l : aT
l̈
· x + bl̈ = 0 where

al̈ ∈ R
2 and bl̈ ∈ R, and they can be solved in closed form

given the two end-points.

Background on the AFM method [34]. To be self-

contained, we briefly overview the AFM method. The basic

idea is to “lift” a line segment to a region, which facilitates

leveraging state-of-the-art DNNs in learning. To compute

the AFM for a line segment map, each (pixel) point p ∈ Λ is

assigned to a line segment l̈ if it has the minimum distance

to l̈ among all line segments in a given image. The distance

is calculated as follows. Let p′ be the point projected onto

the line l of a line segment l̈. If p′ is not on the line segment

l̈ itself, it will be re-assigned to one of the two end-points

that has the smaller Euclidean distance. Then, the distance

between p and l̈ is the Euclidean distance between p and p′.

If p is assigned to l̈, it is reparameterized as p− p′, i.e., the

displacement vector in the image domain. The AFM of a

line segment map is a 2-D vector field, which is created by

reparameterizing all the (pixel) points in the image lattice

Λ and often forms a region partition of the image lattice.

A heuristic squeezing module is also proposed in the AFM

work to recover a line segment from a 2-D vector field region

(a.k.a., attraction).

The proposed holistic attraction field map. Strictly
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Figure 3. An illustration for representing line segments in images

with the related distant points. (a) shows one of the line segments

(marked black with two blue endpoints), the corresponding support

region (marked gray) calculated by AFM [34] and one of the distant

points in the support region. (b) shows the process of extending the

attraction field representation and transforming the line segment

into a standard local coordinate originated at p with a horizontal

unit attraction vector.

speaking, the displacement vector based geometric reparam-

eterization scheme in the AFM method can only provide

complete information for the underlying line l of a line seg-

ment l̈ (when the projection is not outside the line segment).

One straightforward extension of the AFM method is as fol-

lows. As illustrated in the first column in Fig. 3 (b), consider

a distant (pixel) point p outside a line segment l̈ with the

projection point being on the line segment, if we not only use

the displacement vector between p and its projection point,

but also include the two displacement vectors between p and

the two end-points of the line segment, we can reparameter-

ize p by its 6-D displacement vector which can completely

determine the line segment (i.e., an exact dual representa-

tion). There are some points (pixels) (e.g., points on any

line segment) that should not be reparameterized to avoid

degradation and are treated as the “background”. Thus, we

can create a 6-D attraction field and each line segment is

supported by a region in the field map (shown by the gray

region in Fig. 3 (a)). This was our first attempt in our study,

and it turns out surprisingly that the 6-D attraction field can

not be accurately and reliably learned in training with deep

convolutional neural networks. We hypothesis that although

the 6-D attraction field captures the sufficient and necessary

information for recovering line segments in closed form, it

is not parsimoniously and complementarily encoded using 3

displacement vectors for each point, which may increase the

difficulty of learning even with powerful DNNs.

We derive an equivalent geometric encoding that is par-

simonious and complementary as shown in the right two

columns in Fig. 3. For a line segment l̈, our derivation un-

dergoes a simple affine transformation for each distant pixel

point p in its support region. Let d be the distance between

p and l̈, i.e., d = |aT
l̈
· p′ + bl̈| > 0. We have,

i) Translation: The point p is then used as the new coor-

dinate origin.

ii) Rotation: The line segment is then aligned with the

vertical y-axis with the end-point x1 on the top and the

point p (the new origin) to the left. The rotation angle

is denoted by θ ∈ [−π, π).

iii) Scaling: The distance d is used as the unit length to

normalize the x- / y-axis in the new coordinate system.

In the new coordinate system after the affine transforma-

tion, let θ1 and θ2 be the two angles as illustrated in Fig. 3

(θ1 ∈ (0, π
2 ) and θ2 ∈ (−π

2 , 0]). So, a point p in the support

region of a line segment l̈ is reparameterized as,

p(l̈) = (d, θ, θ1, θ2), (1)

which is completely equivalent to the 6-D displacement vec-

tor based representation and thus capable of recovering the

line segment in closed form in the ideal case. For the “back-

ground” points which are not attracted by any line segment

based on our specification, we encode them by a dummy

4-D vector (−1, 0, 0, 0).
The derived 4-D vector field map for a line segment map

is called a holistic attraction field map highlighting its com-

pleteness and parsimoniousness for line segments, compared

to the vanilla AFM [34].

High-level explanations of why the proposed 4-D

holistic AFM is better than the 6-D vanilla AFM. Intu-

itively, for a line segment and a distant point p, we can view

the support region (the grey one in Fig. 3 (a)) as “a face” with

the point p being the left “eye” center and the line segment

being the vertical “head bone”. So, the affine transformation

stated above is to “align” all the “faces” w.r.t. the left “eye”

in a canonical frontal viewpoint. It is well-known that this

type of “representation normalization” can eliminate many

nuisance factors in data to facilitate more effective learn-

ing. Furthermore, the joint encoding that exploits displace-

ment distance and angle effectively decouples the attraction

field w.r.t. complementary spanning dimensions.

4. Holistically-Attracted Wireframe Parser

In this section, we present details of our Holistically-

Attracted Wireframe Parser (HAWP).

Data Preparation. Let Dtrain = {(Ii, Li); i =
1, · · · , N} be the set of training data where all the im-

ages Ii’s are resized to the same size of Λ = H × W

pixels, and Li is the set of ni annotated line segments in

the image Ii, Li = {l̈i,1, · · · , l̈i,ni
} and each line segment

l̈i,j = (xi,j,1,xi,j,2) is represented by its two annotated

end-points (the vectorized wireframe representation).

The groundtruth junction heatmap representations. We

adopt the same settings used in L-CNN [41]. For an image

I ∈ Dtrain (the index subscript is omitted for simplicity),

the set of unique end-points from all line segments are the

junctions, denoted by J . Then, we create two maps: the

junction mask map, denoted by J , and the junction 2-D

offset map, denoted by O. A coarser resolution is used

in computing the two maps by dividing the image lattice

into H ′ × W ′ bins (assuming all bins have the same size,

B×B, i.e., the down-sampling rate is B = H
H′

= W
W ′

). Then,

for each bin b, let Λb ⊂ Λ and xb ∈ Λb be its corresponding
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patch and the center of the patch respectively in the original

image lattice and we have, J (b) = 1 and O(b) = (xb −
p) if ∃p ∈ J, and p ∈ Λb and both are set to 0 otherwise,

where the offset vector in O(b) is normalized by the bin size,

so the range of O(b) is bounded by [− 1
2 ,

1
2 )× [− 1

2 ,
1
2 ).

The groundtruth holistic attraction field map. It is straight-

forward to follow the definitions in Section 3 to compute the

map for an image I ∈ Dtrain. Denote by A be the map of

the size H ′×W ′ (the same as that of the two junction maps),

which is initialized using the method in Section 3. Then,

we normalize each entry of the 4-D attraction field vector

(Eqn. (1)) to be in the range [0, 1). We select a distance

threshold dmax. We filter out the points in A if their d’s are

greater than dmax by changing them to the “background”

with the dummy vector (−1, 0, 0, 0). Then, we divide the

distances (the first entry) of the remaining non-background

points by dmax. Here, dmax is chosen such that all line seg-

ments still have sufficient support distant points (dmax = 5
in our experiments). It also helps remove points that are far

away from all line segments and thus may not provide mean-

ingful information for LSD. For the remaining three entries,

it is straightforward to normalize based on their bounded

ranges. For example, an affine transformation is used to

normalize θ to θ
2π + 1

2 .

Feature Backbone. We chose the stacked Hourglass

network [23] which is widely used in human keypoint esti-

mation and corner-point based object detection [18, 10], and

also adopted by L-CNN [41]. The size of the output feature

map is also H ′ ×W ′. Denote by F the output feature map

for an input image I .

4.1. Computing Line Segment Proposals
Line segment proposals are computed by predicting the

4-D AFM A from F . Let Â be the predicted 4-D map. Â
is computed by an 1× 1 convolutional layers followed by a

sigmoid layer. With Â, it is straightforward to generate line

segment proposals by reversing the simple normalization

step and the geometric affine transformation (Section 3).

However, we observe that the distance (the first entry) is

more difficult to predict in a sufficiently accurate way. We

leverage an auxiliary supervised signal in learning, which

exploits the distance residual, in a similar spirit to the method

proposed for depth prediction in [6]. In addition to predict Â
from F , we also compute a distance residual map, denoted

by ∆̂d, using one 1× 1 convolutional layers followed by a

sigmoid layer. The groundtruth for ∆̂d, denoted by ∆d, is

computed by the residual (the absolute difference) between

the two distances in A and Â respectively.

In training, channel-wise ℓ1 norm is used as the loss

function for both L(A, Â) and L(∆d, ∆̂d). The total loss

for computing line segments is the sum of the two losses,

LLS = L(A, Â) + L(∆d, ∆̂d). In inference, with the pre-

dicted d̂ ∈ Â and ∆̂d ∈ ∆̂d (both are non-negative due

to the sigmoid transformation), since we do not know the

underlying sign of the distance residual, we enumerate three

possibilities in updating the distance prediction,

d̂′(κ) = d̂+ κ · ∆̂d, (2)

where κ = −1, 0, 1. So, each distant point may generate up

to three line segment proposals depending on whether the

condition 0 < d̂′(κ) ≤ dmax is satisfied.

4.2. Junction Detection

Junction detection is addressed by predicting the two

maps, the junction mask map and the junction offset map,

from the feature map F . They are computed by one 1 × 1
convolutional layers followed by a sigmoid layer. Denote by

Ĵ and Ô the predicted mask map and offset map respectively.

The sigmoid function for computing the offset map has an

intercept −0.5. In training, the binary cross-entropy loss

is used for L(J , Ĵ ), and the ℓ1 loss is used for L(O, Ô),
following the typical setting in heatmap based regression

for keypoint estimation tasks and consistent with the use in

L-CNN [41]. The total loss is the weighted sum of the two

losses, LJunc = λmsk · L(J , Ĵ ) + λoff · J ⊙ L(O, Ô),
where ⊙ represents element-wise product, and λmsk and

λoff are two trade-off parameters (we set λmsk and λoff

to 8.0 and 0.25 respectively in our experiments). In in-

ference, we also apply the standard non-max suppression

(NMS) w.r.t. a 3× 3 neighborhood, which can be efficiently

implemented by a modified max-pooling layer. After NMS,

we keep the top-K junctions from Ĵ . And, for a bin b, if

Ĵ (b) > 0, a junction proposal is generated with its position

computed by xb + Ô(b) · w, where xb is the position of the

junction pixel, Ô(b) is the learned offset vector, and w is a

rescaling factor of the offset.

4.3. Line Segment and Junction Matching

Line segment proposals and junction proposals are com-

puted individually by leveraging different information, and

their matching will provide more accurate meaningful align-

ment in wireframe parsing. We adopt a simple matching

strategy to refining the initial proposals. A line segment

proposal from the initial set is kept if and only if its two end-

points can be matched with two junction proposals based on

Euclidean distance with a predefined threshold τ (τ = 10 in

all our experiments). A junction proposal will be removed if

it does not match to any survived line segment proposal after

refinement. After matching, line segments and junctions

are coupled together, which will be further verified using a

light-weight classifier.

4.4. Line Segment and Junction Verification

Without loss of generality, let l̈ be a line segment proposal

after refinement. A simple 2-fc layer is used as the valida-

tion head. To extract the same-sized feature vectors in F (the

output of the feature backbone) for different line segments

of different length for the head classifier, the widely used

RoIPool/RoIAlign operation in the R-CNN based object de-
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tection system [12, 26] is adapted to line segments, and a

simple LoIPool operation is used as done in L-CNN [41].

The LoIPool operation first uniformly samples s points for a

line segment l̈. The feature for each sampled point is com-

puted from F using bi-linear interpolation as done in the

RoIAlign operation and the 1D max-pooling operator is used

to reduce the feature dimension. Then, all the features from

the s sampled points are concatenated as the feature vector

for a line segment to be fed into the head classifier (s = 32
in all our experiments).

In training the verification head classifier, we assign pos-

itive and negative labels to line segment proposals (after

refinement) based on their distances to the groundtruth line

segments. A line segment proposal is assigned to be a posi-

tive sample if there is a groundtruth line segment and their

distance is less than a predefined threshold η (η = 1.5 in all

our experiments). The distance between two line segments

is computed as follows. We first match the two pairs of

end-points based on the minimum Euclidean distance. Then,

the distance between the two line segments is the maximum

distance of the two endpoint-to-endpoint distances. So, the

set of line segment proposals will be divided into the positive

subset and the negative subset.

As illustrated in Fig. 1(b), the negative subset usually

contains many hard negative samples since the proposed

holistic AFM usually generates line segment proposals of

“good quality”, which is helpful to learn a better verification

classifier. Apart from the learned positive and negative sam-

ples, we use a simple proposal augmentation method in a

similar spirit to the static sampler used in L-CNN [41]: We

add all the groundtruth line segments into the positive set.

We also introduce a set of negative samples that are gener-

ated based on the groundtruth junction annotations (i.e., line

segments using the two end-points that do not correspond to

any annotated line segment). During training, to avoid the

class imbalance issue, we sample the same number, n, of

positives and negatives (i.e., LoIs) from the two augmented

subsets (n = 300 in all our experiments). We use binary

cross entropy loss in the verification module. Denote by

LV er the loss computed on the sampled LoIs.

The proposed HAWP is trained end-to-end with the fol-

lowing loss function,

L = LLS + LJunc + LV er. (3)

5. Experiments

In this section, we present detailed experimental results

and analyses of the proposed HAWP. Our reproducible Py-

Torch source code will be released.

Benchmarks. The wireframe benchmark [15] and the

YorkUrban benchmark are used. The former consists of

5, 000 training samples and 462 testing samples. The latter

includes 102 samples in total. The model is only trained on

the former and tested on both.

Baselines. Four methods are used: LSD [30]2, AFM [34],

DWP [15], and L-CNN [41] (the previous state-of-the-art

approach). The last three are DNN based approaches and the

first one does not need training. The last two leverage junc-

tion information in training, and thus are directly comparable

to the proposed HAWP.

Implementation Details. To be fair in comparison with

L-CNN, we adopt the same hyper-parameter settings (includ-

ing those defined in Section 4) when applicable in our HAWP.

Input images are resized to 512× 512 in both training and

testing. For the stacked Hourglass feature backbone, the

number of stacks, the depth of each Hourglass module and

the number of blocks are 2, 4, 1 respectively. Our HAWP is

trained using the ADAM optimizer [16] with a total of 30
epochs on a single Tesla V100 GPU device. The learning

rate, weight decay rate and batch size are set to 4 × 10−4,

1 × 10−4 and 6 respectively. The learning rate is divided

by 10 at the 25-th epoch. To further ensure apple-to-apple

comparisons with L-CNN, we also re-train it using the same

learning settings with slightly better performance obtained

than those reported in their paper.

5.1. Evaluation Metric

We follow the accuracy evaluation settings used in L-

CNN summarized as follows to be self-contained.

Structural Average Precision (sAP) of Line Seg-

ments [41]. This is motivated by the typical AP metric

used in evaluating object detection systems. A counterpart

of the Intersection-over-Union (IoU) overlap is used. For

each ground-truth line segment l̈ = (x1,x2), we first find

the set of parsed line segments each of which,
ˆ̈
l = (x̂1, x̂2),

satisfies the “overlap”,

min
(i,j)

‖x1 − x̂i‖
2
+ ‖x2 − x̂j‖

2
≤ ϑL, (4)

where (i, j) = (1, 2) or (2, 1), and ϑL is a predefined thresh-

old. If the set of parsed line segments “overlapping” with

l̈ is empty, the line segment l̈ is counted as a False Nega-

tive (FN). If there are multiple candidates in the set, the one

with the highest verification classification score is counted

as a True Positive (TP), and the rest ones will be counted as

False Positives (FPs). A parsed line segment that does not

belong to the candidate set of any groundtruth line segment

is also counted as a FP. Then, sAP can be computed. To

eliminate the influence of image resolution, the wireframe

parsing results and the groundtruth wireframes are rescaled

to the resolution of 128 × 128 in evaluation. We set the

threshold ϑ to 5, 10, 15 and report the corresponding results,

denoted by sAP5, sAP10, sAP15. The overall performance

of a wireframe parser is represented by the mean of the sAP

values with different thresholds, denoted by msAP.

Heatmap based F-score, FH and APH of Line Seg-

ments. These are traditional metrics used in LSD and wire-

2The built-in LSD in OpenCV v3.2.0 is used in evaluation.
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Method
Wireframe Dataset YorkUrban Dataset

FPS
sAP5 sAP10 sAP15 msAP mAPJ APH FH sAP5 sAP10 sAP15 msAP mAPJ APH FH

LSD [30] / / / / / 55.2 62.5 / / / / / 50.9 60.1 49.6

AFM [34] 18.5 24.4 27.5 23.5 23.3 69.2 77.2 7.3 9.4 11.1 9.3 12.4 48.2 63.3 13.5

DWP [15] 3.7 5.1 5.9 4.9 40.9 67.8 72.2 1.5 2.1 2.6 2.1 13.4 51.0 61.6 2.24

L-CNN [41] 58.9 62.9 64.9 62.2 59.3
80.3 76.9

24.3 26.4 27.5 26.1 30.4
58.5 61.8

15.6
82.8† 81.3† 59.6† 65.3†

L-CNN (re-trained) 59.7 63.6 65.3 62.9 60.2
81.6 77.9

25.0 27.1 28.3 26.8 31.5
58.3 62.2

15.6
83.7† 81.7† 59.3† 65.2†

HAWP (ours) 62.5 66.5 68.2 65.7 60.2
84.5 80.3

26.1 28.5 29.7 28.1 31.6
60.6 64.8

29.5
86.1† 83.1† 61.2† 66.3†

Table 1. Quantitative results and comparisons. Our propsed HAWP achieves state-of-the-art results consistently except for the FPS. The

FPS of our HAWP is still significantly better than that of the three deep learning based methods. Note that for fair and apple-to-apple

comparisons, we also retrained a L-CNN model using their latest released code and the same learning hyper-parameters used in our HAWP.

Our retrained L-CNN obtained slightly better performance than the original one. † means that the post-processing scheme proposed in

L-CNN [41] is used. The FPS of L-CNN is computed without the post-processing. See text for details.
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Figure 4. Precision-Recall (PR) curves of sAP10 and APH for DWP [15], AFM [34], L-CNN [41] and HAWP (ours) on the wireframe

benchmark (the left two plots) and the YorkUrban benchmark (the right two plots). Best viewed in color and magnification.

frame parsing [15]. Instead of directly using the vectorized

representation of line segments, heatmaps are used, which

are generated by rasterizing line segments for both pars-

ing results and the groundtruth. The pixel-level evaluation

is used in calculating the precision and recall curves with

which FH and APH are computed.

Vectorized Junction Mean AP (mAPJ ) [41]. It is com-

puted in a similar spirit to msAP of line segments. Let ϑJ

be the thresold for the distance between a predicted junction

and a groundtruth one. The mAPJ is computed w.r.t. ϑJ =
0.5, 1.0, 2.0.

Speed. Besides accuracy, speed is also important in prac-

tice. We use the frames per second (FPS) in evaluation. For

fair comparisons, we compute the FPS for different methods

under the same setting: the batch-size is 1, and single CPU

thread and single GPU (Tesla V100) are used. Note that the

LSD [30] method does not take advantage of GPU.

5.2. Results and Comparisons

Quantitative Results. Table 1 summarizes the results

and comparisons in terms of the evaluation metric stated

in Section 5.1. Our HAWP obtains state-of-the-art per-

formance consistently. In terms of the challenging msAP

metric, it outperforms L-CNN by 2.8% and 1.3% (absolute

improvement) on the wireframe benchmark and the YorkUr-

ban benchmark respectively. It also runs much faster than

L-CNN with 89% relative improvement in FPS. AFM and

DWP are relatively slow due to their non-GPU friendly post-

processing modules entailed for performance. In terms of the

# Junctions # Proposals sAP10 FPS # GT Lines

L-CNN [41] 159.2 22k 63.6 15.6
74.2

HAWP (ours) 189.6 4k 66.5 29.5

Table 2. Performance profiling on the Wireframe dataset. #Pro-

posals represents the number of line segments in verification. The

average number of groundtruth is listed in the last row.

heatmap based evaluation metric, our HAWP is also signifi-

cantly better than L-CNN regardless of the post-processing

module proposed in L-CNN. Fig. 4 shows comparisons of

PR curves.

Since our proposed HAWP and L-CNN use very simi-

lar wireframe parsing pipelines and adopt the same design

choices when applicable. The consistent accuracy gain of

our HAWP must be contributed by the novel 4-D holistic

attraction field representation and its integration in the pars-

ing pipeline. In terms of efficiency, our HAWP runs much

faster since a significantly fewer number of line segment

proposals are used in the verification module. As shown

in Table 2, our HAWP uses 5.5 times fewer number of line

segment proposals.

Qualitative Results. Fig. 5 shows wireframe parsing

results by the five methods.

5.3. Ablation Study

We compare the effects of three aspects: our proposed H-

AFM vs. the vanilla AFM [34], the distance residual module

(Section 4.1), and the composition of negative samples in

training verification module (Section 4.4).

Table 3 summarizes the comparisons. We observe that
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LSD DWP AFM L-CNN Ours Ground Truth

Figure 5. Wireframe parsing examples on the Wireframe dataset [15].

Line Segment

Representation

Distance Residual Negative Example Sampler Performance

Training Testing N
∗

D
∗

D
−

S
− sAP5 sAP10 sAP15

H-AFM XXX XXX

X X 62.5 66.5 68.2

X 62.0 66.0 67.6

X X X 62.2 66.1 67.8

X X 62.0 65.8 67.4

H-AFM X X X 58.9 63.0 64.8

H-AFM X X 58.7 62.6 64.4

AFM X X 30.9 33.7 35.0

Table 3. The ablation study of three design and learning aspects in

the proposed HAWP. See text for details.

both H-AFM and the distance residual module are important

for improving performance. The natural negative sampler

N
∗ randomly chooses negative line segments based on the

matching results (with respect to the annotations). The rest

of three negative example samplers (D∗,D−, S−) are also

investigated in L-CNN and their full combination is needed

for training L-CNN. D∗ randomly selects a part of examples

from the online generated line segment proposals, regardless

of the matching results. D
− tries to match the proposals

with pre-computed hard negative examples and the matched

proposals are used as negative samples. S− directly obtains

the negative examples from the pre-computed hard negative

examples set. In our experiment, the number of samples for

N
∗,D∗,D− and S

− are set to 300, 300, 300, 40 respectively.

We observe that our HAWP is less sensitive to those samplers

due to the informative line segment proposal generation

stage.

6. Conclusions and Discussions

This paper presents a holistically-attracted wireframe

parser (HAWP) with state-of-the-art performance obtained

on two benchmarks, the wireframe dataset and the YorkUr-

ban dataset. The proposed HAWP consists of three compo-

nents: proposal (line segments and junctions) initialization,

proposal refinement and proposal verification, which are

end-to-end trainable. Compared to the previous state-of-the-

art wireframe parser L-CNN [41], our HAWP is enabled

by a novel 4-D holistic attraction field map representation

(H-AFM) for line segments in proposal generation stages.

Our HAWP also achieves real-time speed with a single GPU,

and thus is useful for many downstream tasks such as SLAM

and Structure from Motion (SfM). The proposed H-AFM is

also potentially useful for generic LSD problems in other

domains such as medical image analysis.
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