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Abstract

Pre-training convolutional neural networks with weakly-

supervised and self-supervised strategies is becoming in-

creasingly popular for several computer vision tasks. How-

ever, due to the lack of strong discriminative signals, these

learned representations may overfit to the pre-training ob-

jective (e.g., hashtag prediction) and not generalize well to

downstream tasks. In this work, we present a simple strat-

egy - ClusterFit (CF) to improve the robustness of the vi-

sual representations learned during pre-training. Given a

dataset, we (a) cluster its features extracted from a pre-

trained network using k-means and (b) re-train a new net-

work from scratch on this dataset using cluster assign-

ments as pseudo-labels. We empirically show that cluster-

ing helps reduce the pre-training task-specific information

from the extracted features thereby minimizing overfitting

to the same. Our approach is extensible to different pre-

training frameworks – weak- and self-supervised, modali-

ties – images and videos, and pre-training tasks – object and

action classification. Through extensive transfer learning

experiments on 11 different target datasets of varied vocab-

ularies and granularities, we show that CF significantly im-

proves the representation quality compared to the state-of-

the-art large-scale (millions / billions) weakly-supervised

image and video models and self-supervised image models.

1. Introduction

Weak and self-supervised pre-training approaches offer

scalability by exploiting free annotation. But there is no free

lunch – these methods often first optimize a proxy objec-

tive function, for example, predicting image hashtags [31]

or color from grayscale images [34, 63]. Similar to su-

pervised pre-training, the underlying assumption (hope) is

that this proxy objective function is fairly well aligned with

the subsequent transfer tasks, thus optimizing this function

could potentially yield suitable pre-trained visual represen-

tations. While this assumption holds mostly true in case of

fully-supervised pre-training, it may not extend to weak and

∗† Equal Contribution

Pre-training method (Npre) ∆ of CF (Ncf ) on transfer

Fully-supervised Images §3.2, Figure 3b +2.1% on ImageNet-9K [10]

ResNet-50, ImageNet-1K, 1K labels

Weakly-supervised Images §4.1.1, Table 4 +4.6% on ImageNet-9K [10]

ResNet-50, 1B Images, 1.5K hashtags [38] +5.8% on iNaturalist [55]

Weakly-supervised Videos §4.1.2, Table 5 +3.2% on Kinetics [59]

R(2+1)D-34, 19M videos, 438 hashtags [20] +4.3% on Sports1M [32]

Self-supervised Images §4.2, Tables 6 +7-9% on ImageNet-1K [47]

ResNet-50, 1M images +3-7% mAP on VOC07 [15]

Jigsaw [42] and RotNet [21], Multi-task +3-5% on Places205 [65]

Table 1: A summary of results: We show that ClusterFit (CF) can be

applied to a variety of different pre-training methods, modalities, and ar-

chitectures. We report absolute gains in top-1 accuracy (except for VOC07

where we report mAP). In each setting, CF provides improvements with

the same model architecture and without additional data or supervision.

self-supervision. In the latter pre-training cases, the lack

of strong discriminative signals may result in an undesir-

able scenario where the visual representations overfit to the

idiosyncrasies of the pre-training task and dataset instead,

thereby rendering them unsuitable for transfer tasks. For in-

stance, it was noted in [20, 38, 51] that factors such as label

noise, polysemy (apple the fruit vs. Apple Inc.), linguis-

tic ambiguity, lack of ‘visual’ness of tags (e.g. #love) sig-

nificantly hampered the pre-training proxy objective from

being well-aligned with the transfer tasks. Further, the au-

thors of [23, 64] studied multiple self-supervised methods

and observed that, compared to earlier layers, features from

the last layer are more “aligned” with the proxy objective,

and thus generalize poorly to target tasks.

In this work, we ask a simple question – is there a way to

avoid such overfitting to the proxy objective during weak-

and self-supervised pre-training? Can we overcome the

‘artifacts’ of proxy objectives so that the representation is

generic and transferable? Our key insight is that smooth-

ing the feature space learned via proxy objectives should

help us remove these artifacts and avoid overfitting to the

the proxy objective. But how do we smoothen the feature

space? Should it be done while optimizing the proxy objec-

tive or in a post-hoc manner?

To this end, we propose a surprisingly simple yet effec-

tive framework called ClusterFit (CF). Specifically, given

a pre-trained network trained using a proxy objective and

a new dataset, we first use the learned feature space to

cluster that dataset. Next, we train a new network from

scratch on this new dataset using the cluster memberships

6509



1 2

3

1. Cluster: Feature clustering

2. Fit: Predict Cluster Assignments

1, 2, 3

Pseudo-labelsFrom scratch

Pre-trained Network

Dcf
<latexit sha1_base64="9GSgfJivatsl+avWsAdWgHK0v48=">AAAB+nicbVDLSsNAFJ3UV62vVJduBlvBVUla7GNX1IXLCrYV2hAm00k7dCYJMxOlxHyKGxeKuPVL3Pk3Ttoivg4MHM65l3vmeBGjUlnWh5FbWV1b38hvFra2d3b3zOJ+T4axwKSLQxaKGw9JwmhAuooqRm4iQRD3GOl70/PM798SIWkYXKtZRByOxgH1KUZKS65ZLF+4yZAjNRE8wX6all2zZFUs27Jqp1ATq9Vq1uFCaTShrZUMJbBExzXfh6MQx5wECjMk5cC2IuUkSCiKGUkLw1iSCOEpGpOBpgHiRDrJPHoKj7Uygn4o9AsUnKvfNxLEpZxxT09mIeVvLxP/8wax8ptOQoMoViTAi0N+zKAKYdYDHFFBsGIzTRAWVGeFeIIEwkq3VZiX0MpQ//ryX9KrVuxapXZVLbXPlnXkwSE4AifABg3QBpegA7oAgzvwAJ7As3FvPBovxutiNGcsdw7ADxhvn3wVlEw=</latexit>

Dcf
<latexit sha1_base64="9GSgfJivatsl+avWsAdWgHK0v48=">AAAB+nicbVDLSsNAFJ3UV62vVJduBlvBVUla7GNX1IXLCrYV2hAm00k7dCYJMxOlxHyKGxeKuPVL3Pk3Ttoivg4MHM65l3vmeBGjUlnWh5FbWV1b38hvFra2d3b3zOJ+T4axwKSLQxaKGw9JwmhAuooqRm4iQRD3GOl70/PM798SIWkYXKtZRByOxgH1KUZKS65ZLF+4yZAjNRE8wX6all2zZFUs27Jqp1ATq9Vq1uFCaTShrZUMJbBExzXfh6MQx5wECjMk5cC2IuUkSCiKGUkLw1iSCOEpGpOBpgHiRDrJPHoKj7Uygn4o9AsUnKvfNxLEpZxxT09mIeVvLxP/8wax8ptOQoMoViTAi0N+zKAKYdYDHFFBsGIzTRAWVGeFeIIEwkq3VZiX0MpQ//ryX9KrVuxapXZVLbXPlnXkwSE4AifABg3QBpegA7oAgzvwAJ7As3FvPBovxutiNGcsdw7ADxhvn3wVlEw=</latexit>

Figure 1: ClusterFit (CF): We start with a pre-trained network (Npre)

that is trained on some pre-training task (not shown). We use this network

to extract features and cluster a new dataset Dcf using k-means clustering.

We show that training a new network Ncf from scratch on these cluster

assignments as labels results in a more transferable feature representation.

as pseudo labels (Figure 1). We demonstrate that clustering

of the features helps retain only the essential invariances in

them and eliminates proxy objective’s artifacts (essentially

smoothing the feature space). Re-training on the cluster

memberships yields a visually coherent pre-training feature

space for downstream tasks. Our approach of feature space

smoothing is guided through unsupervised k-means clus-

tering, making it scalable to millions (billions) of videos

and images in both weak- and self-supervised pre-training

frameworks.

We take inspiration from recent work in self-supervised

learning which aims to learn a smooth visual feature space

via clustering and trains representations on the clusters as

classes [6, 7, 44]. While [6, 7] use clustering as the train-

ing objective itself, in our work, we investigate the value

of post-hoc smoothing. ClusterFit can also be viewed as a

variant of knowledge distillation [29] that distills via ‘lossy’

clustering, as opposed to the standard setup of using soft tar-

gets in original label space.

ClusterFit demonstrates significant performance gains

on a total of 11 public, challenging image and video bench-

mark datasets. As summarized in Table 1, our approach,

while extremely simple, consistently improves performance

across different pre-training methods, input modalities, net-

work architectures, and benchmark datasets.

2. Related Work

Weakly Supervised Learning: Training ConvNets on very

large, weakly supervised images by defining the proxy

tasks using the associated meta-data [11, 20, 25, 31, 36,

38, 48, 51–53, 56] has shown tremendous benefits. Proxy

tasks include hashtags predictions [11, 20, 25, 38, 56],

GPS [27, 58], search queries prediction [51], and word or

n-grams predictions [31, 36]. Our approach builds upon

these works and shows that even better representations can

be trained by leveraging the features from such pre-training

frameworks for clustering to mitigate the effect of noise.

Standard Pre-train and Transfer

Dataset Dpre
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Figure 2: Full ClusterFit pipeline: A typical transfer learning framework

involves two stages: pre-training followed by transfer learning. ClusterFit

introduces a step between these stages. We evaluate all representations by

training a linear classifier on fixed ConvNet weights.

Yalniz et al. [62] propose a target task specific noise re-

moval framework by ranking images for each class by their

softmax values and retaining only top-K images for re-

training. However, their method is specific to a particular

target task and discards most of the data during re-training.

By contrast, our approach does not adhere to a particular

target task and leverages all the data, since, they may con-

tain complementary visual information beyond hashtags.

Self-Supervised Learning: Self-supervised approaches

typically learn a feature representation by defining a ‘pre-

text’ task on the visual domain. These pre-text tasks can

either be domain agnostic [5, 6, 30, 45, 60, 61] or ex-

ploit domain-specific information like spatial structure in

images [13, 21, 42–44], color [12, 34, 35, 63, 64], illu-

mination [14], temporal structure [16, 26, 37, 39, 40] or a

co-occurring modality like sound [2, 3, 9, 19, 46]. In this

work, we use two diverse image-based self-supervision ap-

proaches - Jigsaw [42] and RotNet [21] that have shown

competitive performance [7, 23, 33]. Since the difference

between pretext tasks and semantic transfer learning tasks

is huge, our method shows much larger improvement for

self-supervised methods (§4.2).

Our work builds upon [6, 7], who use clustering and

pseudo-labels for self-supervised learning and [44], who

distill different self-supervised models to a common archi-

tecture. Compared to [6, 7], ClusterFit does not require any

alternate optimization and thus is more stable and compu-

tationally efficient. As we show in §4, this property makes

ClusterFit applicable to different modalities and large-scale

data. In addition to the stark difference in the performance

of ClusterFit and [44] (Table 1), there are other fundamental

differences: (a) Unlike [44], our focus is not on distilling in-

formation to a common architecture, but instead to remove

the pre-training task biases; (b) ClusterFit is applicable be-

yond the self-supervised framework (§4.2) and extends to

fully supervised (§3.2) and weakly supervised (§4.1) frame-

works. We highlight that this is not an obvious result since

intuitively it is unclear that any approach can overcome task

biases in strong and weak supervision paradigms.
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Dataset Label Type # classes Train/Eval Metric

Weakly-supervised Images §4.1.1

ImageNet-1K [47] multi-class object 1000 1.3M/50K top-1 acc

ImageNet-9K [10] multi-class object 9000 10.5M/450K top-1 acc

Places365 [65] multi-class scene 365 1.8M/36.5K top-1 acc

iNaturalist 2018 [55] multi-class object 8142 438K/24K top-1 acc

Weakly-supervised Videos §4.1.2

Kinetics [59] multi-class action 400 246K/20K top-1 acc

Sports1M [32] multi-class action 487 882K/204K top-1 acc

Something-Something V1 [24] multi-class action 174 86K/11.5K top-1 acc

Self-supervised Images §4.2

VOC07 [15] multi-label object 20 5K/5K mAP

ImageNet-1K [47] multi-class object 1000 1.3M/50K top-1 acc

Places205 [65] multi-class scene 205 2.4M/21K top-1 acc

iNaturalist 2018 [55] multi-class object 8142 438K/24K top-1 acc

Table 2: Target tasks for Transfer Learning used for evaluating feature

representations.

Model Distillation and Clustering: Model distillation [1,

4, 18, 29] typically involves transferring knowledge from

a ‘teacher’ model to a ‘student’ model by training the stu-

dent on predictions of the teacher in addition to task labels.

These methods are designed to transfer knowledge (not con-

tained in the labels) about the task from the teacher to the

student network. Since distillation retains more knowledge

about the original task, it performs poorly in the case of

weak-supervision (§4.1). Interestingly, the failure of stan-

dard knowledge distillation approaches in the context of

self-supervised learning has also been shown in [44]. While

Girard et al. [22] use a supervised clustering approach re-

lying on a preexisting label hierarchy, our clustering frame-

work is completely unsupervised and thus extensible to self-

supervised training regime.

3. Approach

Our goal is to learn a generalizable feature space for a va-

riety of target tasks that does not overfit to the pre-training

proxy objective. We first describe the framework of Clus-

terFit (CF) in §3.1. Next, we report a control experiment on

the ImageNet-1K dataset that sheds light on how CF com-

bats the ‘bias’ introduced due to the proxy objective (§3.2).

3.1. ClusterFit Framework

Our method starts with a ConvNet Npre that is pre-

trained on a dataset Dpre and labels Lpre. First, we use the

penultimate layer of Npre to extract features from each dat-

apoint belonging to another dataset Dcf . Next, we cluster

these features using k-means into K groups and treat these

cluster assignments as the new categorical ‘labels’ (Lcf ) for

Dcf . Finally, we fit a different network Ncf (initialized from

scratch1) on Dcf that minimizes a cross-entropy objective

on Lcf . We illustrate these steps in Figure 1. We highlight

that re-learning Ncf from scratch on Dcf is completely un-

supervised and thus allows leveraging large-scale datasets.

Intuition: We hypothesize that ClusterFit (CF) leverages

the underlying visual smoothness in the feature space to

1We empirically found that reusing weights from Npre to initialize Ncf

did not yield any benefit across any of the 11 transfer tasks.

create visually coherent clusters. We believe that “clus-

ter” followed by “fit” weakens the underlying pre-training

objective-specific bias. One may view ClusterFit from an

information bottleneck [54] perspective wherein the ‘lossy’

clustering step introduces a bottleneck and removes any pre-

training proxy objective bias.

How to evaluate CF? As in prior efforts [20, 23, 38], we

use transfer learning performance on downstream tasks to

understand whether CF improves generalization of the fea-

ture representations. Specifically, to evaluate Npre and Ncf ,

we train linear classifiers on fixed feature representations

from the networks on the downstream task and report final

performance on held-out data (see Table 2). Figure 2 illus-

trates ClusterFit’s setup. We stress that ClusterFit is simple

to implement and makes minimal assumptions about input

modalities, architectures etc. but provides a powerful way

to improve the generalization of the feature space. We ex-

plore various design choices ClusterFit offers such as rela-

tive properties of Npre, Ncf , Dpre, and Dcf in §5.

3.2. Control Experiment using Synthetic Noise

Here, our goal is to study the extent of generalization

of features learned from a ‘proxy’ pre-training objective in

a controlled setup. We start with a supervised pre-training

dataset ImageNet-1K [47], and add synthetic label noise to

it. Our motive behind this setup is to intentionally misalign

the pre-training objective with downstream tasks. We ac-

knowledge that the synthetic noise simulated in this experi-

ment is an over simplification of the complex noise present

in real world data. Nevertheless, it provides several key in-

sights into ClusterFit as we show next.

Control Experiment Setup: To isolate the effect of CF, in

this experiment, we fix Dpre=Dcf = ImageNet-1K and the

network architectures Npre and Ncf to ResNet-50 [28]. We

start by adding varying amounts (p%) of uniform random

label noise2 to Dpre. Next, we train a separate Npre for each

fraction p of the noisy labels. We then apply CF (with dif-

ferent values of K in k-means) to each Npre to obtain a cor-

responding Ncf . Finally, we evaluate the representations by

training linear classifiers on fixed res5 features on three tar-

get image classification datasets - ImageNet-1K, ImageNet-

9K, and iNaturalist. We use model distillation [29] as a

baseline to better understand the behavior of ClusterFit.

Our motivation behind this setup is the following: when

p=0, Npre denotes the true, noise-free supervised task; as

p increases, the proxy objective becomes a poorer approx-

imation of the original pre-training objective and allows us

to closely inspect ClusterFit.

Results and Observations: We report the transfer learning

performance of Npre (i.e., before CF) and Ncf (i.e., after

2We randomly replace a label (l) in ImageNet-1K train split with one

that is obtained by uniformly sampling from ImageNet-1K labels exclud-

ing l.
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Figure 3: Control Experiment: We inject uniform label noise in the labels Lpre from Dpre= ImageNet-1K and train a separate ResNet-50 model (Npre)

on these noisy labels. We apply ClusterFit on each of these pre-trained models (Npre) and vary the number of clusters K to train Ncf . We then study the

transfer learning performance of the representations by training a linear classifier on fixed features from Npre or Ncf on three target tasks - a noise free

ImageNet-1K, ImageNet-9K, and iNaturalist. ClusterFit is able to learn more transferable features despite high amounts of label noise in pre-training. For

finer-grained target tasks like ImageNet-9K, ClusterFit can even improve a fully supervised ResNet-50 model (p=0).

CF) in Figure 3 for different values of label noise p. Let us

first consider p = 0, i.e., a setting without any label noise.

In this case, Npre is trained on clean labels. On the tar-

get dataset ImageNet-1K, Npre performs significantly better

than Ncf for all values of K (Fig. 3 (a)). This is expected,

since when Dpre = Dtar = ImageNet-1K, the pre-training

and transfer tasks are exactly aligned. However, Ncf per-

forms comparably or better than Npre for other target da -

ImageNet-9K and iNaturalist at higher values of K. This

suggests that CF can improve even fully-supervised rep-

resentations for more fine-grained downstream tasks. We

note that model distillation also provides an improvement

over Npre on ImageNet-9K but is worse on iNaturalist.

Let us now consider scenarios where p > 0. Figure 3

indicates that increased label noise (p) in Dpre translates to

poor performance across all three target tasks. We high-

light that the drop in the performance is more drastic for

Npre (i.e., before CF), than for Ncf (i.e., after CF). More

importantly, the performance gap between Ncf and Npre

continues to increase with p. From Fig. 3 (b) and (c), we

observe that Ncf consistently outperforms Npre on two tar-

get tasks ImageNet-9K and iNaturalist. Notably, for Dtar=

ImageNet-1K (Figure 3 (a)), when p ≥ 50, Ncf outperform

Npre, which is pre-trained on noisy ImageNet-1K. Model

distillation provides some gains over Npre but is consis-

tently outperformed by ClusterFit.

These results suggest that as p increases, the proxy ob-

jective gets further away from the ‘true’ pre-training objec-

tive, and makes features from Npre less transferable. In

those very cases, CF captures useful visual invariances in

the feature representations, thereby providing more noise-

resilient pseudo-labels for learning transferable representa-

tions. Finally, we also note that larger number of clusters

K generally leads to better transfer learning performance.

The gains are larger for more challenging and fine-grained

datasets like ImageNet-9K and iNaturalist. We study the

effect of this hyper-parameter K in §5.

4. Experiments

We now examine the broad applicability of ClusterFit in

three different pre-training scenarios for Npre: (a) weakly-

supervised pre-training for images (§4.1.1), (b) weakly-

supervised pre-training for videos (§4.1.2), and (c) self-

supervised pre-training for images (§4.2).

Common CF Setting: Throughout this section, we set Dpre

= Dcf and Npre = Ncf (architecture-wise). We train Npre

on Dpre, Ncf on Dcf for equal number of epochs. Table 3

summarizes these settings. By keeping the data, architec-

ture, and training schedule constant, we hope to measure

the difference in performance between Ncf and Npre solely

due to ClusterFit.

Evaluation: As mentioned in §3.1, we evaluate Cluster-

Fit via transfer learning on target tasks. Specifically, we

train linear classifiers on the fixed features obtained from

the penultimate layer of Npre or Ncf on target datasets. The

transfer learning tasks are summarized in Table 2.

Baselines: We use the following baselines:

• Npre: We use features from Npre for transfer learning.

Since ClusterFit (CF) is applied on Npre to get Ncf , this

baseline serves to show improvements through CF.

• Distillation: To empirically understand the importance

of the clustering step in CF, we compare with model dis-

tillation [29]. Unlike CF, distillation transfers knowledge

from Npre without clustering, thus retaining more infor-

mation about the learned features. We train a distilled

model using a weighted average of 2 loss functions: (a)

cross-entropy with soft targets computed using Npre and

temperature T and (b) cross-entropy with image/video la-

bels in weakly-supervised setup. We also experimented

with training a network to directly regress the features

from Npre but found consistently worse results.

• Prototype: ClusterFit uses unsupervised k-means to cre-

ate pseudo-labels. To understand the effect of this unsu-

pervised step, we add a baseline that uses semantic in-

formation during clustering. Under this prototype align-
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Pre-training method Dpre=Dcf Arch. of Npre & Ncf

Weakly-Supervised Images §4.1.1 IG-ImageNet-1B ResNet-50

Weakly-Supervised Videos §4.1.2 IG-Verb-19M R(2+1)D-34

Self-supervised Images §4.2 ImageNet-1k ResNet-50

Table 3: Data and model architectures used in §4: weakly supervised

videos, weakly supervised images, and self supervised images. In each

setting, we train Npre and Ncf for equal number of epochs.

Dtar Npre Npre2× Distill. Prototype
CF (Ncf ), K →

1.5k 3.75k 7.5k 15k 30k

ImageNet-1K 78.0 78.8 73.8 76.9 75.3 76.1 76.5 76.5 76.2

ImageNet-9K 32.9 34.1 29.1 35.1 33.5 35.4 36.4 37.1 37.5

Places365 51.2 51.2 49.9 51.9 52.0 52.1 52.4 52.6 52.1

iNaturalist 43.9 45.3 35.9 49.0 43.8 46.4 47.9 49.7 49.5

Table 4: Weakly-supervised Images: Top-1 accuracy for various trans-

fer learning datasets with Dpre = Dcf = IG-ImageNet-1B and the same

architecture (ResNet-50) for Npre and Ncf .

ment [49] baseline, unlike random cluster initialization as

done in k-means, we use label information in Dcf to ini-

tialize cluster centers. Specifically, we first set K equal

to the number of ‘classes’ in Dcf . Here, each cluster cor-

responds to a ‘prototype’ of that class. We then compute

K prototypes by averaging image embeddings of all im-

ages belonging to each class. Finally, pseudo-labels are

assigned to each data point by finding its nearest ‘proto-

type’ cluster center. Since this method uses explicit label

information present in Dcf , it requires more ‘supervision’

than ClusterFit. We also note that this baseline is not ap-

plicable to self-supervised methods (suppl. material).

• Longer pre-training: Since Ncf is trained for the same

number of epochs as Npre, we also compare against a

network trained on the pre-train task for 2× longer (de-

noted by Npre2×). Specifically, Npre2× is trained for a

combined number of epochs as Npre and Ncf . By com-

paring Ncf against this baseline, we hope to isolate im-

provements due to longer pre-training.

4.1. Weakly­supervised pre­training

In this section, we study weakly-supervised pre-training

on noisy web images and videos. These approaches predict

the noisy hashtags associated with images/videos and thus

minimize a proxy objective during pre-training.

4.1.1 Weakly-supervised image pre-training

Data and Model: As in [38], we collect IG-ImageNet-1B

dataset of 1B public images associated with hashtags from a

social media website. To construct this dataset, we consider

images tagged with at least one hashtag that maps to any of

the ImageNet-1K synsets. The architecture of Npre and Ncf

network is fixed to a ResNet-50 [28], while Dpre = Dcf =

IG-ImageNet-1B.

ClusterFit Details: We extract features from the 2048 di-

mensional res5 layer from Npre for clustering. Ncf is

trained from scratch on Dcf = IG-ImageNet-1B on the clus-

ter assignments as pseudo-labels. Details on the hyper pa-

rameters during pre-training and ClusterFit are provided in

the supplementary material. We report results in Table 4,

which we discuss next.

Effect of longer pre-training: Npre pre-trained on Dpre

=IG-ImageNet-1B already exhibits very strong perfor-

mance on all target datasets. By construction, the label

space of the target dataset ImageNet-1K matches with that

of Dpre. As noted in [38], this translates to Npre yield-

ing an impressive top-1 accuracy of 78% on ImageNet-1K.

Features from longer pre-training (Npre2×) show improve-

ments on ImageNet-1K, ImageNet-9K, and iNaturalist but

not on Places365. As noted in [31, 38], Places365 is not

well-aligned with ImageNet-1K (and by extension with IG-

ImageNet-1B). Thus, (longer) pre-training yields no ben-

efit. By contrast, the target dataset ImageNet-9K is well-

aligned with Dpre = IG-ImageNet-1B, thus achieving im-

provements from longer pre-training.

Comparison with Model Distillation: Training a student

network via distillation, i.e., soft targets provided by the

teacher (Npre) and hashtags, performs worse than Npre it-

self. In our case, the student and teacher network are of

the same capacity (ResNet-50). We believe that the noisy

label setting combined with the same capacity student and

teacher networks are not ideal for model distillation.

Comparison with Prototype: Except on ImageNet-1K, the

prototype baseline shows improvement over both Npre and

Npre2×. This shows that pseudo-labels derived based on

label information can provide a better training objective

than hashtags used for pre-training Npre. However, simi-

lar to CF, prototype shows a reduction in performance on

ImageNet-1K which we explain next.

Gains of ClusterFit: Ncf achieves substantial gains over

the strong Npre model especially on fine-grained datasets

like ImageNet-9K (4.6 points) and iNaturalist (5.8 points),

at higher values of K. This may be because Ncf captures

a more diverse and finer-grained visual feature space that

benefits fine-grained transfer tasks. We observe a small

decrease in the performance on ImageNet-1K (1.5 points)

which can be attributed again to the hand-crafted label

alignment of the IG-ImageNet-1B with ImageNet-1K. This

result is inline with observations from [38]. We believe

the performance decrease of ‘prototype’ on ImageNet-1K

is also due to this reason. Ncf shows improved performance

than ‘prototype,’ yet does not use any additional supervision

while generating pseudo-labels. Finally, we note that find-

ing an optimal number of clusters K for each transfer learn-

ing task is procedurally easier than finding a pre-training

task (or label space) that aligns with the target task.

4.1.2 Weakly-supervised video pre-training

Data and Model: Following [20], we collect IG-Verb-

19M, a dataset of 19M public videos with hashtags from
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Ttar Npre Npre2× Distill. Prototype
CF (Ncf ), K →

400 800 1600 3200 6400

Kinetics 68.8 69.2 63.6 70.3 70.1 71.2 71.2 71.5 72.0

Sports1M 52.9 53.1 48.4 55.1 55.8 56.6 57.1 57.2 57.2

Sth-Sth V1 16.9 16.4 15.6 20.3 20.2 20.0 20.6 19.3 19.7

Table 5: Weakly-supervised videos: Top-1 accuracy for various transfer

learning datasets with Dpre = Dcf = IG-Verb-19M and the same architec-

ture (R(2+1)D-34) for Npre and Ncf .

a social media website. We consider videos tagged with

at least one of the 438 verbs from Kinetics [59] and Verb-

Net [57]. We set Dpre = Dcf = IG-Verb-19M. We use the

clip-based R(2+1)D-34 [8] architecture for Npre and Ncf .

Each video clip is generated by scaling its shortest edge to

128 followed by cropping a random patch of size 112×112.

We use 32 consecutive frames per video clip, with temporal

jittering applied to the input.

ClusterFit details: We uniformly sample 6 clips of 32 con-

secutive frames per video, extract video features per clip,

and average pool them. We use the 512 dimensional res5

layer from Npre. We direct the reader to the supplementary

material for hyper-parameter details.

Observations: We present the transfer learning results

in Table 5. Once again, the baseline Npre exhibits

strong performance on all target datasets. Longer pre-

training (Npre2×) provides limited benefit on Kinetics and

Sports1M, and loses performance compared to Npre on Sth-

Sth V1. As observed in §4.1.1, model distillation performs

worse than Npre on all target datasets.

We observe that CF (Ncf ) provides significant improve-

ments of 3.2 - 4.3% across all the datasets over Npre. The

optimal number of clusters K vary depending on each

dataset, but is typically an order of magnitude higher than

the size of the original label space (i.e., 438 verbs in IG-

Verb-19M). For example, performance does not saturate for

Kinetics even at K = 6400. We study the effect of K

in §5.2.

4.2. Self­Supervised pre­training for Images

We now apply ClusterFit framework to self-supervised

methods. We study two popular and diverse self-supervised

methods - Jigsaw [42] and RotNet [21]. These methods do

not use semantic labels and instead create pre-training la-

bels using a ‘pre-text’ task such as rotation. As mentioned

in §2 and [44], distillation is not a valid baseline for these

self-supervised methods (more in supplementary material).

Also, as these methods do not use semantic label informa-

tion, ‘prototype’ is also not a valid baseline.

Data and Model: We fix the network architectures of Npre

and Ncf to ResNet-50. We also fix Dpre =Dcf = ImageNet-

1K to pre-train Jigsaw and RotNet models (Npre). We dis-

card the semantic labels and use only images from both

tasks. We use the models released by [23] for Jigsaw and

train RotNet models following the approach in [21, 23].

ClusterFit Details: We set K = 16, 000. Ncf is trained

Method Ttar

ImageNet-1K VOC07 Places205 iNaturalist

Jigsaw Npre 46.0 66.1 39.9 22.1

Jigsaw Npre2× 45.1 65.4 38.7 21.8

Jigsaw Ncf (Ours) 55.2 69.5 45.0 29.8

RotNet Npre 48.9 63.9 41.4 23.0

RotNet Npre2× 50.0 64.9 42.9 25.3

RotNet Ncf (Ours) 56.1 70.9 44.8 28.4

Table 6: Self-supervised methods: We apply ClusterFit to self-

supervised methods and evaluate them following the setup in [23] on four

datasets by training a linear classifier on fixed features. All methods use

the ResNet-50 architecture for Npre and Ncf . We report the performance

of the best performing layer for each method and use the mean Average

Precision (mAP) metric for the VOC07 dataset and top-1 accuracy for all

other datasets.

for the same number of epochs as the pre-trained self-

supervised network Npre. We strictly follow the training

hyper parameters and the transfer learning setup outlined in

Goyal et al. [23]. We report additional results for different

values of K in the supplemental material.

Layer-wise transfer: In Figure 4, we report the transfer

learning performance of each layer of Npre and compare

with Ncf after applying ClusterFit. We see that for the pre-

trained network Npre, res5 features transfer poorly com-

pared to res4 features. For example, on VOC07 dataset,

linear classifiers trained on res4 perform ∼ 3-10 points bet-

ter than those trained on res5 for both Jigsaw and RotNet

networks. As noted in [23, 64], this is because the final layer

features overfit to the pre-training (‘pre-text’) task.

After applying ClusterFit, we see that features of Ncf

transfer better across all the layers except for conv1– an

improvement of 7 to 9 points on ImageNet-1K– for both

Jigsaw and RotNet methods. On VOC07, res5 features

transfer better than res4: for Npre the gap is −9 points

while for Ncf it is about +1 points. On ImageNet-1K and

Places205, the performance gap of Ncf when using res4 vs.

res5 features is considerably reduced. This strongly sug-

gests that ClusterFit reduces the overfitting of res5 features

to the pre-text task, thus making them generalize better.

Results: We show additional transfer learning results in Ta-

ble 6. Longer pre-training (Npre2×) shows mixed results –

a small drop in performance for Jigsaw and a small increase

in performance for RotNet. ClusterFit provides consistent

improvements on both Jigsaw and RotNet tasks, across all

pre-training and target tasks. We achieve significant boosts

of 3-5 points on Places205 and 5-8 points on iNaturalist.

Easy multi-task Learning using ClusterFit: In the sup-

plemental material, we show that ClusterFit can be easily

applied to combine multiple different self-supervised meth-

ods and provides impressive gains of more than 8 points on

ImageNet-1K in top-1 accuracy.

Summary: Why does ClusterFit work? We believe that

grouping images / videos based on noisy hashtags (weak

supervision) or on the angle of rotation (e.g., RotNet in
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Figure 4: Self-supervised Images (Layerwise): We examine the layer-wise performance of self-supervised models before applying our technique (Npre)

and after (Ncf ). We fix Dpre =Dcf = ImageNet-1K (without labels) and use the same architecture (ResNet-50) for Npre and Ncf . The last layer (res5)

features for Npre transfer poorly compared to the lower res4 layer. After CF, Ncf shows an improved performance for all layers except for conv1 and

reduces the gap in performance between res4 and res5.

SSL) is less semantic and leads to misalignment between

pre-training and transfer tasks, thereby a less-generalizable

feature space. ClusterFit combats this issue by first group-

ing images/videos using more semantic visual features in

its clustering step; consequently training with cluster as-

signments as pseudo-labels yields higher gains on semantic

tasks across different modalities and pre-training settings.

5. Analyzing ClusterFit

ClusterFit involves several aspects such as the relative

model capacities of Npre and Ncf , properties of Dpre and

Dcf , size and granularity of the pre-training label space, and

so on. In this section, we study the effect of these design

choices on the transfer learning performance with videos as

an example use case (Table 2).

Experimental Setup: Similar to IG-Verb-19M in

Sec. 4.1.2, we construct IG-Verb-62M, a weakly-supervised

dataset comprising 62M videos and use it as Dcf . For faster

training of Ncf , we consider a computationally cheaper

R(2+1)D-18 [8] architecture and process 8 frames per video

clip. Unless specified otherwise, Dpre = IG-Verb-19M and

Npre = R(2+1)D-34 [8] with 32 frames per video. All other

settings are same as in Sec. 4.1.2.

5.1. Relative model capacity of Npre and Ncf

The relative model capacities of Npre and Ncf can impact

the final transfer performance of Ncf . To study this behav-

ior, we fix Dpre = IG-Verb-19M and Dcf = IG-Verb-62M,

and Ncf = R(2+1)D-18. We vary the architecture of Npre

as follows: (a) Npre = Ncf = R(2+1)D-18; (b) Npre > Ncf ,

where Npre = R(2+1)D-34 model (64M parameters) and

thus higher capacity than Ncf (33M parameters).

From Figure 5, we observe a consistent improvement of

2% − 3% across different values of K when a higher ca-

pacity model was used as Npre. This result is intuitive and

indicates that a higher capacity Npre yields richer visual fea-

tures for clustering and thus improves the transfer learning
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Figure 5: Relative Model Capacity of Npre and Ncf (§5.1): We fix Ncf

= R(2+1)D-18. We vary (a) Npre =Ncf = R(2+1)D-18 (light green) and

(b) Npre > Ncf , where Npre = R(2+1)D-34 (dark green). We report the

transfer performance of the Ncf model for cases (a) and (b) on Kinetics. A

higher capacity Npre results in better transfer performance.
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Figure 6: Unsupervised vs. Per-Label Clustering (§5.2): In per-label

clustering, we retain the semantic information of the class labels and clus-

ter videos belonging to each label. We note that for all values of K, un-

supervised clustering used in ClusterFit yields better transfer learning per-

formance on Kinetics and Sports1M.

performance. We note that in the aforementioned case (b),

our framework can be viewed to be distilling knowledge

from a higher capacity teacher model (Npre) to a lower-

capacity student model (Ncf ).
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Figure 7: Effect of number of labels in Npre ( §5.3). We design 4 dif-

ferent Dpre, each with 19M videos but #labels = {10, 30, 100, 438},

K = 3200 and Dcf = IG-Verb-62M. X-axis is in log-linear scale.

5.2. Unsupervised vs. Per­Label Clustering

As noted before, the clustering step in ClusterFit is ‘un-

supervised’ because it discards the labels associated with

Dcf and operates purely on the feature representations. But

is there any advantage of using the semantic information of

labels in Dcf for clustering? To address this question, we

formulate a per-label clustering setup. Specifically, given

each label l, we cluster videos belonging to it into kl clus-

ters. We treat K = {kl : ∀l} as pseudo-labels to train Ncf .

Each kl is defined to be proportional to
√
nl

3 where nl de-

notes the number of videos associated with the label l.

Figure 6 compares the two clustering approaches on Ki-

netics and Sports1M. We observe that on both datasets,

unsupervised clustering consistently outperforms per-label

clustering across all values of K. We believe that by oper-

ating purely on video features, the unsupervised approach

effectively captures the visual coherence in Dcf . Conse-

quently, factors around label noise such as wrong / miss-

ing labels and lexical ambiguity are being automatically ad-

dressed in the unsupervised framework, leading to superior

performance over per-label clustering.

5.3. Properties of Dpre

In this section, we address the following question: what

constitutes a valuable pre-training label space (Dpre) and

how to construct one? Towards this end, we study two prop-

erties of Dpre: the nature of it’s labels and their cardinality.

We refer the readers to the supplementary material for dis-

cussion on the nature of labels.

Number of labels in Dpre: We now study how varying the

number of labels in Dpre effects ClusterFit. To study this,

we fix the total number of unique videos in Dpre to 19M

and vary the number of pre-training labels. First, we con-

sider IG-Verb-62M and rank it’s 438 weak verb labels by

their frequency of occurrence. Next, we construct 4 differ-

ent Dpre datasets by considering unique 19M videos tagged

3We also experimented with kl ≈ nl but this resulted in worse perfor-

mance.

with top-m verbs, where m = {10, 30, 100, 438}. Note that

for a fixed number of videos in Dpre, reducing the number

of labels implies reduced content diversity.

From Figure 7, we observe that the transfer learning per-

formance increases log-linearly with the number of pre-

training labels in Dpre. When we use just the top-10 verbs

(m = 10), accuracy drops by around 9% compared to

m = 438. This indicates that label space diversity is es-

sential to generate good quality clusters. However, when

m = 100, Ncf is within 2% of the accuracy obtained when

using all 438 verbs, and it outperform its weakly supervised

pre-trained counterpart which uses 62M videos and all 438

verbs. This experiment clearly demonstrates the utility of

our approach in designing a generic pre-training label space

with minimal effort. Contrary to [20, 38] which propose

careful, manual label engineering, ClusterFit offers an easy

way to construct a powerful, generalizable pre-training la-

bel space. Increasing the label space granularity is as sim-

ple as increasing the number of clusters in ClusterFit and

requires no additional manual effort.

6. Discussion

In this work, we presented ClusterFit, a simple approach

to significantly improve the generalizability of features

learnt in weakly-supervised and self-supervised frame-

works for images and videos. While models trained in these

frameworks are prone to overfit to the pre-training objec-

tive, ClusterFit combats this issue by first clustering the

original feature space and re-learning a new model on clus-

ter assignments. Clustering in CF may be viewed as a lossy

compression scheme that effectively captures the essential

visual invariances in the feature space. Thus, predicting the

cluster labels gives the ‘re-learned’ network an opportunity

to learn features that are less sensitive to the original pre-

training objective, making them more transferable.

While the clustering step in ClusterFit is unsupervised, in

practice, domain knowledge from downstream target tasks

can be used to guide clustering and possibly improve the

transfer learning performance. Additionally, we found that

in its current unsupervised form, iterative application of CF

provides little improvements; incorporating domain knowl-

edge could be a potential solution.

ClusterFit is highly scalable and imposes no restrictions

on model architectures, modalities of data, and forms of su-

pervision. Future research should take advantage of its flex-

ibility and combine different types of pre-trained models for

learning cluster assignments in a multi-task manner. Using

evidence accumulation methods [17, 41, 50] for clustering

is another worthwhile direction to explore.
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