
Learning Multi-view Camera Relocalization with Graph Neural Networks

Fei Xue1, Xin Wu2, Shaojun Cai1, and Junqiu Wang3

1UISEE Technology Inc.
2Key Laboratory of Machine Perception, Peking University

3 AVIC Beijing Changcheng Aeronautical Measurement and Control Technology Research Institute
{fei.xue, shaojun.cai}@uisee.com

wuxin1998@pku.edu.cn, jerywangjq@foxmail.com

Abstract

We propose to construct a view graph to excavate the in-

formation of the whole given sequence for absolute camera

pose estimation. Specifically, we harness GNNs to model

the graph, allowing even non-consecutive frames to ex-

change information with each other. Rather than adopting

the regular GNNs directly, we redefine the nodes, edges,

and embedded functions to fit the relocalization task. Re-

designed GNNs collaborate with CNNs in guiding knowl-

edge propagation and feature extraction respectively to pro-

cess multi-view high-dimensional image features iteratively

at different levels. Besides, a general graph-based loss

function beyond constraints between consecutive views is

employed for training the network in an end-to-end fash-

ion. Extensive experiments conducted on both indoor and

outdoor datasets demonstrate that our method outperforms

previous approaches especially in large-scale and challeng-

ing scenarios. Our code is publicly available (https:

//github.com/feixue94/grnet).

1. Introduction

Visual relocalization estimates the absolute pose of the

camera in a known scene from an image or multiple images.

It plays an important role in various applications including

robotics, autonomous driving, and virtual/augmented real-

ity. In the last two decades, many geometry-based algo-

rithms [37, 38, 23, 30, 29, 35] have been proposed. Re-

cent studies formulate the task as a regression problem us-

ing Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs). Most of them estimate the cam-

era pose from a single image [18, 25, 17, 19, 5, 46, 44, 16,

4]. Therefore, their performances degrade severely due to

visual ambiguities in challenging conditions, e.g., texture-

less regions, repetitive textures, local similarities, dynamic

𝑥𝑥11 𝑥𝑥21 𝑥𝑥31 𝑥𝑥𝑁𝑁−21 𝑥𝑥𝑁𝑁−11𝑥𝑥𝑁𝑁1

𝜁𝜁1 𝜁𝜁2
𝜁𝜁3 𝜁𝜁𝑁𝑁−2 𝜁𝜁𝑁𝑁−1𝜁𝜁𝑁𝑁

𝑥𝑥1𝑙𝑙 𝑥𝑥2𝑙𝑙 𝑥𝑥3𝑙𝑙 𝑥𝑥𝑁𝑁−2𝑙𝑙 𝑥𝑥𝑁𝑁−1𝑙𝑙𝑥𝑥𝑁𝑁𝑙𝑙

1

2

3

N-2

N-1

N

𝜁𝜁1 𝜁𝜁2
𝜁𝜁3 𝜁𝜁𝑁𝑁−2 𝜁𝜁𝑁𝑁−1𝜁𝜁𝑁𝑁

𝑥𝑥1
𝑥𝑥2

𝑥𝑥3 𝑥𝑥𝑁𝑁−2 𝑥𝑥𝑁𝑁−1
𝑥𝑥𝑁𝑁

Pose
Estimator

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Graph 
Modeling 

Graph 
Modeling 

Graph 
Modeling 

Graph 
Modeling 

Figure 1: Overview of our framework. We construct a graph

with nodes representing observations of different view-

points. CNNs and GNNs are exploited for feature extraction

and message exchange, respectively. The two processes are

executed iteratively at multiple levels with edges dynami-

cally adjusted to retain the most important connections. En-

hanced feature of each node is fed into the pose estimator

for absolute pose prediction. The preserved edges are uti-

lized to build additional constraints in the training process.

objects, and various weather states. In contrast to single

images, sequential images provide more information from

11375



different viewpoints, and thus can improve both the robust-

ness and accuracy of relocalization.

To deal with visual ambiguities, temporal consistency

is utilized by fusing sequential observations via LSTMs

(Long-Short Term Memories) [50, 9] or adding VO (visual

odometry) results as constraints to guarantee the consis-

tency [3, 40, 50, 28, 9]. Unfortunately, due to limitations of

LSTMs, temporal consistency is maintained in short-term

periods [36]. As consecutive frames are much overlapped,

temporally close views bring little new information to each

other, leading to inadequate usage of multiple views for re-

solving visual ambiguities [48, 49].

Inspired by classic 3D reconstruction and SLAM sys-

tems [32, 26], we try to mine the correlation of all poten-

tially related frames by constructing a view graph where

observations are represented as nodes, and thus even tem-

porally far images can contribute to each other. We har-

ness the prevalent GNNs (Graph Neural Networks) which

have been widely utilized to tackle tasks with unstructured

inputs [51, 13, 41, 22, 45, 52], to process the relation-

ships of multiple views. Considering the significant differ-

ences between relocalization and other tasks, we redesign

the nodes, edges, and embedded functions of regular GNNs

to fit the relocalization task. Moreover, to facilitate infor-

mation propagation among multiple frames, we take advan-

tages of CNNs and GNNs in governing feature extraction

and knowledge exchange respectively to process the high-

dimensional image features progressively at multiple levels.

An overview of our framework is shown in Fig. 1. Im-

ages are initially organized in a graph. All features in the

graph are represented as 3D tensors so that the spatial cor-

relations can be retained. Taking these 3D tensors as input,

CNNs and GNNs cooperate to extract features and propa-

gate messages along edges, respectively. The two processes

are executed iteratively at multiple levels with both feature

resolution and number of edges reduced. Finally, fused fea-

tures absorbing the knowledge of other views are utilized to

regress the absolute poses. The whole process is differen-

tiable and can be trained and tested in an end-to-end fashion.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to tackle

the multi-view camera relocalization task with GNNs,

enabling the messages of different frames to be trans-

ferred beyond temporal connections.

• We redefine the nodes, edges, and embedded func-

tions of GNNs to fit the relocalization task, allowing

more effective information exchange between differ-

ent frames.

• We leverage GNNs and CNNs for feature extraction

and graph modeling respectively, which process multi-

view image features iteratively at different levels to en-

hance the performance of our relocalization system.

We organize the rest of this paper as follows. In Sec. 2,

we describe the related works and GNNs. In Sec. 3, our

framework is introduced in detail. We compare our algo-

rithm with previous methods in Sec. 4 and conclude the pa-

per in Sec. 5.

2. Related Work

We mainly discuss visual relocalization methods in this

section, and then give a brief introduction to GNNs along

with their applications in computer vision tasks.

2.1. Visual Relocalization

The absolute pose of a camera can be recovered ap-

proximately using pose of the most similar image in the

database [39, 1, 29] or further estimating the relative pose

between the query image and the candidate to improve the

accuracy [2, 10, 21]. However, query images may dif-

fer drastically from those in the database due to chang-

ing environments, making these methods prone to failure.

Structure-based algorithms build 3D maps of the scene and

then establish 2D-3D correspondences. Poses are calculated

by performing the RANSAC and solving a Perspective-n-

Point problem [8, 30, 35]. Despite their promising perfor-

mance, they require accurate intrinsic calibration and in-

tricate initialization to establish correct correspondences.

Moreover, when dealing with large-scale scenes, they need

excessive amounts of memory storage and computational

resource in order to build a complete 3D model, which fur-

ther impair their feasibility in real-world applications.

Recently, direct absolute pose regression with CNNs has

achieved promising performance. PoseNet [19] and its vari-

ations [17, 18, 25, 42, 5, 44, 46, 16, 4] calculate poses

from single images. These methods suffer from high uncer-

tainty in challenging scenarios, e.g., texture-less regions, lo-

cal similarities, and illumination/weather variations. Since

sequential images contain more information than a single

frame, they are found helpful for mitigating such ambigu-

ities [9, 3, 50]. VidLoc [9] models image sequences using

bidirectional LSTMs [33] so that observations from multi-

ple images can be fused for pose estimation. MapNet [3] in-

troduces additional information from IMU, GPS, and visual

SLAM systems [11] as constraints to guarantee the pose

consistency between consecutive frames. VLocNet [40]

leverages the temporal consistency of two nearby views and

imposes relative poses as constraints. LsG [50] proposes to

support global pose recovery with the local properties of

sequential images. It achieves state-of-the-art performance

because the uncertainty of pose estimation is alleviated by

augmenting the observations in local maps and optimizing

poses in VO streams.

Previous methods mainly emphasize the temporal con-

sistency by modeling the multi-view images via LSTMs or

imposing relative constraints on consecutive frames. How-

11376



ever, this unidirectional process cannot take full advantages

of multi-view images. Besides, LSTMs are incapable of

keeping memories for a long time [36], causing the loss

of global knowledge. Instead, we formulate the multi-view

images using graphs and exploit GNNs to propagate infor-

mation between different views more adequately.

2.2. Graph Neural Network

GNNs model the relationships of unstructured data by

passing messages between connected nodes and have been

investigated intensively in the literature [52, 47]. Recently,

GNNs are getting increasingly popular for their outstand-

ing performance on tackling computer vision tasks includ-

ing classification [51, 13, 41], segmentation [45, 43], human

pose estimation [6], and scene representation [53]. How-

ever, visual relocalization is essentially different from these

tasks as the nodes are defined on high-dimensional image

features rather than vectors, and edges are utilized to ex-

change information between two views. Adopting regular

GNNs directly by compressing image features to vectors

leads to a large amount of information loss. In addition, this

process introduces a large number of fully-connected lay-

ers, which further cause over-fitting and instability of the

model [22].

In this paper, we employ GNNs to handle the topologi-

cal relationships of multiple views. Rather than employing

the regular GNN directly, we redefine the nodes, edges, and

embedded functions of GNNs to fit the relocalization task.

3. Method

We first introduce how to formulate the sequence-based

relocalization task using a graph in Sec. 3.1. Next, we

describe the message exchange protocol among multiple

frames in Sec. 3.2. Finally, we define a graph-based loss

function in Sec. 3.4.

3.1. Graph Definition

A graph is usually defined as G = (V, E) with V = {vi}
and E = {eij} representing the nodes and edges, respec-

tively. Each node vi contains a feature xi denoting its at-

tribute and each edge eij = (vi, vj) connects vi and vj .

The overall process of our network can be described as:

Gpose = F(Gimg) , (1)

where Gimg = (Vimg, Eimg) and Gpose = (Vpose, Epose)
represent the input and output graphs, respectively. F is the

model proposed in this paper.

Node Definition. Instead of compressing features to

vectors in standard GNNs, we define the representation of

each node as a 3D tensor considering the spatial connec-

tions of image features, which are crucial for knowledge

sharing between different views. Thus, each feature map

1

2

3

4

5

6

(a)

1

2

3

5

6

4

(b)

3

5

2

6

1

4

(c)

Figure 2: Graph structure. Previous methods [3, 9, 50] fo-

cus mainly on the temporal consistency by adding connec-

tions between consecutive frames (a). In contrast, we ini-

tialize the graph with dense connections (b), so that even

temporally distant views can contribute to each other (c).

xi ∈ RH×W×C (H , W , and C denote the height, width,

and channels) can be directly put into the graph without los-

ing any information. Accordingly, we redefine the message

passing and node updating functions so that information can

be propagated in the formulation of 3D tensors.

Edge Initialization. As shown in Fig 2, each edge de-

termines which two views should be connected and allows

them to exchange information. Traditionally, edges are de-

fined between consecutive frames as E = {eij | |i−j| = 1}
(in Fig. 2a) and LSTMs are adopted to model the sequential

images along the temporal direction or the inverse. Theo-

retically, two views can potentially contribute to each other

if they share enough content overlap, which can be treated

as priors defined as the attribute of edges. However, such

priors are unachievable without depth information [2].

In order to retain the potential connections, we initially

construct a dense direct graph by connecting every two

nodes with edges (in Fig. 2b). Therefore, even temporally

far images can contribute to each other (in Fig. 2c).

It can be seen clearly that modeling the sequence using

LSTMs in [9, 50] is just a special case of graph model pro-

posed in this paper. The graph model allows the global in-

formation of the whole sequence to be transferred to each

node, which is unattainable in LSTMs.

3.2. Message Passing

Once the graph is built, the key becomes how to trans-

fer valuable information from the source nodes to the target

ones. In the following, we introduce how to produce mes-

sages and how to aggregate them, as shown in Fig. 3.

Message Generation. The message provided by node vj
to node vi carries the correlation between image Ij and Ii.

We calculate the message from node features using convo-

lution operations so that the spatial correlations are retained.

11377



M C U
C

A

C Concatenation A Attention

Channel-wise multiplication

M Message generation

U Node updating

Addition

Source feature Target feature Concatenated feature 
Attention value

Message
Attention value

Aggregated 
message

Concatenated 
feature 

Updated
feature 

Figure 3: The pipeline of message passing and node updating. Each source feature concatenated with the target one is utilized

to generate the message which is then re-weighted along the channel dimension for selection. Messages from all source

features are aggregated by adding pixel-wise values and concatenated with the target feature for the final node updating.

The message generation function is defined as:

mj→i = fm(xi, xj) , (2)

where fm is the function calculating message mj→i from xi

and xj . xi and xj are first concatenated along the channel

dimension and then fed into two convolutional layers with

kernel size of 3 × 3, padding size of 1 to produce the mes-

sage. The output channels of both two layers are the same

as xi, hence mj→i shares the same size with xi and xj .

Message Selection. Different views contribute discrim-

inatively, resulting in some messages being more impor-

tant than others. Hence, we employ a soft attention mech-

anism to calculate the channel-wise correlations between

connected nodes. The soft attention is performed as:

aj→i = fatten(xi, xj) , (3)

a
(k)
j→i = σ(cs(vec(x

(k)
i ), vec(x

(k)
j ))) , (4)

where fatten calculates the cosine similarity cs between

each corresponding vectorized kth channel of connected

features xi and xj . The attention value is then normalized

to (0, 1) by the sigmoid function σ.

Message Aggregation. The final message m
agg
i for

node vi is aggregated by gathering messages from all source

nodes with soft attentions, as:

m
agg
i =

1

Ni

∑

eij∈E

aj→i ⊗mj→i , (5)

where Ni is the number of source nodes connected to node

vi and ⊗ denotes the channel-wise multiplication.

Node Updating. The feature of node vi is augmented by

the aggregated message m
agg
i as:

x
′

i = fu(xi,m
agg
i ) , (6)

where fu is the updating function sharing the same struc-

ture with fm, yet using another group of parameters. xi and

m
agg
i are first passed through a convolutional layer with ker-

nel size of 1 × 1 individually and then concatenated along

the channel dimension and fed into fu to calculate the up-

dated feature x
′

i.

3.3. Multi­level Dynamic Updating

The redesigned message passing and node updating

functions facilitate the cooperation between GNNs and

CNNs in processing image features. To promote the infor-

mation sharing among multiple views, we extend the frame-

work to operate on multi-level features progressively with

additional edge pooling incorporated to abandon redundant

connections, as shown in Fig. 4.

Multi-level Graph Modeling. The interaction among

different views is computed iteratively as:

V l = f l
c(V

l−1) , (7)

V l
fused, E

l = f l
g(V

l, E l−1) , (8)

where V l, E l, V l−1, and E l−1 indicate the nodes and edges

at the lth and the previous level, respectively. V l
fused de-

notes the nodes with fused information.

As shown in Fig. 4, ResNet34 [15] is divided into 4 parts

as f1
c , f2

c , f3
c , and f4

c at the end of 4 groups of residual

layers. Each f i
c is followed by a GNN block f i

g for graph

modeling.

Adaptive Edge Pooling. Densely initialized edges re-

tain the potential connections, yet inevitably lead to redun-

dancy, extra computational time, over-fitting, and thus de-

grade performance of the whole system. Moreover, as the

information is propagated among multiple views from the

low to high levels progressively, there is no need to keep

11378



connections with small values. Here, we enable the network

to make the decision adaptively according to the correlation

between connected nodes, as:

cj→i = cs(maxpool(xi),maxpool(xj)) , (9)

where the correlation cj→i is calculated with cosine simi-

larity on the downsampled features of xi and xj . For each

node, only k neighbors with the largest correlations are pre-

served while the rest are discarded.

Pose Estimation. Each node gives an absolute pose cal-

culated from its updated feature x
′

i. Instead of estimating

the pose from the output of the last GNN block which con-

tains only high-level information, we aggregate fused fea-

tures from the output of all GNN blocks and use the aggre-

gated feature to estimate the absolute pose. Therefore, both

low and high level visual clues can contribute to the final

calculation. As shown in Fig. 4, outputs of GNN blocks

are first passed through a GAP (global average pooling)

layer for downsampling and then concatenated along the

channel dimension, and finally fed into two FC (fully con-

nected) layers to predict the position t̂i ∈ R3 and orienta-

tion r̂i ∈ R4 (quaternion) for image Ii, respectively.

3.4. Graph­based Loss Function

The output of our model contains the predicted poses and

connections between them. The loss function is designed

considering both of them, as:

L =
1

Nv

∑

vi∈Vpose

d(ζi, ζ̂i) +
1

Ne

∑

eij∈Epose

d(ωij , ω̂ij) ,

(10)

where ζi = (ti, ri) and ζ̂i = (t̂i, r̂i) are the ground-truth

and predicted 6-DoF absolute poses. t and r denote the po-

sition and orientation, respectively. ω̂ij is the relative pose

between predicted poses ζ̂i and ζ̂j if eij exists in the out-

put edges. d(.) is the geometric loss function adopted to

balance the position and orientation errors as in [18, 3, 50].

d(.) is defined as:

d(ζi, ζ̂i) = ||ti − t̂i||1e
−βp + βp + ||ri − r̂i||1e

−γp + γp ,

(11)

where βp and γp are the parameters balancing the position

and orientation errors. We adopt another group of βg and

γg to balance the translations and rotations in relative poses.

Both βs and γs are optimized jointly with the parameters in

the neural networks.

It is noteworthy that our graph-based loss function intro-

duces constraints among multiple views beyond solely con-

secutive poses in MapNet [3] and LsG [50]. Therefore, the

loss function is close to the standard pose-graph [7], which

has been an indispensable component of current reconstruc-

tion and SLAM systems [26, 32] to improve the pose accu-

racy.

L
a

y
er

2

GNN1

Edge Pooling

GNN2

Edge Pooling

L
a

y
er

3

L
a

y
er

4

GNN3

Edge Pooling

GNN4

Edge Pooling

FC1 FC2

GAP & Concatenation

L
a

y
er

1

C
o

n
v

1

M
a

x
 P

o
o

li
n

g

Passing edges

Passing nodes

Figure 4: Multi-level modeling. ResNet34 [15] is integrated

with GNNs for iterative feature processing at four levels.

After each GNN block, an edge pooling is performed to

discard redundant connections. Fused features from four

GNN blocks are passed through the GAP (global average

pooling) layer, concatenated along the channel dimension,

and fed into two FC (fully connected) layers for position

and orientation prediction, respectively.

4. Experiments

We first describe the implementation details, then intro-

duce the datasets used for evaluation in Sec. 4.1 and the per-

formance of our approach against previous methods on the

7Scenes [34], Cambridge [19], and Oxford RobotCar [24]

datasets in Sec. 4.2, Sec. 4.3, and Sec. 4.4, respectively. Fi-

nally, we perform an ablation study to test the efficacy of

each component in our framework in Sec. 4.5. More details

and results can be found in our Supplementary Material.

Implementation. The input of our model is (but not lim-

ited to) monocular RGB sequential images. The length is

8 for all datasets, while our network is flexible to accept

sequences of arbitrary lengths. Following [3, 50, 18], all

images are resized with the height as 256 and normalized

by subtracting mean pixel values. The βs and γs are set to

-4.0 and -1.0 for initialization, respectively. k is set to 8,

8, 6, and 4 for four levels. ResNet34 [15] is pretrained on

the ImageNet, while the rest are initialized with the MSRA

method [14]. We implement our model using the preva-

lent pytorch-geometric [12] on the NVIDIA GeForce GTX

1080TI GPU. The Adam [20] with initial learning rate 10−4

is utilized to optimize the parameters with batch size of 8 for

200 epochs in total.

Baseline Methods. We compare our model against pre-

vious networks that regress absolute camera poses in an

end-to-end fashion. Both image-based [19, 17, 18, 25, 5, 46,

44, 42, 16, 4]) and sequence-based algorithms (VidLoc [9],

MapNet [3], and LsG [50]) are considered.

4.1. Dataset

We conduct experiments on three public datasets with

different scales and conditions including 7Scenes [34],

11379



Sequence

Method Chess Fire Heads Office Pumpkin Kitchen Stairs Avg

6m
2

2.5m
2

1m
2

7.5m
2

5m
2

18m
2

7.5m
2

PoseNet15 [19] 0.32m, 8.12◦ 0.47m, 14.4◦ 0.29m, 12.0◦ 0.48m, 7.68◦ 0.47m, 8.42◦ 0.59m, 8.64◦ 0.47m, 13.8◦ 0.44m, 10.4◦

PoseNet16 [17] 0.37m, 7.24◦ 0.43m, 13.7◦ 0.31m, 12.0◦ 0.48m, 8.04◦ 0.61m, 7.08◦ 0.58m, 7.54◦ 0.48m, 13.1◦ 0.47m, 9.81◦

PoseNet17 [18] 0.14m, 4.50◦ 0.27m, 11.80◦ 0.18m, 12.10◦ 0.20m, 5.77◦ 0.25m, 4.82◦ 0.24m, 5.52◦ 0.37m, 10.60◦ 0.24m, 7.87◦

PoseNet17 (geo) [18] 0.13m, 4.48◦ 0.27m, 11.30◦ 0.17m, 13.00◦ 0.19m, 5.55◦ 0.26m, 4.75◦ 0.23m, 5.35◦ 0.35m, 12.40◦ 0.23m, 8.12◦

Hourglass [25] 0.15m, 6.17◦ 0.27m, 10.84◦ 0.19m, 11.63◦ 0.21m, 8.48◦ 0.25m, 7.01◦ 0.27m, 10.15◦ 0.29m, 12.46◦ 0.23m, 9.53◦

LSTM-Pose [42] 0.24m, 5.77◦ 0.34m, 11.9◦ 0.21m, 13.7◦ 0.30m, 8.08◦ 0.33m, 7.00◦ 0.37m, 8.83◦ 0.40m, 13.7◦ 0.31m, 9.85◦

ANNet [4] 0.12m, 4.30◦ 0.27m, 11.60◦ 0.16m, 12.40◦ 0.19m, 6.80◦ 0.21m, 5.20◦ 0.25m, 6.00◦ 0.28m, 8.40◦ 0.21m, 7.90◦

BranchNet [46] 0.18m, 5.17◦ 0.34m, 8.99◦ 0.20m, 14.15◦ 0.30m, 7.05◦ 0.27m, 5.10◦ 0.33m, 7.40◦ 0.38m, 10.26◦ 0.29m, 8.30◦

GPoseNet [5] 0.20m, 7.11◦ 0.38m, 12.3◦ 0.21m, 13.8◦ 0.28m, 8.83◦ 0.37m, 6.94◦ 0.35m, 8.15◦ 0.37m, 12.5◦ 0.31m, 9.95◦

MLFBPPose [44] 0.12m, 5.82◦ 0.26m, 11.99◦ 0.14m, 13.54◦ 0.18m, 8.24◦ 0.21m, 7.05◦ 0.22m, 8.14◦ 0.38m, 10.26◦ 0.22m, 9.29◦

Ours 0.08m, 2.82◦ 0.26m, 8.94◦ 0.17m, 11.41◦ 0.18m, 5.08◦ 0.15m, 2.77◦ 0.25m, 4.48◦ 0.23m, 8.78◦ 0.19m, 6.33◦

VidLoc [9] 0.18m, NA 0.26m, NA 0.14m, NA 0.26m, NA 0.36m, NA 0.31m, NA 0.26m, NA 0.25m, NA

MapNet [3] 0.08m, 3.25◦ 0.27m, 11.69◦ 0.18m, 13.25◦ 0.17m, 5.15◦ 0.22m, 4.02◦ 0.23m, 4.93◦ 0.30m, 12.08◦ 0.21m, 7.77◦

LsG [50] 0.09m, 3.28◦ 0.26m, 10.92◦ 0.17m, 12.70◦ 0.18m, 5.45◦ 0.20m, 3.69◦ 0.23m, 4.92◦ 0.23m, 11.3◦ 0.19m, 7.47◦

Ours 0.08m, 2.82◦ 0.26m, 8.94◦ 0.17m, 11.41◦ 0.18m, 5.08◦ 0.15m, 2.77◦ 0.25m, 4.48◦ 0.23m, 8.78◦ 0.19m, 6.33◦

Table 1: Median errors of image- and sequence-based methods on the 7Scenes dataset [34]. The best results are highlighted.

Sequence

Method College Shop Church Hospital Avg Court Street

5.6× 10
3
m

2
8.8× 10

3
m

2
4.8× 10

3
m

2
2.0× 10

3
m

2
8× 10

3
m

2
5.0× 10

3
m

2

ADPoseNet [16] 1.30m, 1.67◦ 1.22m, 6.7◦ 2.28m, 4.80◦ - 1.60m, 4.21◦ - -

PoseNet15 [19] 1.66m, 4.86◦ 1.41m, 7.18◦ 2.45m, 7.96◦ 2.62m, 4.90◦ 2.04m, 6.23◦ - -

PoseNet16 [17] 1.74m, 4.06◦ 1.25m, 7.54◦ 2.11m, 8.38◦ 2.57m, 5.14◦ 1.92m, 6.28◦ - -

LSTM-Pose [42] 0.99m, 3.65◦ 1.18m, 7.44◦ 1.52m, 6.68◦ 1.51m, 4.29◦ 1.30m, 5.52◦ - -

GPoseNet [5] 1.61m, 2.29◦ 1.14m, 5.73◦ 2.93m, 6.46◦ 2.62m, 3.89◦ 2.08m, 4.59◦ - -

SVS-Pose [27] 1.06m, 2.81◦ 0.63m, 5.73◦ 2.11m, 8.11◦ 1.50m, 4.03◦ 1.33m, 5.17◦ - -

MLFBPPose [44] 0.76m, 1.72◦ 0.75m, 5.10◦ 1.29m, 5.01◦ 1.99m, 2.85◦ 1.20m, 3.67◦ - -

PoseNet17 [18] 0.99m, 1.06◦ 1.05m, 3.97◦ 1.49m, 3.43◦ 2.17m, 2.94◦ 1.43m, 2.85◦ 7.00m, 3.65◦ 20.70m, 25.70◦

PoseNet17 (geo) [18] 0.88m, 1.04◦ 0.88m, 3.78◦ 1.57m, 3.32◦ 3.20m, 3.29◦ 1.63m, 2.86◦ 6.83m, 3.47◦ 20.30m, 25.50◦

MapNet [3] 1.07m, 1.89◦ 1.49m, 4.22◦ 2.00m, 4.53◦ 1.94m, 3.91◦ 1.63m, 3.64◦ 7.85m, 3.76◦ 22.23m, 27.55◦

Ours 0.59m, 0.65◦ 0.50m, 2.87◦ 1.90m, 3.29◦ 1.88m, 2.78◦ 1.12m, 2.40◦ 6.67m, 2.79◦ 14.72m, 22.44◦

Table 2: Median errors on the Cambridge dataset [19]. Results of MapNet [3] on College, Shop, Church, and Hospital are

from [31] and others are from retrained model. ”− ” denotes no data provided. The best results are highlighted.

Cambridge [19], and Oxford RobotCar [24] datasets.

7Scenes. The 7Scenes dataset [34] was recorded contin-

uously by a kinect in seven different indoor environments.

It contains scenes with highly repetitive textures (Chess and

Stairs) and many textureless regions (Fire and Pumpkin),

and thus is very challenging for relocalization algorithms.

Cambridge. The Cambridge dataset [19] was captured

by a mobile phone in urban environments. Dynamic ob-

jects, various illumination and weather conditions, and dis-

tinct walking paths between training and testing sequences

make the dataset more difficult for relocalization methods.

Oxford RobotCar. The Oxford RobotCar dataset was

collected by a car driving in the central Oxford city. It con-

tains much longer trajectories (from 1×103m to 9×103m)

and larger areas (from 8 × 104m2 to 1 × 106m2) than

7Scenes and Cambridge benchmarks, and hence is ex-

tremely challenging for relocalization algorithms. Addi-

tionally, this dataset consists of images captured under vari-

ous illuminations, weather conditions, and dynamic objects,

which may further increase the relocalization difficulties.

We follow the train/test split in [3, 50] and evaluate the per-

formance of our approach on the LOOP and FULL scenes.

4.2. Experiments on the 7Scenes Dataset

Table 1 shows the quantitative results of our method and

previous image- and sequence-based approaches. It can be

seen that our model outperforms PoseNet [19] and its vari-

ations [17, 18, 25, 42] considerably in terms of both po-

sition and orientation prediction, especially in scenes with

texture-less regions (Fire and Pumpkin) and highly repeti-

tive textures (Chess and Stairs). That is because estimating

poses from single images suffers severely from visual ambi-

guities resulting from texture-less regions and highly repet-

itive textures. These problems can be effectively mitigated

by exploiting correlations of multiple frames.

Additionally, we can find that our model performs much

11380



Scene

Method LOOP1 LOOP2 FULL1 FULL2 Avg

8.8× 104m2 8.8× 104m2 1.2× 106m2 1.2× 106m2

PoseNet [18, 19, 17] 28.81m, 19.62◦ 25.29m, 17.45◦ 125.6m, 27.1◦ 131.06m, 26.05◦ 77.85m, 22.56◦

MapNet [3] 8.76m, 3.46◦ 9.84m, 3.96◦ 41.40m, 12.50◦ 59.30m, 14.81◦ 29.83m, 8.68◦

LsG [50] 9.07m, 3.31◦ 9.19m, 3.53◦ 31.65m, 4.51◦ 53.45m, 8.60◦ 25.84m, 4.99◦

Ours 7.76m, 2.54◦ 8.15m, 2.57◦ 17.35m, 3.47◦ 37.81m, 7.55◦ 17.77m, 4.03◦

Ours (s) 23.43m, 9.75◦ 24.65m, 10.55◦ 34.47m, 4.07◦ 58.16m, 9.73◦ 35.18m, 8.53◦

Ours (l4) 10.60m, 4.54◦ 10.77m, 4.12◦ 20.26m, 4.78◦ 39.57m, 8.05◦ 20.30m, 5.37◦

Ours (l4 + p.g.) 9.07m, 3.15◦ 9.16m, 3.22◦ 19.70m, 4.46◦ 39.83m, 8.17◦ 19.44m, 4.75◦

Ours (l4,3 + p.g.) 8.49m, 3.11◦ 8.62m, 3.19◦ 18.76m, 4.35◦ 38.76m, 9.41◦ 18.66m, 5.02◦

Ours (l4,3,2 + p.g.) 8.46m, 3.02◦ 7.68m, 2.78◦ 17.35m, 3.59◦ 36.84m, 8.22◦ 17.58m, 4.40◦

Ours (l4,3,2,1 + p.g.) 7.76m, 2.54◦ 8.15m, 2.57◦ 17.35m, 3.47◦ 37.81m, 7.55◦ 17.77m, 4.03◦

Table 3: Mean errors on the Oxford RobotCar dataset [24]. Ours (s) is the network using standard GNNs. li and p.g. denote

the model using the ith level GNN block (see Fig. 4) with pose graph as additional constraint. The best results are highlighted.

better than sequence-based methods including VidLoc [9],

MapNet [3], and LsG [50] in orientation estimation. The

improvement comes from the adequate message passing

among multiple images via the graph modeling. Recovered

trajectories can be found in our Supplementary Materials.

4.3. Experiments on the Cambridge Dataset

Covering large regions of outdoor scenes, the Cambridge

dataset [19] validates the potential of our method in han-

dling large-scale challenging conditions. As VidLoc and

LsG didn’t report results on this dataset, we compare our ap-

proach with image-based methods and MapNet. As shown

in Table 2, our model outperforms previous networks con-

sistently with large margins. Note that the improvement

gets progressively larger as the size of the scene increases

(College, Shop, Court, and Street).

4.4. Experiments on the RobotCar Dataset

Table 3 demonstrates the quantitative comparison be-

tween previous methods and our model. Both position and

orientation errors are considerably reduced by the proposed

graph-based relocalization system. As the FULL1-2 se-

quences contain an area of 1.2 × 106m2 with the length

of trajectories up to 9562m, these sequences are extremely

challenging for relocalization algorithms. From Table 3 we

can see that our framework is more effective in handling

these challenges than other methods.

Fig. 5 illustrates the trajectories recovered by

PoseNet [19, 17, 18], MapNet [3], LsG [50], and our

method. PoseNet produces inaccurate estimations with

lots of outliers due to local similarities and over-exposure.

MapNet yields more accurate results and reduces many

outliers by introducing relative poses between consecutive

frames as additional constraints. However, there still

exist a large number of unstable predictions, especially in

the FULL scenes. By employing content augmentation,

although LsG ameliorates this problem to a certain extent,

it scarifies the accuracy. In contrast, our approach reduces

the number of outliers more effectively than LsG and guar-

antees the accuracy at the same time. This improvement

can be seen in both LOOP and FULL sequences.

We additionally calculate the cumulative distribution er-

rors to further compare the performance regarding both po-

sition and orientation estimation in Fig. 6. Fig. 6b and 6d

show that our method outperforms PoseNet, MapNet, and

LsG in orientation estimation consistently in both the LOOP

and FULL sequences. Fig. 6a and 6c further verify the ef-

ficacy of our model for retaining the accuracy and reducing

the number of outliers. Besides, the two figures also reveal

the limitations of MapNet and LsG in dealing with hard and

simple cases, respectively. Fortunately, both of these two

cases can be effectively handled by our approach.

4.5. Ablation Study

We conduct an ablation study to validate the effective-

ness of redesigned GNN, multi-scale modeling, and the

graph-based loss function. As shown in Table 3, compared

with PoseNet [19, 17, 18], standard GNN (Ours (s)) can

boost the performance by exchanging information among

different views, while the redefined GNN can yield more

accurate results by sharing knowledge in the formulation of

3D tensors (Ours (l4)), which can be further improved by

the pose graph (Ours (l4 + p.g.)).

From Table 3, we can see that even our network with

only a single level of GNN block (Ours (l4 + p.g.)) outper-

forms PoseNet [19, 17, 18], MapNet [3], and LsG [50] con-

siderably, especially in larger environments (Full1-2). The

improvement on position is much more significant than ori-

entation because the Oxford RobotCar dataset was collected

by moving cars, and its rotation patterns are relatively sim-

11381



100 50 0 50 100 150 200 250
x [m]

400

300

200

100

0

100

y 
[m

]

100 50 0 50 100 150
x [m]

200

150

100

50

0

50

100

150

y 
[m

]

100 50 0 50 100 150
x [m]

200

150

100

50

0

50

100

150

y 
[m

]

100 50 0 50 100 150
x [m]

200

150

100

50

0

50

100

150

y 
[m

]

100 50 0 50 100 150 200 250
x [m]

300

200

100

0

100

y 
[m

]

100 50 0 50 100 150
x [m]

200

150

100

50

0

50

100

150
y 

[m
]

100 50 0 50 100 150
x [m]

200

150

100

50

0

50

100

150

y 
[m

]

100 50 0 50 100 150
x [m]

200

150

100

50

0

50

100

150

y 
[m

]

400 200 0 200 400 600
x [m]

600

400

200

0

200

400

600

y 
[m

]

PoseNet [19, 17, 18]

400 200 0 200 400 600
x [m]

600

400

200

0

200

400

600

y 
[m

]

MapNet [3]

400 200 0 200 400 600 800
x [m]

600

400

200

0

200

400

600

800

y 
[m

]

LsG [50]

400 200 0 200 400 600 800
x [m]

600

400

200

0

200

400

600

y 
[m

]

Ours

Figure 5: Trajectories of PoseNet, MapNet, LsG, and our model on the LOOP1 (top), LOOP2 (middle), and FULL1 scenes

(bottom) of the Oxford RobotCar dataset [24] The red and black lines indicate predicted and ground truth poses, respectively.

0 5 10 15 20 25 30 35 40
Translation Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f F
ra

m
es

PoseNet
MapNet
LsG
Ours

(a) Translation error on LOOP.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Rotation Error (°)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f F
ra

m
es

PoseNet
MapNet
LsG
Ours

(b) Rotation error on LOOP.

0 5 10 15 20 25 30 35 40
Translation Error (m)

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f F
ra

m
es

PoseNet
MapNet
LsG
Ours

(c) Translation error on FULL.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Rotation Error (°)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f F
ra

m
es

PoseNet
MapNet
LsG
Ours

(d) Rotation error on FULL.

Figure 6: Cumulative distributions of the mean position and orientation errors of PoseNet, MapNet, LsG, and our method on

the Oxford RobotCar LOOP and FULL scenes. X-axis and y-axis denote the error and the percentage of frames, respectively.

ple than those captured by handheld cameras (7Scenes and

Cambridge datasets). Both orientation and position errors

are reduced progressively by incorporating multiple GNN

blocks for information propagation.

5. Conclusion

In this paper, we propose to estimate the absolute camera

poses from multiple images. In contrast to previous works

which rely heavily on the temporal consistency, we con-

struct a view graph to exploit the dependency among multi-

ple frames and leverage GNNs for graph modeling. Rather

than adopting the regular GNNs with brute-force, we rede-

fine the nodes and edges and redesign the embedded func-

tions for message passing and node updating to fit the relo-

calization task. Moreover, we take full advantages of CNNs

and GNNs in feature extraction and knowledge propagation

respectively to process high-dimensional image features at

multiple levels. Finally, we employ a graph-based loss func-

tion to train our model in an end-to-end fashion. We con-

duct extensive experiments on the 7Scenes, Cambridge, and

Oxford RobotCar datasets. Results demonstrate that our ap-

proach outperforms previous methods, especially in large-

scale and challenging scenarios.

11382



References

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. NetVLAD: CNN architecture for

Weakly Supervised Place Recognition. In CVPR, 2016.

[2] Vassileios Balntas, Shuda Li, and Victor Prisacariu. Reloc-

Net: Continuous Metric Learning Relocalisation using Neu-

ral Nets. In ECCV, 2018.

[3] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays,

and Jan Kautz. MapNet: Geometry-aware Learning of Maps

for Camera Localization. In CVPR, 2018.

[4] Mai Bui, Christoph Baur, Nassir Navab, Slobodan Ilic, and

Shadi Albarqouni. Adversarial Networks for Camera Pose

Regression and Refinement. In ICCV Workshops, 2019.

[5] Ming Cai, Chunhua Shen, and Ian Reid. A Hybrid Proba-

bilistic Model for Camera Relocalization. In BMVC, 2018.

[6] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham,

Junsong Yuan, and Nadia Magnenat Thalmann. Exploiting

Spatial-Temporal Relationships for 3D Pose Estimation via

Graph Convolutional Networks. In ICCV, 2019.

[7] Giuseppe Calafiore, Luca Carlone, and Frank Dellaert. Pose

Graph Optimization in the Complex Domain: Lagrangian

Duality, Conditions for Zero Duality Gap, and Optimal So-

lutions. T-RO, 2016.

[8] Federico Camposeco, Torsten Sattler, Andrea Cohen, An-

dreas Geiger, and Marc Pollefeys. Toroidal Constraints for

Two-point Localization under High Outlier Ratios. In CVPR,

2017.

[9] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni,

and Hongkai Wen. Vidloc: A Deep Spatio-temporal Model

for 6-DOF Video-clip Relocalization. In CVPR, 2017.

[10] Mingyu Ding, Zhe Wang, Jiankai Sun, Jianping Shi, and

Ping Luo. CamNet: Coarse-to-Fine Retrieval for Camera

Re-Localization. In ICCV, 2019.

[11] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct

Sparse Odometry. TPAMI, 2018.

[12] Matthias Fey and Jan E. Lenssen. Fast graph representation

learning with PyTorch Geometric. In ICLR Workshop, 2019.

[13] Hongyang Gao and Shuiwang Ji. Graph U-Nets. In ICML,

2019.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving Deep into Rectifiers: Surpassing Human-level Per-

formance on Imagenet Classification. In ICCV, 2015.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In CVPR,

2016.

[16] Zhaoyang Huang, Yan Xu, Jianping Shi, Xiaowei Zhou, Hu-

jun Bao, and Guofeng Zhang. Prior Guided Dropout for

Robust Visual Localization in Dynamic Environments. In

ICCV, 2019.

[17] Alex Kendall and Roberto Cipolla. Modelling Uncertainty in

Deep Learning for Camera Relocalization. In ICRA, 2016.

[18] Alex Kendall and Roberto Cipolla. Geometric Loss Func-

tions for Camera Pose Regression with Deep Learning. In

CVPR, 2017.

[19] Alex Kendall, Matthew Grimes, and Roberto Cipolla.

PoseNet: A Convolutional Network for Real-time 6-DoF

Camera Relocalization. In ICCV, 2015.

[20] Diederik P Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. In ICLR, 2015.

[21] Zakaria Laskar, Iaroslav Melekhov, Surya Kalia, and Juho

Kannala. Camera Relocalization by Computing Pairwise

Relative Poses using Convolutional Neural Network. In

ICCV, 2017.

[22] Guohao Li, Matthias Müller, Ali Thabet, and Bernard

Ghanem. Can GCNs Go as Deep as CNNs? In ICCV, 2019.

[23] Liu Liu, Hongdong Li, and Yuchao Dai. Efficient Global

2D-3D Matching for Camera Localization in a Large-scale

3D Map. In ICCV, 2017.

[24] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul New-

man. 1 Year, 1000km: The Oxford RobotCar Dataset. IJRR,

2017.

[25] Iaroslav Melekhov, Juha Ylioinas, Juho Kannala, and Esa

Rahtu. Image-based Localization Using Hourglass Net-

works. In ICCV Workshops, 2017.

[26] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: An

Open-source SLAM System for Monocular, Stereo, and

RGB-D Cameras. T-RO, 2017.

[27] Tayyab Naseer and Wolfram Burgard. Deep Regression

for Monocular Camera-based 6-DoF Global Localization in

Outdoor Environments. In IROS, 2017.

[28] Noha Radwan, Abhinav Valada, and Wolfram Burgard.

Vlocnet++: Deep Multitask Learning for Semantic Visual

Localization and Odometry. RA-L, 2018.

[29] Torsten Sattler, Michal Havlena, Konrad Schindler, and Marc

Pollefeys. Large-scale Location Recognition and the Geo-

metric Burstiness Problem. In CVPR, 2016.

[30] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient &

Effective Prioritized Matching for Large-scale Image-based

Localization. TPAMI, 2017.

[31] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura

Leal-Taixe. Understanding the Limitations of CNN-based

Absolute Camera Pose Regression. In CVPR, 2019.

[32] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-Motion Revisited. In CVPR, 2016.

[33] Mike Schuster and Kuldip K Paliwal. Bidirectional Recur-

rent Neural Networks. TSP, 1997.

[34] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram

Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene

Coordinate Regression Forests for Camera Relocalization in

RGB-D Images. In CVPR, 2013.

[35] Pablo Speciale, Johannes L. Schonberger, Sudipta N. Sinha,

and Marc Pollefeys. Privacy Preserving Image Queries for

Camera Localization. In ICCV, 2019.

[36] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob

Fergus. End-to-end Memory Networks. In NIPS, 2015.

[37] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea

Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-

ihiko Torii. InLoc: Indoor Visual Localization with Dense

Matching and View Synthesis. In CVPR, 2018.

[38] Carl Toft, Erik Stenborg, Lars Hammarstrand, Lucas Brynte,

Marc Pollefeys, Torsten Sattler, and Fredrik Kahl. Semantic

Match Consistency for Long-term Visual Localization. In

ECCV, 2018.

11383



[39] Akihiko Torii, Relja Arandjelovic, Josef Sivic, Masatoshi

Okutomi, and Tomas Pajdla. 24/7 Place Recognition by View

Synthesis. In CVPR, 2015.

[40] Abhinav Valada, Noha Radwan, and Wolfram Burgard. Deep

Auxiliary Learning for Visual Localization and Odometry. In

ICRA, 2018.

[41] Petar Veličković, William Fedus, William L Hamilton, Pietro

Liò, Yoshua Bengio, and R Devon Hjelm. Deep Graph Info-

max. In ICLR, 2019.

[42] Florian Walch, Caner Hazirbas, Laura Leal-Taixe, Torsten

Sattler, Sebastian Hilsenbeck, and Daniel Cremers. Image-

based Localization Using LSTMs for Structured Feature

Correlation. In ICCV, 2017.

[43] Wenguan Wang, Xiankai Lu, Jianbing Shen, David J. Cran-

dall, and Ling Shao. Zero-Shot Video Object Segmentation

via Attentive Graph Neural Networks. In ICCV, 2019.

[44] Xin Wang, Xiang Wang, Chen Wang, Xiao Bai, Jing Wu, and

Edwin R Hancock. Discriminative Features Matter: Multi-

layer Bilinear Pooling for Camera Localization. In BMVC,

2019.

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

Graph CNN for Learning on Point Clouds. ACM TOG, 2019.

[46] Jian Wu, Liwei Ma, and Xiaolin Hu. Delving Deeper into

Convolutional Neural Networks for Camera Relocalization.

In ICRA, 2017.

[47] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S Yu. A Comprehen-

sive Survey on Graph Neural Networks. arXiv preprint

arXiv:1901.00596, 2019.

[48] Fei Xue, Qiuyuan Wang, Xin Wang, Wei Dong, Junqiu

Wang, and Hongbin Zha. Guided Feature Selection for Deep

Visual Odometry. In ACCV, 2018.

[49] Fei Xue, Xin Wang, Shunkai Li, Qiuyuan Wang, Junqiu

Wang, and Hongbin Zha. Beyond Tracking: Selecting Mem-

ory and Refining Poses for Deep Visual Odometry. In CVPR,

2019.

[50] Fei Xue, Xin Wang, Zike Yan, Qiuyuan Wang, Junqiu Wang,

and Hongbin Zha. Local Supports Global: Deep Camera

Relocalization with Sequence Enhancement. In ICCV, 2019.

[51] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin

Chen. An End-to-end Deep Learning Architecture for Graph

Classification. In AAAI, 2018.

[52] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, and Maosong Sun. Graph Neural Networks:

A Review of Methods and Applications. arXiv preprint

arXiv:1812.08434, 2018.

[53] Yang Zhou, Zachary While, and Evangelos Kalogerakis.

SceneGraphNet: Neural Message Passing for 3D Indoor

Scene Augmentation. In ICCV, 2019.

11384


