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Abstract

Under stereo settings, the problems of disparity estima-

tion, stereo magnification and stereo-view synthesis have

gathered wide attention. However, the limited image qual-

ity brings non-negligible difficulties in developing related

applications and becomes the main bottleneck of stereo im-

ages. To the best of our knowledge, stereo image restora-

tion is rarely studied. Towards this end, this paper analyses

how to effectively explore disparity information, and pro-

poses a unified stereo image restoration framework. The

proposed framework explicitly learn the inherent pixel cor-

respondence between stereo views and restores stereo im-

age with the cross-view information at image and feature

level. A Feature Modulation Dense Block (FMDB) is intro-

duced to adaptively insert disparity prior throughout the w-

hole network. The experiments in terms of efficiency, objec-

tive and perceptual quality, and the accuracy of depth esti-

mation demonstrates the superiority of the proposed frame-

work on various stereo image restoration tasks.

1. Introduction

With the rising interest in virtual and augmentation real-

ity, stereo images are widely investigated in multiple com-

puter vision fields from stereo magnification, stereo match-

ing to depth estimation. In practice, the stereo images al-

ways suffer from various degradations. Unlike the active

situation in other stereo image-related studies, the research-

es devoted to enhance the quality and practicality of stereo

images are rarely mentioned. Hence, stereo image restora-

tion is a promising study for its ability to release the in-

herent quality limitation of the degraded stereo images in

research and applications.

An alternative solution to enhance stereo images is using

single image restoration methods, which only exerts spa-

tial statistics inside a degraded view and ignores the per-
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Figure 1: The ×4 SR results on image “C0007” from Fly-

ingThings3D. Compared to the state-of-the-art SISR (ED-

SR [11]), reference based SR (SRNTT [22]), video SR

(DUF [6]), and stereo SR (StereoSR [5], PASSRnet [18])

works, the proposed approach synthesizes finer texture and

restores accurate details without bringing in distortions.

pixel registration between different views. So, restoring

each image independently limits the performance, especial-

ly when predicting some details which are lost in one view

but may exist in another view. Another way is multi-frame

or video restoration methods, which extend the time dimen-

sion and utilize the supplementary information between ad-

jacent frames. However, different from video captured at

one viewpoint and different time points, the stereo image

corresponds to different viewpoints at the same time. The

pixel offsets in video and stereo images are caused by move-

ment and parallax respectively, which makes the correlation

in video differ from that in a stereo pair. The reference-

based image restoration method is also not suitable to stereo

images, e.g. RefSR [22] super-resolves a low-resolution (L-

R) image with the help of high-resolution (HR) references.

However the HR reference is difficult to obtain. As shown

in Figure 1, the above methods are restricted to a planar

scene and not fully applicable to stereo scene.

From the stereo imaging process illustrated in Figure 2,

these two views contain similar contents and serve as a ref-

erence to each other. The parallax refers to the inherent cor-

responding relationships between two views and provides

sub-pixel offsets information, which is relative to pixel-wise
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Figure 2: The illustration of stereo imaging process and vi-

sual representation of parallax.

information. When reconstructing one view, the disparity

serves as a prior knowledge to make one view provide ac-

curate reference to other view.

Recently, two deep learning based stereo image super-

resolution (SR) methods are proposed to utilize the parallax.

StereoSR [5] aligns the left and right views by horizontal-

ly offsetting all pixels in right view for a fixed number 64,

without considering the parallax variation between differ-

ent stereo images. PASSRnet [18] learns a parallax atten-

tion map to transfer the information from right to left view.

However, these methods do not consider the role of dispar-

ity. Zhou et al. [23] proposed a stereo image deblurring

network DAVNet, which estimates the disparity to align the

features of two views. Though great breakthrough has been

achieved, DAVNet does not fully combine the disparity pri-

or into the whole pipeline. The influence of disparity in-

formation is only considered at one stage, that is the dis-

parity is only utilized to warp the features of two views.

Besides, these above methods all concentrate on improving

the reconstruction performance at image level and neglect

the more practical value of the stereo image, like the preci-

sion of disparity estimation.

Above analysis drives us to develop an end-to-end train-

able stereo image restoration network (StereoIRN), which

restores stereo images by fully exploring the disparity in-

formation and can be seamlessly integrated into the CNN

of different stereo image tasks. The StereoIRN, composed

of monocular network, disparity flow network and binocular

network, captures the complicated dependency between two

views and deploys the disparity prior into image restoration.

Specifically, the monocular network restores each image by

independently exploiting the spatial information of curren-

t view and transfers the information at image and feature

levels to the binocular network. The disparity flow network

utilizes multi-task learning to generate more suitable dispar-

ity prior via sharing the feature extraction layers with that

of the monocular network, and registers the sub-pixel infor-

mation to increase the correspondence between two views.

Under the accurate guidance, the binocular network incor-

porates the output images and features to reconstruct stereo

image details. The disparity prior is further inserted into

the binocular network to refine the feature accuracy by the

proposed Feature Modulation Dense Block (FMDB), which

generates affine transformation parameters for spatial-wise

feature modulation.

The main contributions are as follows:

• We propose a unified stereo image restoration frame-

work (StereoIRN), guided by the feature continuity

and disparity prior, to perceive the spatial and cross-

view information simultaneously.

• We analyze the properties of disparity for stereo image

restoration, explore how to exploit the stereo imaging

nature, and propose a Feature Modulation Dense Block

to refine the spatial feature by adaptively incorporating

the information in disparity domain.

• We introduce two disparity attention losses, which en-

courage the solutions to improve the accuracy of dis-

parity estimation.

• We are the first to evaluate the stereo image with the

disparity estimation. The experiments at both image

and disparity estimation levels demonstrate the pro-

posed approach achieves state-of-the-art results.

2. Related Work

Deep Learning Based Image Restoration: SRCNN

[2] first constructs a 3-layer CNN for single image super-

resolution (SISR) and leads to a dramatic leap. Zhang et al.

proposed a 20-layer DnCNN [20] to tackle SISR, image de-

noising, and JPEG deblocking simultaneously. Following

their steps, plenty of image restoration researches achieve

continuous breakthrough by improving the network struc-

ture. Huge upsurge has also been witnessed in video and

multi-frame restoration. VSRNet [7] and [9] warps the ad-

jacent frames onto the central frame to utilize the consecu-

tive degraded frames

Stereo Image Restoration: Jeon et al. [5] first proposed

StereoSR to super-resolve the left image through a lumi-

nance SR and a chrominance SR networks. They compen-

sated the parallax by shifting the right image 64 pixels hor-

izontally. However, their network assumes the parallax in a

stereo image is fixed to 64 and all pixels share same parallax

without considering the variation. PASSRnet [18] super-

resolves the left image via a parallax-attention mechanism,

which learns a mask to fuse the most similar features of two

views to incorporate global correspondence in a stereo pair.

However, PASSRnet exploits the pixel correlation based on

two original views, which are mismatched at pixel-level and

limits reference meaning between these two views. The
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Figure 3: Overview of our StereoIRN, consisting of monocular network (NETM ), disparity flow network (NETD) and

binocular network (NETB).

Left Right Disparity Aligned Right

Figure 4: Visualization of warp process based on disparity.

The left image, right image, disparity map, and warped right

image respectively.

stereo image deblurring network, DAVNet [23], estimates

bidirectional disparity based on blurry stereo images, aligns

the features of two views, and fuses the features adaptively

by learning a gate map. However the blurry stereo images

limits the the disparity precision and the disparity informa-

tion can be further exploited.

This work proposes a unified stereo image restoration

framework to hunt for higher image quality and more ac-

curate disparity estimation, which is new in literature.

3. Method

Before introducing the proposed method, we first ana-

lyze the stereo imaging process and explore the potential of

disparity for recovering accurate image details.

3.1. Disparity prior analysis

The stereo imaging process, shown in Figure 2, illus-

trates the pixel relation between two views. The realis-

tic scene is composed of multiple planes and the perspec-

tive projection on these planes between different viewpoints

produces disparity. Hence, the disparity refers to apparen-

t pixel difference or motion and represents the correspon-

dences of pixel position between two views. We consider

the disparity prior as a kind of knowledge, which can pro-

vide multiple sampling information with sub-pixel offsets

to enhance the image quality.

Suppose d(x, y) is the disparity of pixel (x, y) in left im-

age Il, we can calculate the corresponding position in right

image Ir according to the relation of pixels between the left

and right views represented as follow. Thus the disparity

prior can assist to register the two views to provide more

accurate information for stereo image reconstruction.

d(x, y) = xl − xr,

Il(x, y) = Ir(x+ d, y).
(1)

3.2. Network

As shown in Figure 3, the proposed StereoIRN com-

prises monocular network (NETM ), disparity flow network

(NETD) and binocular network (NETB). Specifically, the

monocular network restores the spatial information for each

view respectively and the disparity flow network learns the

parallax and aligns different views to make sure the pixel

accuracy. Combining the outputs of above sub-networks,

the binocular network refines the final images by referring

the cross-view information, exploiting outputs of previous

networks in image and feature space, and incorporating the

guidance of disparity. The importance of each componen-

t in StereoIRN will be investigated by performing ablation

study later.

Monocular Network: As illustrated in Figure 3, we

first restore each view independently and generate the cor-

responding feature by the monocular network (NETM ),

the structure of which can be a common lightweight sin-

gle image restoration network. For simplicity, we adopt a

sequence of convolution layers and residual blocks [10] to

extract and reconstruct the features of the degraded image,

which is further delivered into two branches to reconstruct

image and features respectively. The image reconstruction

branch outputs image IM by a convolution layer, which is

replaced with a deconvolution layer to increase the spatial

resolution of IM for stereo image SR task. The feature re-

construction branch outputs feature fM to extend the accu-

racy of the feature to the binocular network.

Disparity Flow Network: This section analyzes how to

register the sub-pixel information by exploiting the dispar-

ity information. As discussed before, the pixel correlation

between stereo views serves as a prior knowledge, which

provides more accurate references for other view. Since
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Figure 5: The different structures of the binocular network to explore the cross-view information. (a) Concatenates two views

at the beginning directly. (b) 3D convolution. (c) Two parallel paths used to handle two views independently. (d) The network

composed of our feature modulation dense block (FMDB).

disparity between different stereo images vary significantly,

the disparity flow network NETD is constructed to embed

the disparity prior into the stereo image reconstruction.

For simplicity, the NETD adopts the structure of Stere-

oNet [8] to explicitly extract the disparity prior, called dis-

parity flow. Inspired by multi-task learning strategy, we

transfer the features of monocular network to the StereoNet

instead of the stereo image. Thus, the StereoNet and the

image reconstruction network share the convolution layers

in feature extraction part. The shared features and repre-

sentation of these networks can transfer the domain infor-

mation between different tasks and improve generalization

ability of networks. In our case, what is learned for disparity

estimation task contribute to improve the quality of image

restoration task by offering more pixel correspondence and

vice versa.

Then, according to the disparity flow, we warp the right

image IRM as the process illustrated in equation 1, and gen-

erate new stereo image pair (ILM , IRD), which are matched at

pixel level and are shown in Figure 4.

Binocular Network: In addition the spatial information

explored in the monocular network, the binocular network

is proposed to incorporate the inter-viewpoints relationship

for refining the image details. We first provide and compare

different manners to exploit the stereo imaging nature, as

shown in Figure 5, the performance of these methods will

be illustrated in experiment.

To perceive the relationship between different views, the

most simple and intuitional way is concatenating two views

at the beginning of the network, as shown in Figure 5 (a).

However, it is difficult for the network to learn the refer-

ence contents between two views. Since 3D convolution is

proposed to extract features considering the inter-channel

information, we replace the 2D convolution with 3D convo-

lution and construct the network as shown in Figure 5 (b).

The above two structures simultaneously treat two views

without distinction by processing the two views through

one path, which ignores the parallax between two views and

seems little reasonable. Figure 5 (c) illustrates a two-path

structure, which processes two views via parallel paths and

transfers the features across these two views to better deal

with the features of different views. Even if the features of

two views are crossly delivered, these features offer limited

positive effect to each other without utilizing the disparity

prior. Besides, the two-path structure doubles the parame-

ters and computation amounts.

To this end, we construct feature modulation dense block

(FMDB) to incorporate the disparity prior into the whole

binocular network and facilitate one single path to better u-

tilize the cross-view nature. As shown in Figure 5 (d), the

FMDB densely connects multiple disparity attention fea-

ture transformers (DFT), to enhance the guidance of dis-

parity.The DFT learns a modulation parameter pair (s, p)

based on image and disparity features (fM
im, fM

dis), which

can adaptively influence the outputs by applying following

affine transformation spatially to fM
im.

DFT (fM
im | s, p) = fM

im ⊙ s+ p. (2)

The warp operation makes the shifted right view IRD con-

tains inevitable pixel-wise error, which produces detrimen-
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tal reference information to other view. Since feature maps

contain more abundant information than a single image and

keep consistent across the network. To mitigate these sub-

pixel displacements and improve pixel accuracy, we explore

the continuity of previous features by feeding fL
M , fR

M to the

binocular network, which is represented as the red lines in

Figure 3 and 5.

Our binocular network densely connects 6 FMDBs,

which comprises 4 DFTs in total. The input image ILM is

added to the output residual image. To reduce the compu-

tational cost with few accuracy loss, the spatial resolution

of two images are decreased via a space-to-depth transfor-

mation and are increased via a deconvolution layer at the

beginning and the end of our binocular network respective-

ly. The kernel size of all convolution layers is 3×3. S-

ince the optimal network structures of different tasks differ,

the StereoIRN can deploy any architecture for each sub-

network to utilize the nature of different restoration tasks

and amply its flexibility and the capacity.

Disparity Attention Loss: Most classic image restora-

tion models can be formulated to solve the following prob-

lem :

x′ = argminx

1

2φ
|y − x|2 + λP (x), (3)

where the first part 1

2φ
|y − x|2 is the data fidelity term, the

second part P(x) is the regularization term. This equation

only constrains the restored image x to be similar to the

ground truth y at pixel level, without considering the whole

structure and the global spatial consistency of the stereo im-

age, which is critical for precise disparity estimation.

This observation motivates us to learn disparity percep-

tual constrain directly from the process of disparity estima-

tion. In particular, we construct two disparity attention loss-

es, including disparity content loss and disparity perceptual

loss, on pixel level and feature level respectively to retrain

our network with higher disparity precision.

The pixel-level disparity content loss Ldisacc
is designed

to push the restored stereo image similar to the natural stere-

o image manifold and to ensure the precision of disparity

estimation. To achieve this, we constrain the similarity be-

tween the disparity dSR
′ generated on the restored stereo

images and the ground truth disparity d by a two-parameter

robust function [1] γ(.), which approximates a smoothed

L1 loss.

Ldisacc
= γ(dSR

′ − d). (4)

In addition, a more elegant constrain at feature lev-

el, named disparity perceptual loss Ldisp , is introduced to

make the restored images provide more accurate features

for better disparity estimation and visual effect. The Ldisp

constrains the restored images to be similar to the ground

truth images in feature space by minimizing the distance of

the features at the middle layer of StereoNet.

Ldisp = ‖Φ(HR)− Φ(SR)||2, (5)

where Φ denotes the feature network in StereoNet. The pro-

posed two disparity attention losses aid our StereoIRN to

generate better results and disparity, which are hard to dis-

tinguish from real references.

Training Strategy: To achieve faster convergence and

better performance, we employ a step-wise optimization to

gradually train our models from easy to difficult. Specifi-

cally, we first train the monocular network and the disparity

flow network with following constraints respectively:

LNETM
= ||SRM

l −HRl||
2 + ||SRM

r −HRr||
2,

LNETD
= γ(d′ − d),

(6)

where d′ and d are the predicted and the ground truth dis-

parity respectively.

Then all subnetworks are jointly updated, while fixing

the parameters in NETD.

LMSE = ||SRl −HRl||
2 + ||SRr −HRr||

2,

Lall = λ1LMSE + λ2Ldisacc
+ λ3Ldisp ,

(7)

where the parameter λ controls the contribution of different

losses to our final loss and adopts 1 in our training process.

4. Experiments

4.1. Datasets and Training Settings

By following [5], all models are trained on 60 stereo

pairs from the Middlebury dataset, the other 5 stereo images

in which serve as testset, for different tasks. The disparity

flow network is pretrained on SceneFlow dataset [12]. The

training images are augmented by randomly down-scaling,

flipping and rotating. We crop images into patches of size

80 and adopt 32 patches per batch. To train the SR mod-

el, we downscale the patches with scale factor 2, 3, 4. For

denoising, we add additive white gaussian noise with noise

level range [0, 40], to the clean patches. For deblurring,

we convolve the clean image with blur kernel size 15 × 15

and σ sampled from [0.1, 4.0]. All models are trained on

the machine with 2.20 GHz Intel (R) Xeon (R) CPU, and

GTX1080Ti GPU (128G RAM) for 40 epochs with learn-

ing rate 1e-4. We adopt Adam optimizer with β1 = 0.9, β2

= 0.999, ε = 1e-8.

In addition to the Middlebury, the model, trained for

stereo image SR task, is also evaluated on the first 15 images

from Tsukuba [14], the first 20 images from KITTI2012 [3]

and KITTI2015 [13] , and the A-000, B-000, C-000 sets of

the FlyingThings3D subset in SceneFlow, including various

disparities and occlusions. For simplicity, all results are cal-

culated and demonstrated on the left view.
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Figure 6: The trade-off between speed and accuracy on ×4

SR task. The proposed model keeps a satisfactory balance

between speed and accuracy.

model NETMNETB feature PWCNet NETD PSNR/SSIM

NETM X × × × × 28.987/0.8991

NETB × X × × × 29.162/0.9016

NETMB X X × × × 29.423/0.9061

NETMB f X X X × × 29.722/0.9104

NETMBP f X X X X × 29.625/0.9082

Our X X X × X 29.831/0.9094

Table 1: Ablation study of different components of our net-

work. Average PSNR/SSIM for ×4 SR on Middlebury.

model PSNR/SSIM Parameters

Concatenation 29.16/0.902 936675

3D Convolution 27.79/0.879 942624

Parallel Paths 29.60/0.908 4598790

FMDB 29.83/0.909 1132932

Table 2: Comparison of structures of the binocular network.

MSE Ldisacc
Ldisp PSNR/SSIM EPE

X × × 33.223/0.9612 2.4982

X X × 32.757/0.9578 2.3665

X × X 32.673/0.9570 2.2996

Table 3: Ablation study of different losses. Average P-

SNR/SSIM and EPE for ×4 SR on A-000 from SceneFlow.

4.2. Running Time

The computational efficiency analysis is conducted on

stereo image SR task, and Figure 6 visualizes the compar-

ison between the average running time for reconstructing

a 640 × 480 HR stereo image pair from a 320 × 240 L-

R stereo image pair and the reconstruction quality, which

is represented by the PSNR for ×4 upscaling on Middle-

bury. It is clear that the proposed algorithm has lower time

complexity and maintains real-time when producing high-

quality results.

MSE Ldisacc

Ldisp Ground Truth

Figure 7: The disparity accuracy of different SR results.

4.3. Ablation Study

For clear illustration, all ablation studies are conducted

on ×4 stereo image SR task.

Network:

To illustrate the contribution of each component in our

architecture and the feature transmission between NETM

and NETB , we conduct experiment with different design

options and report the results in Table 1. Similar to com-

mon SISR network, our monocular network NETM super-

resolves one image once without referring another view in

stereo images. In the model without NETM , the binocular

network NETB takes two LR images as input and removes

the space-to-depth operation. The PSNR gains of NETB

over NETM demonstrate that different views provide use-

ful reference to each other even if only LR views are given.

Compared to the LR reference, NETM can provide better

information for NETMB .

Further improvement is obtained after adding the fea-

ture transmission between NETM and NETB , denoted as

NETMB f , which indicates that the feature guidance works

in correcting the deviation of pixel information. After en-

abling the disparity flow network, higher PSNR/SSIM are

achieved, demonstrating that the disparity prior makes sense

to recover more fine details. The final model, exploiting

both dependently super-resolved views and features, obtain-

s the best results.

To show the difference between the disparity and mo-

tion information, which is commonly considered in video

restoration, we replace our disparity flow network with P-

WCNet [15]. And the results between NETMBP f and Our

in Table 1 show that the disparity flow network captures

more reliable stereo correspondence for image reconstruc-

tion.

To quantitatively compare the performance of several al-

ternatives in exploiting the stereo imaging nature, which is

discussed in Section 3.2, we construct different binocular
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Dataset Scale SISR Video SR Ref SR Stereo SR Our

Bic EDSR* [11] SPMC [16] DUF [6] SRNTT [22] StereoSR [5] PASSRnet [18] DAVNet* [23] DASSR

Middlebury

s4 26.61/0.856 29.17/0.903 23.05/0.793 28.82/0.900 28.78/0.901 27.40/0.874 29.28/0.903 28.12/0.8829 29.83/0.909

s3 28.35/0.900 32.03/0.944 - - - 30.37/0.926 - - 32.19/0.945

s2 31.49/0.949 36.14/0.976 28.88/0.929 - - 34.28/0.967 - - 36.40/0.976

KITTI 2012

s4 24.81/0.832 26.00/0.864 22.00/0.779 27.60/0.897 23.79/0.854 24.80/0.842 26.55/0.874 25.52/0.853 26.96/0.882

s3 26.27/0.876 27.75/0.909 - - - 27.04/0.896 - - 27.97/0.909

s2 28.74/0.927 30.44/0.948 26.90/0.910 - - 29.65/0.941 - - 30.73/0.950

KITTI 2015

s4 23.37/0.814 24.41/0.852 20.34/0.741 25.14/0.871 24.20/0.858 23.15/0.823 24.97/0.865 24.11/0.842 25.35/0.874

s3 24.92/0.867 25.87/0.902 - - - 25.49/0.889 - - 26.46/0.906

s2 27.46/0.928 28.90/0.949 25.41/0.905 - - 28.09/0.941 - - 29.21/0.952

Tsukuba

s4 30.83/0.923 34.03/0.959 26.73/0.869 33.68/0.957 33.51/0.956 30.92/0.934 34.52/0.962 31.66/0.943 34.81/0.965

s3 33.23/0.955 37.11/0.980 - - - 36.05/0.975 - - 37.94/0.983

s2 37.36/0.982 43.87/0.995 33.49/0.968 - - 41.88/0.993 - - 43.98/0.995

SceneFlow

s4 29.29/0.916 31.59/0.945 25.36/0.867 24.63/0.853 31.55/0.944 29.46/0.922 32.22/0.951 30.85/0.935 33.35/0.960

s3 31.18/0.946 34.622/0.971 - - - 33.53/0.965 - - 34.85/0.973

s2 34.31/0.974 38.78/0.989 30.97/0.950 - - 37.81/0.987 - - 39.12/0.989

Table 4: The average PSNR/SSIM comparisons between state-of-the-art SR methods on left images from benchmarks.

Figure 8: The qualitative comparison of two stereo image restoration tasks. The upper line denotes the denoising results with

noise level 30 and the bottom line indicates the stereo image deblurring results with σ = 3.6.

networks and demonstrate results on SR task in Table 2.

As can be observed, the proposed FMDB yields best out-

puts. Naive input concatenation is not sufficient to exert the

necessary cross-view information. Though good results are

produced, parallel paths is not parameter efficient. 3D con-

volution cannot well handle the parallax existed in a stereo

image. This supports the previous discussions.

Loss: One of our important contributions is introducing

disparity attention losses at pixel and feature levels. To ex-

plore the performance of these losses, we train our models

with different losses and show the PSNR/SSIM and end-

point-error (EPE) in Table 3, which demonstrate the quan-

titative results and the disparity estimation accuracy respec-

tively. The disparity results are visualized in Figure 7.

It is not surprising that the model optimized towards the

MSE loss consistently achieves the best PSNR/SSIM. On

the contrary, the accuracy of disparity estimation is gradu-

ally improved after adding disparity content loss and dispar-

ity perceptual loss. This is mainly because that PSNR/SSIM

are calculated per-pixel and only show the similarity of the

pixels without considering the global structure and the con-

sistency correspondence between the stereo views. Both t-

wo disparity attention losses encourage images to generate

reliable global and stereo experience, which is significant to

disparity estimation.

4.4. Comparison with The StateofTheArts

To demonstrate the generalizability of StereoIRN, this

section provides both quantitative and qualitative compar-

isons with various SR, denoising, and deblurring methods.

Stereo Image Super-Resolution For the stereo image

SR task, the proposed model is compared with the state-of-

the-art SISR (EDSR [11]), stereo image SR (StereoSR [5],

PASSRnet [18]), RefSR (SRNTT [22]), and video SR meth-

ods (SPMC [16], DUF [6]). For fair comparison, we retrain

the EDSR* with the same dataset as ours. We also retrain

a DAVNet* for SR task by replacing the blurry inputs with

the bicubic interpolated stereo images.
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Figure 9: The absolute difference between the disparity of

SR and that of HR stereo pairs.

σ Blur SRN-DeblurNet [17] DAVNet* Ours

1.3 29.06/0.916 29.38/0.92 32.36/0.955 36.82/0.980

2.0 26.43/0.857 26.92/0.868 30.10/0.927 33.07/0.954

3.6 23.82/0.776 24.48/0.795 27.54/0.872 29.58/0.900

Table 5: Deblurring comparison on Middlebury.

As depicted in Table 4, the proposed StereoIRN outper-

forms other methods by a large margin. PSNR results are

improved by over 1 dB for ×4 SR on SceneFlow compared

with the second best one. The visual comparisons in Figure

1 show the super-resolved left images, indicating the pro-

posed approach produces better structural details and more

promising results.

Stereo Image Deblurring For gaussian deblurring task,

our deblurring model is compared with state-of-the-art sin-

gle image deblurring networks (SRN-DeblurNet [17], DM-

PHN [19]) and stereo image deblurring method (DAVNet*),

retrained on our dataset. Table 5 provides quantitative eval-

uations on Middlebury with different blur kernel widths.

Stereo Image Denoising The stereo image denoising re-

sults of our and other state-of-the-art approaches (DnCNN

[20], FFDNet [21], CBDNet [4]) on Middlebury are report-

ed in Table 6, where the the obvious PSNR and SSIM gains

of our model over the current best results indicate the ad-

vantages of our structure.

As the qualitative deblurring and denoising results de-

picted in Figure 8, the proposed StereoIRN can yield per-

ceptually convincing outputs from both blur and noise con-

dition. We can extend the proposed framework to other

stereo image restoration tasks, such as deblocking, derain-

ing, inpainting, and so on.

4.5. Disparity Perception

As discussed before, disparity estimation is a significant

application of stereo images. However, the degraded stere-

o images, suffering from occlusions, noises and textureless

noise Noisy DnCNN[20] FFDNet [21] CBDNet [4] Ours

10 28.124/0.811 35.81/0.972 37.39/0.978 30.56/0.888 39.12/0.985

20 22.11/0.552 33.14/0.950 34.04/0.956 25.89/0.729 36.38/0.973

30 18.59/0.384 31.47/0.930 32.13/0.935 22.89/0.588 34.73/0.964

Table 6: Denoising comparison on Middlebury.

Models EPE(HR)/EPE(GT)

Dataset A B C

HR 0/2.238 0/1.098 0/2.624

Bicubic 2.488/3.173 1.758/2.075 2.714/3.429

EDSR* 2.214/2.681 1.423/1.585 1.975/3.000

DUF 3.680/3.338 2.332/2.113 3.212/3.470

SRNTT 2.550/2.831 1.861/2.162 2.531/3.286

StereoSR 1.862/2.801 1.472/1.516 2.088/3.225

PASSRnet 2.851/2.724 1.532/1.588 2.153/2.983

Our 2.248/2.498 1.296/1.432 1.917/2.889

Table 7: The EPE of the disparity estimated on the super-

resolved stereo pair from test sets in flyingthings3d dataset.

regions, lead to significant artifacts in disparity estimation.

Most impressively, besides the spatial precision, the richer

information, which is provided by the restored stereo im-

age, for accurate disparity estimation is also a main contri-

bution of our method. To evaluate the disparity distortion,

we measure the deviation between the disparity of restored

results and that of clean stereo images (see Figure 9) and de-

pict the end-point-error (EPE) in Table 7 for SR task. The

EPE(HR) is calculated between the disparity of SR result-

s and that of HR stereo pairs, and EPE(GT) is calculated

between the disparity of SR results and the ground truth

disparity respectively. Compared to state-of-the-art super-

resolvers, the proposed model preserves the disparity of the

new scene to be similar to the disparity of the original HR

scene and leads to remarkably lower EPE.

5. Conclusion

This work presents a unified stereo image restoration

framework, composed of monocular, binocular, and dispar-

ity flow networks. The monocular and binocular network

explore the spatial information and cross-view information

to restore images respectively. To transfer the knowledge of

disparity domain to image domain, the disparity flow net-

work aligns two views to register the sub-pixel misplace-

ment and the feature modulation dense block integrates the

disparity prior into the whole pipeline. The experiment re-

veals the benefits of disparity to the stereo image restoration

and evaluates the proposed approach in terms of reconstruc-

tion precision, efficiency and the accuracy of disparity esti-

mation. The experimental results demonstrate the proposed

approach achieves appealing performance over the state-of-

the-arts on multiple stereo image restoration tasks.
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