
Neural Data Server: A Large-Scale Search Engine for Transfer Learning Data

Xi Yan1,2∗ David Acuna1,2,3∗ Sanja Fidler1,2,3

1University of Toronto 2Vector Institute 3NVIDIA

xi.yan@mail.utoronto.ca, {davidj, fidler}@cs.toronto.edu

Abstract

Transfer learning has proven to be a successful tech-

nique to train deep learning models in the domains where

little training data is available. The dominant approach

is to pretrain a model on a large generic dataset such as

ImageNet and finetune its weights on the target domain.

However, in the new era of an ever increasing number of

massive datasets, selecting the relevant data for pretrain-

ing is a critical issue. We introduce Neural Data Server

(NDS), a large-scale search engine for finding the most use-

ful transfer learning data to the target domain. NDS con-

sists of a dataserver which indexes several large popular

image datasets, and aims to recommend data to a client,

an end-user with a target application with its own small

labeled dataset. The dataserver represents large datasets

with a much more compact mixture-of-experts model, and

employs it to perform data search in a series of dataserver-

client transactions at a low computational cost. We show

the effectiveness of NDS in various transfer learning sce-

narios, demonstrating state-of-the-art performance on sev-

eral target datasets and tasks such as image classification,

object detection and instance segmentation. Neural Data

Server is available as a web-service at http://aidemo

s.cs.toronto.edu/nds/.

1. Introduction

In recent years, we have seen an explosive growth of

the number and the variety of computer vision applica-

tions. These range from generic image classification tasks

to surveillance, sports analytics, clothing recommendation,

early disease detection, and to mapping, among others. Yet,

we are only at the beginning of our exploration of what is

possible to achieve with Deep Learning.

One of the critical components of the new age of com-

puter vision applications is the need for labeled data. To

achieve high performance, typically a massive amount of

data needs to be used to train deep learning models. Trans-

fer learning provides a promising approach to reduce the

need for large-scale labeled data for each target application.

In transfer learning, a neural network is pretrained [11, 24,

∗authors contributed equally

Client
Dataset

I have a small dataset,
what data can I use to

pre-train my model?

…

Mixture of Experts Models

Download
Dataset Experts

Fast Adapt

Fast Adapt to
Client Dataset

Upload
accuracies

Download links to
recommended data points

1

2

3
4

Indexed Large-Scale Image Datasets

Optimal Data

Subset

Neural Data Server
A search engine for finding relevant

transfer learning data for A.I. applications

client

dataserver

Figure 1: Neural Data Server: Search engine for finding relevant transfer

learning data for the user’s target domain. In NDS, a dataserver indexes

several popular image datasets, represents them with a mixture-of-experts

model, and uses client’s target data to determine most relevant samples.

Note that NDS indexes available public datasets and does not host them.

Data recommendation is done by providing links to relevant examples.

43] on existing large generic datasets and then fine-tuned in

the target domain. While transfer learning is a well studied

concept that has been proven successful in many applica-

tions [11, 24, 43], deciding which data to use for pretrain-

ing the model is an open research question that has received

surprisingly little attention in the literature. We argue that

this is a crucial problem to be answered in light of the ever

increasing scale of the available datasets.

To emphasize our point, recent efforts on curating com-

puter vision benchmarks1 list over 400 public datasets,

ranging from generic imagery, faces, fashion photos, to self-

driving data. Furthermore, the dataset sizes are significantly

increasing: the recently released OpenImages [31] contains

9M labeled images (600GB in size), and is 20 times larger

compared to its predecessor MS-COCO [33] (330K im-

ages, 30GB). The video benchmark YouTube8m [1] (1.9B

frames, 1.5TB), is 800× larger compared to Davis [9] (10k

frames, 1.8GB), while the recently released autonomous

driving dataset nuScenes [10] contains 100× the number

of frames than KITTI [20] which was released in 2012.

It is evident that downloading and storing these datasets

locally is already cumbersome and expensive. This is fur-

ther amplified by the computational resources required for

training neural networks on this massive amount of data.

1Websites listing CV datasets: https://www.visualdata.io/, ht

tps://pytorch.org/docs/stable/torchvision/datasets.html,

https://datasetsearch.research.google.com/

3893

Cityscapes

miniModaNet

Client Dataset Selected images from indexed datasets (OpenImages + COCO)

Pascal-VOC

Figure 2: Examples of images from the dataserver (COCO+OpenImages) recommended to each client dataset by our Neural Data Server.

The latter is an even more pronounced issue in research,

where the network architectures are continuously being de-

veloped and possibly many need to be tested. Furthermore,

for commercial applications, data licensing may be another

financial issue to consider. Recent works [23, 37] have also

shown that there is not a “the more the better” relationship

between the amount of pretraining data and the downstream

task performance. Instead, they showed that selecting an ap-

propriate subset of the data was important to achieve good

performance on the target dataset.

In this paper, we introduce Neural Data Server (NDS), a

large-scale search engine for finding the most useful trans-

fer learning data to the target domain. One can imagine

NDS as a web-service where a centralized server, referred

to as the dataserver, recommends data to clients (Fig 1).

A client is an end-user with an A.I. application in mind,

and has a small set of labeled target data. We assume that

each client is only interested in downloading a subset of the

server-indexed data that is most relevant to the client’s tar-

get domain, limited to the user-specified budget (maximum

desired size). We further require the transaction between

the dataserver and the client to be both computationally ef-

ficient and privacy-preserving. This means the client’s data

should not be visible to the server. We also aim to minimize

the amount of dataserver’s online computation per client,

as it may possibly serve many clients in parallel.

We index several popular image datasets and represent

them using a mixture-of-experts (MoE) model, which we

store on the dataserver. MoE is significantly smaller in size

than the data itself, and is used to probe the usefulness of

data in the client’s target domain. In particular, we deter-

mine the accuracy of each expert on the target dataset, and

recommend data to the client based on these accuracies.

We experimentally show significant performance im-

provements on several downstream tasks and domains com-

pared to baselines. Furthermore, we show that with only

20% of pretraining data, our method achieves compara-

ble or better performance than pretraining on the entire

dataserver-indexed datasets. We obtain significant im-

provements over ImageNet pretraining by downloading

only 26 Gb of server’s data in cases when training on the

entire dataserver (538 Gb) would take weeks. Our Neural

Data Server will be made available as a web-service with

the aim of improving performance and reducing the devel-

opment cost of the end-users’ A.I. applications.

2. Related Work

Transfer Learning. The success of deep learning and

the difficulty of collecting large scale datasets has recently

brought significant attention to the long existing history

of transfer learning, cross-domain annotation and domain

adaptation [39, 15, 4, 44, 3, 46]. Specifically in the context

of neural networks, fine-tuning a pretrained model on a new

dataset is the most common strategy for knowledge transfer.

Most literature in this domain analyzes the effect of

pretraining on large-scale datasets [44, 34, 17] with re-

spect to network architectures, network layers, and training

tasks [49, 50]. Concurrent with our work, Achille et al. [2]

proposes a framework for selecting the best pre-trained fea-

ture extractor for a new task from a collection of classifiers.

In contrast, our work aims to identify the optimal set of

data points for pre-training. Works most related to ours

are [16, 37] which show that pretraining on only relevant

examples is important to achieve good performance on fine-

grained classification tasks. Specifically, in [16] the authors

use a predefined similarity metric between the source and

target categories in order to greedily select the most similar

categories from the source dataset to be used for pretrain-

ing. [37], on the other hand, exploits a model pretrained on

the source domain to obtain pseudolabels of the target im-

ages, and uses these to re-weight the source examples.

Unlike ours, [16, 37] are limited to classification tasks,

and do not easily scale to a constantly growing datacenter

(the model needs to be retrained each time a new dataset is

added). Thus, their approach does not naturally handle our

scenario in which indexed datasets have diverse sets of tasks

and labels, and where the number of indexed datasets may

grow over time.

Federated Learning. [35, 8] introduce a distributed ML

3894

Client

Client

url links to

relevant data

send url links

to client

Source Dataset

Source DatasetTarget Data

Dataserver: Mixture of Experts (offline computation) Dataserver: Recommend Data for Client

send experts to

client

Fast Adapt

send transfer

performance to

dataserver

Compute Importance

Figure 3: Overview of Neural Data Server. NDS consists of a dataserver that represents indexed datasets using a mixture-of-experts model. Experts are sent

to client in order to compute accuracies in the client’s target domain. These accuracies are then used by dataserver to recommend relevant data samples.

Algorithm 1 Dataserver’s Modules

1: Require representation learning alg. E , number of experts K

2: gθ ← HARDGATING(S,K) ⊲ Sec 3.2: partition S into local subsets to obtain gating

3: Si := {x ∈ S|gθ,i(x) = 1}
4: procedure MOE({Si}, E,K):

5: For i = 1, ...,K
6: Run E on Si to obtain expert eθi
7: return {eθi}
8: procedure OUTPUTDATA({Si},z, budget):

9: w ← softmax(z, T = 0.1)

10: π(x) =
∑K

i=1
wi gθ,i(x)

1

|Si|

11: Sample S∗ from S at rate according to [πx1
, ..., πxn

]
12: return S∗|budget

Algorithm 2 Overview of our Neural Data Server

1: Input: S (source), T (target), b (desired budget of data)

2: {eθi} ← MOE(DS , E,K)

3: z ← FASTADAPT(T , {eθi})
4: S∗ ← OUTPUTDATA(S,z, b)

5: return S∗
6: Output: S∗ ∈ S to download

Algorithm 3 Client’s Module

1: procedure FASTADAPT(DT , {eθi}):
2: For i = 1, ...,K
3: zi ← PERFORMANCE/FINET(eθi , T) ⊲ Sec 3.3.1

4: return z

approach with the goal of training a centralized model on

decentralized data over a large number of client devices,

(i.e., mobile phones). Our work shares a similar idea of

restricting the visibility of data in a client-server model.

However, in our case the representation of data is central-

ized (dataserver) and the clients exploit the transfer learn-

ing scenario for their own (decentralized) models.

Active and Curriculum Learning. In active learning [42]

one searches over unlabeled data to find optimal samples

to be labeled by an oracle, while in curriculum learning [7]

subsets of data of increasing difficulty are sought for dur-

ing training. In both scenarios, data search is performed at

each iteration of training a particular model. Search is typ-

ically done by running inference on the data samples with

the current snapshot of the model and selecting the exam-

ples based on uncertainty-based metrics. Our scenario dif-

fers in that we do not have the luxury of running inference

with the client’s model on the massive amount of indexed

data as this would induce a prohibitive computational over-

head on the dataserver per client. Moreover, we do not

assume dataserver to have access to the client’s model: this

would entail the clients to share their inference code which

many users may not be willing to do.

Learning to Generate Synthetic Images. Related to NDS

are also [41, 28, 47, 36]. These approaches aim to bridge the

synthetic vs real imagery gap by optimizing/searching over

the set of parameters of a surrogate function that interfaces

with a synthesizer.

In NDS, the search has to be done over massive (non-

parametric) datasets and further, the target data cannot be

sent to the server side. Our method is also significantly

more computationally efficient.

3. Neural Data Server

Neural Data Server (NDS) is a search engine that aims

to recommend transfer learning data. NDS consists of a

dataserver which has access to a massive source dataset(s),

and aims to suggest most relevant data samples to a client.

A client is an end-user who wants a budget-constrained

amount of data to improve the performance of her/his model

in the target domain in a transfer learning scenario. We note

that the dataserver does not host the data, and thus its rec-

ommendations are to be provided as a list of urls to data

samples hosted by the original datasets’ providers.

The dataserver’s indexed datasets may or may not be

completely labeled, and the types of labels (e.g., segmen-

tation masks, detection boxes) across data samples may

vary. The client’s target dataset is considered to only have

a small set of labeled examples, where further the type of

labels may or may not be the same as the labels in the

dataserver’s dataset(s). The main challenge lies in requir-

ing the dataserver-client transactions to have low compu-

tational overhead. As in any search engine that serves in-

formation to possibly numerous users, we want the online

computation performed by the dataserver to be minimal.

Thus we defer most of the computation to be performed on

the client’s side, while still aiming for this process to be fast.

Furthermore, the transactions should ideally be privacy pre-

serving for the client, i.e., the client’s data nor the model’s

architecture are accessible, since the client may have sensi-

tive information such as hospital records or secret tech. In

NDS, we represent the dataserver’s data using a mixture-

of-experts (MoE) trained on a self-supervised task. MoE

3895

naturally partition the indexed datasets into different sub-

sets and produce classifiers whose weights encode the rep-

resentation of each of these subsets. The experts are trained

offline and hosted on the dataserver for online transactions

with the clients. In particular, the experts are sent to each

client and used as a proxy to determine the importance of

dataserver’s data samples for the client’s target domain.

To compute importance, the experts are fast-adapted on

the client’s dataset, and their accuracy is computed on a sim-

ple self-supervised task. We experimentally validate that

the accuracy of each adapted expert indicates the usefulness

of the data partition used to train the expert. The dataserver

then uses these accuracies to construct the final list of data

samples that are relevant for the client. Figure 3 provides

an illustration while Algorithm 2 summarizes our NDS.

In Section 3.1 we formalize our problem. In Section 3.2

we describe how we train our mixture-of-experts model and

analyze the different choices of representation learning al-

gorithms for the experts (dataserver side). In Section 3.3.1

we propose how to exploit the experts’ performance in the

client’s target domain for data selection.

3.1. Problem Definition

Let X denote the input space (images in this paper), and

Ya a set of labels for a given task a. Generally, we will as-

sume that multiple tasks are available, each associated with

a different set of labels, and denote these by Y. Consider

also two different distributions over X×Y, called the source

domain Ds and target domain Dt. Let S (dataserver) and

T (client) be two sample sets drawn i.i.d from Ds and Dt,

respectively. We assume that |S| ≫ |T |.
Our problem then relies on finding the subset S∗ ∈

P(S), where P(S) is the power set of S , such that S∗ ∪ T
minimizes the risk of a model h on the target domain:

S∗ = argmin
Ŝ∈P(S)

E(x,ŷ)∼Dt
[L(h

Ŝ∪T
(x), ŷ)] (1)

Here, h
Ŝ∪T

indicates that h is trained on the union of data

Ŝ and T . Intuitively, we are trying to find the subset of data

from S that helps to improve the performance of the model

on the target dataset. However, what makes our problem

particularly challenging and unique is that we are restrict-

ing the visibility of the data between the dataserver and the

client.

This means that fetching the whole sample set S is pro-

hibitive for the client, as it is uploading its own dataset

to the server. We tackle this problem by representing the

dataserver’s indexed dataset(s) with a set of classifiers that

are agnostic of the client (Section 3.2), and use these to op-

timize equation 1 on the client’s side (Section 3.3.1).

3.2. Dataserver

We now discuss our representation of the dataserver’s

indexed datasets. This representation is pre-computed of-

fline and stored on the dataserver.

3.2.1 Dataset Representation with Mixture-of-Experts

We represent the dataserver’s data S using the mixture-of-

experts model [27]. In MoE, one makes a prediction as:

y(x) =

K
∑

i=1

gθ,i(x)eθi(x) (2)

Here, gθ denotes a gating function (
∑K

i=1 gθ,i(.) = 1),

eθi denotes the i-th expert model with learnable weights θi,

x an input image, and K corresponds to the number of ex-

perts. One can think of the gating function as softly assign-

ing data points to each of the experts, which try to make the

best guess on their assigned data points.

The MoE model is trained by using maximum-likelihood

estimation (MLE) on an objective L:

θ = argmin
θ

E(x,ŷ)∼S [L(y(x), ŷ)] (3)

We discuss the choices for the objective L in Sec 3.2.2,

dealing with the fact that the labels across the source

datasets may be defined for different tasks.

While the MoE objective allows end-to-end training, the

computational cost of doing so on a massive dataset is ex-

tremely high, particularly when K is considerably large (we

need to backpropagate gradients to every expert on every

training example). A straightforward way to alleviate this

issue is to associate each expert with a local cluster defined

by a hard gating, as in [26, 22]. In practice, we define a

gating function g that partitions the dataset into mutually

exclusive subsets Si, and train one expert per subset. This

makes training easy to parallelize as each expert is trained

independently on its subset of data. Furthermore, this al-

lows for new datasets to be easily added to the dataserver

by training additional experts on them, and adding these to

dataserver. This avoids re-training MoE over the full in-

dexed set of datasets.

In our work, we use two simple partitioning schemes to

determine the gating: (1) superclass partition, and (2) unsu-

pervised partition. For superclass partition (1), we represent

each class c in the source dataset as the mean of the image

features fc for category c, and perform k-means clustering

over {fc}. This gives a partitioning where each cluster is

a superclass containing a subset of similar categories. This

partitioning scheme only applies to datasets with class su-

pervision. For unsupervised partitioning (2), we partition

the source dataset using k-means clustering on the image

features. In both cases, the image features are obtained from

a pretrained neural network (i.e., features extracted from the

penultimate layer of a network pre-trained on ImageNet).

3.2.2 Training the Experts

We discuss two different scenarios to train the experts.

In the simplified scenario, the tasks defined for both the

dataserver’s and client’s datasets are the same, e.g., clas-

sification. In this case, we simply train a classifier for the

3896

task for each subset of the data in S . We next discuss a more

challenging case where the tasks across datasets differ.

Ideally, we would like to learn a representation that can

generalize to a variety of downstream tasks and can there-

fore be used in a task agnostic fashion. To this end, we

use a self-supervised method to train the MoE. In self-

supervision, one leverages a simple surrogate task that can

be used to learn a meaningful representation.

Furthermore, this does not require any labels to train the

experts which means that the dataserver’s dataset may or

may not be labeled beforehand. This is useful if the client

desires to obtain raw data and label the relevant subset on its

own. To be specific, we select classifying image rotation as

the task for self-supervision as in [21], which showed this

to be a simple yet powerful proxy for representation learn-

ing. Formally, given an image x, we define its correspond-

ing self-supervised label y by performing a set of geometric

transformations {r(x, j)}3j=0 on x, where r is an image ro-

tation operator, and j defines a particular rotation by one of

the predefined angles, {0, 90, 180, 270}. We then minimize

the following learning objective for the experts:

L(θi) = −
∑

x∈Si

3
∑

j=0

log eθi(r(x, j))j (4)

Here, index j in e(.)j denotes the output value for class j.

3.3. DataserverClient Transactions

In this section, we describe the transactions between the

dataserver and client that determines the relevant subset of

the server’s data. The client first downloads the experts in

order to measure their performance on the client’s dataset.

If the tasks are similar, we perform a quick adaptation of

the experts on the client’s side. Otherwise, we evaluate the

performance of the experts on the client’s data using the sur-

rogate task (i.e image rotation) (Section 3.3.1). The perfor-

mance of each expert is sent back to the dataserver, which

uses this information as a proxy to determine which data

points are relevant to the client (Section 3.3.2). We describe

these steps in more detail in the following subsections.

3.3.1 FASTADAPT to a Target Dataset (on Client)

Single Task on Server and Client: We first discuss the

case where the dataset task is the same for both the client

and the dataserver, e.g., classification. While the task may

be the same, the label set may not be (classes may differ

across domains). An intuitive way to adapt the experts is

to remove their classification head that was trained on the

server, and learn a small decoder network on top of the ex-

perts’s penultimate representations on the client’s dataset,

as in [50]. For classification tasks, we learn a simple linear

layer on top of each pre-trained expert’s representation for a

few epochs. We then evaluate the target’s task performance

on a held-out validation set using the adapted experts. We

denote the accuracy for each adapted expert êθi as zi.

Diverse Tasks on Server and Client: To generalize to

unseen tasks and be further able to handle cases where the

labels are not available on the client’s side, we propose to

evaluate the performance of the common self-supervised

task used to train the experts on the dataserver’s data. In-

tuitively, if the expert performs well on the self-supervised

task on the target dataset, then the data it was trained on is

likely relevant for the client. Specifically, we use the self-

supervised experts trained to learn image rotation, and eval-

uate the proxy task performance (accuracy) of predicting

image rotation angles on the target images:

zi =
1

4|T |

∑

x∈T

3
∑

j=0

✶
(

argmax
k

[eθi(r(x, j))k] == j
)

(5)

Here, index k in e(.)k denotes the output value for class k.

Note that in this case we do not adapt the experts on the

target dataset (we only perform inference).

3.3.2 Data Selection (on Dataserver)

We now aim to assign a weighting to each of the data points

in the source domain S to reflect how well the source data

contributed to the transfer learning performance. The accu-

racies z from the client’s FASTADAPT step are normalized

to [0, 1] and fed into a softmax function with temperature

T = 0.1. These are then used as importance weights wi

for estimating how relevant is the representation learned by

a particular expert for the target task’s performance. We

leverage this information to weigh the individual data points

x. More specifically, each source data x is assigned a prob-

abilistic weighting:

π(x) =

K
∑

i=1

wi gθ,i(x)
1

|Si|
(6)

Here, |Si| represents the size of the subset that an expert

eθi was trained on. Intuitively, we are weighting the set of

images associated to the i-th expert and uniformly sampling

from it. We construct our dataset by sampling examples

from S at a rate according to π = [πx1
, πx2

, . . . , πxn
]
T

.

3.4. Relation to Domain Adaptation

If we assume that the client and server tasks are the same

then our problem can be interpreted as domain adaptation

in each of the subset Ŝ ∈ P(S) and the following general-

ization bound from [5] can be used:

εT (h) < ε
Ŝ
(h) +

1

2
dH∆H(Ŝ, T) (7)

where ε represents the risk of a hypothesis function h ∈ H
and dH∆H is the H∆H divergence [5], which relies on the

capacity of H to distinguish between data points from Ŝ and

T , respectively.

Let us further assume that the risk of the hypothesis

function h on any subset Ŝ is similar such that: ε
Ŝ
(h) ≈

ε(h) ∀Ŝ ∈ P(S). Under this assumption, minimizing

3897

equation 1 is equivalent to finding the subset S∗ that mini-

mizes the divergence with respect to T . Formally,

S∗ = argmin
Ŝ

d
H∆H(Ŝ,T) (8)

In practice, it is hard to compute dH∆H and this is often ap-

proximated by a proxy A-distance [6, 12, 19]. A classifier

that discriminates between the two domains and whose risk

ε is used to approximate the second part of the equation 7.

d̂H ≈ d̂A ≈ 2(1− 2ε) (9)

Note that doing so would require having access to S and

T in at least one of the two sides (i.e to train the new dis-

criminative classifier) and this is prohibitive in our scenario.

In our case, we compute the domain confusion between Ŝ
and T by evaluating the performance of expert ei on the tar-

get domain. We argue that this proxy task performance (or

error rate) is an appropriate proxy distance that serves the

same purpose but does not violate the data visibility condi-

tion. Intuitively, if the features learned on the subset can-

not be discriminated from features on the target domain, the

domain confusion is maximized. We empirically show the

correlation between the domain classifier and our proposed

proxy task performance in our experiments.

4. Experiments

We perform experiments in the tasks of classification,

detection, and instance segmentation. We experiment with

3 datasets on the sever side and 7 on the client side.

4.1. Support for Diverse Clients and Tasks

In this section, we provide an extensive evaluation of our

approach on three different client’s scenarios: autonomous

driving, fashion and general scenes. In each of them, the

client’s goal is to improve the performance of its down-

stream task (i.e., object detection or instance segmenta-

tion) by pretraining in a budget-constrained amount of data.

Here, the dataserver is the same and indexes the massive

OpenImages [31] and MS-COCO [33] datasets. Specifi-

cally, our server dataset can be seen as the union of COCO

and OpenImages [31, 33] (approx 538 GB) represented in

the weights of the self-supervised trained experts (2 GB).

Autonomous Driving: Here, we use Cityscapes [14] as the

client’s dataset, which contains 5000 finely annotated im-

ages divided into 2975 training and 500 validation images.

Eight object classes are provided with per-instance annota-

tion. In practice, this simulates the scenario of a client that

wants to crunch its performance numbers by pretraining on

some data. This scenario is ubiquitous among state-of-the-

art instance and semantic segmentation approaches on the

Cityscapes leaderboard [45, 24, 52].

Fashion: We use the ModaNet dataset [51] to simulate a

client that wants to improve its models’ performance in the

task of object detection of fashion related objects. ModaNet

is a large-scale street fashion dataset consisting of 13 classes

of objects and 55, 176 annotated images. Since the ef-

fectiveness of pre-training diminishes with the size of the

dataset [23], we create a small version of the dataset for our

experiments. This constitutes of 1000 training and 1000
validation images that are randomly selected but keeping

the same class distribution of the original dataset. We call it

miniModaNet in our experiments.

General Scenes: We use PASCAL VOC object detection

[18] as the client’s dataset for this scenario. The task in this

case is object detection on 20 object classes. We use the

trainval2007 set containing 5011 images for training

and evaluate on test2007 containing 4962 images.

Evaluation: We use Intersection-Over-Union (IoU) to mea-

sure client’s performance in its downstream task. Specifi-

cally, we follow the MS-COCO evaluation style and com-

pute IoU at three different thresholds: a) 0.50, b) 0.75, c)

an average of ten thresholds (.5 : .05 : .95). The same eval-

uation style is used for both, object detection and instance

segmentation. Notice however that in the case of instance

segmentation, the overlap is based on segmented regions.

Baselines: In this regime, we compare our approach vs no

pretraining, uniform sampling, and pretraining on the whole

server dataset (i.e., MS-COCO). In all cases, we initialize

with ImageNet pretrained weights as they are widely avail-

able and this has become a common practice.

Implementation Details: Client. We use Mask-

RCNN [24] with a ResNet50-FRN backbone detection head

as the client’s network. After obtaining a subset of S , the

client pre-trains a network on the selected subset and uses

the pre-trained model as initialization for fine-tuning using

the client (target) dataset. For object detection, we pre-

train with a 681 class (80 class from COCO, 601 class

from OpenImages) detection head using bounding box la-

bels. For instance segmentation, we pre-train with 80 class

(for COCO) or 350 class (for OpenImages) detection head

using object mask labels. Server. For all self-supervised

experts, we use ResNet18 [25], and train our models to

predict image rotations. MS-COCO and OpenImages are

partitioned into K = 6 and K = 50 experts, respectively.

4.1.1 Qualitative and Quantitative Results

Object Detection: Table 1 reports the average precision at

various IoU of the client’s network pre-trained using data

selected using different budgets and methods. First, we

see that a general trend of pre-training the network on sam-

pled detection data helps performance when fine-tuning on

smaller client detection datasets compared to fine-tuning the

network from ImageNet initialization. By pre-training on

90K images from COCO+OpenImages, we observe a 1-5%

gain in AP at 0.5 IoU across all 3 client (target) datasets.

This result is consistent with [32] which suggests that a pre-

training task other than classification is beneficial for im-

proving transfer performance on localization tasks. Next,

3898

Pretrain Server Data (COCO + OpenImages) Client Dataset

Sampled Data Size
Method

PASCAL-VOC2007 miniModaNet Cityscapes

File Size # Images AP bb AP bb
50

AP bb
75

AP bb AP bb
50

AP bb
75

AP bb AP bb
50

AP bb
75

ImageNet Initialization 44.30 73.66 46.44 33.40 57.98 35.00 34.94 59.86 35.69

26GB / 538GB 90K (5%)
Uniform Sampling 47.61 76.88 51.95 35.64 58.40 39.09 36.49 61.88 36.36

NDS 48.36 76.91 52.53 38.84 61.23 43.86 38.46 63.79 39.59

54GB / 538GB 180K (10%)
Uniform Sampling 48.05 77.17 52.04 35.78 58.50 39.71 36.41 61.22 37.17

NDS 50.28 78.61 55.47 38.97 61.32 42.93 40.07 65.85 41.14

Table 1: Results for object detection on the 3 client datasets. Scores are measured in %.

Pretrain. Sel. Method
Target Dataset

Stanf. Dogs Stanf. Cars Oxford-IIIT Pets Flowers 102 CUB200 Birds

0% Random Init. 23.66 18.60 32.35 48.02 25.06

100% Entire Dataset 64.66 52.92 79.12 84.14 56.99

20%

Uniform Sample 52.84 42.26 71.11 79.87 48.62

NDS (SP+TS) 72.21 44.40 81.41 81.75 54.00

NDS (SP+SS) 73.46 44.53 82.04 81.62 54.75

NDS (UP+SS) 66.97 44.15 79.20 80.74 52.66

40%

Uniform Sample 59.43 47.18 75.96 82.58 52.74

NDS (SP+TS) 68.66 50.67 80.76 83.31 58.84

NDS (SP+SS) 69.97 51.40 81.52 83.27 57.25

NDS (UP+SS) 67.16 49.52 79.69 83.51 57.44

Table 4: Ablation experiments on gating and expert training.

SP=Superclass Partition, UP=Unsupervised Partition, TS=Task-

Specific experts (experts trained on classif. labels), and SS=Self-

Supervised experts (experts trained to predict image rotation).

Figure 4: Relationship between domain

classifier and proxy task performance on

subsets Ŝ.

Data Method Oxford-IIIT Pet CUB200 Birds

20%

Uniform Samp. 71.1 48.6

KNN + [16] 74.4 51.6

[37] 81.3 54.3

NDS 82.0 54.8

40%

Uniform Samp. 76.0 52.7

KNN + [16] 78.1 56.1

[37] 81.0 57.4

NDS 81.5 57.3

Entire ImageNet 79.1 57.0

Table 5: Transfer learning performance on

classification datasets comparing data se-

lection methods.

Data (# Images) Method AP
bb

AP
bb
50 AP AP50

0 ImageNet Initial. 36.2 62.3 32.0 57.6

23K
Uniform Sampling 38.1 64.9 34.3 60.0

NDS 40.7 66.0 36.1 61.0

47K
Uniform Sampling 39.8 65.5 34.4 60.0

NDS 42.2 68.1 36.7 62.3

59K
Uniform Sampling 39.5 64.9 34.9 60.4

NDS 41.7 66.6 36.7 61.9

118K Full COCO 41.8 66.5 36.5 62.3

Table 2: Transfer learning results for instance segmentation with Mask

R-CNN on Cityscapes by selecting images from COCO.

Data (# Images) Method AP
bb

AP
bb
50 AP AP50

0 ImageNet Initial. 36.2 62.3 32.0 57.6

118K
Uniform Sampling 37.5 62.5 32.8 57.2

NDS 39.9 65.1 35.1 59.8

200K
Uniform Sampling 37.8 63.1 32.9 57.8

NDS 40.7 65.8 36.1 61.2

Table 3: Transfer learning results for instance segmentation with Mask

R-CNN on Cityscapes by selecting images from OpenImages.

we see that under the same budget of 90K/180K images

from the server, pre-training with data selected by NDS out-

performs the baseline which uses images randomly sampled

from S for all client datasets.

Instance Segmentation: Table 2 reports the instance seg-

mentation performance by sampling 23K, 47K, and 59K

images from COCO for pre-training on Cityscapes. We can

see that pre-training using subsets selected by NDS is 2-

3% better than the uniform sampling baseline. Furthermore,

using 40% (47K/118K), or 50% (59K/118K) images from

COCO yields comparable (or better) performance to using

the entire 100% (118K) of data. Table 3 shows the results

of sampling 118K, 200K images from OpenImages dataset

as our server dataset.

Qualitative Results: Figure 6 shows qualitative results on

MINIMODANET from detectors pre-trained from Imagenet,

uniformly sampled images from S , and images sampled us-

ing NDS. In the cases shown, the network pre-trained using

the data recommended by NDS shows better localization

ability, and is able to make more accurate predictions.

4.2. Support for Diverse Clients Same Task

For completeness, and in order to compare to stronger

baselines that are limited to classification tasks, we also

quantitatively evaluate the performance of NDS in the

same-client-same-task regime. In this case, the task is set to

be classification and the server indexes the Downsampled

ImageNet [13] dataset. This a variant of ImageNet [17]

resized to 32×32. In this case, we use K = 10 experts.

Client’s Datasets: We experiment with several small

classification datasets. Specifically, we use Stanford

Dogs [29], Stanford Cars [30], Oxford-IIIT Pets [40], Flow-

ers 102 [38], and CUB200 Birds [48] as client datasets.

Implementation Details: We use ResNet18 [25] as our

client’s network architecture, and an input size of 32 × 32
during training. Once subsets of server data are selected,

we pre-train on the selected subset and evaluate the perfor-

mance by fine-tuning on the client (target) datasets.

Comparison to data selection methods: Cui et al. [16]

and Ngiam et al. [37] recently proposed data selection

methods for improving transfer learning for classification

tasks. In this restricted regime, we can compare to these

methods. Specifically, we compare our NDS with [37],

where they sample data based on the probability over

3899

Figure 5: Instance segmentation results on Cityscapes using network pre-trained from ImageNet initialization (left), 47K images uniformly sampled

(middle), and 47K images from NDS (right). Notice that the output segmentations generally look cleaner when training on NDS-recommended data.

.

Figure 6: Object detection results in miniModaNet using network pre-

trained from ImageNet initialization (left), 90K images uniformly sampled

(middle), and 90K images sampled using NDS (right). A score threshold

of 0.6 is used to display these images.

Figure 7: Simulating an incremen-

tally growing dataserver, and the

time required to “train” a model to

represent the server. We NDS com-

pare to the baseline of [37] (which is

limited to classification tasks).

source dataset classes computed by pseudo-labeling the tar-

get dataset with a classifier trained on the source dataset.

We also create a baseline KNN by adapting Cui et al.’s

method [16]. Here, we sample from the most similar cate-

gories measured by the mean features of categories between

the client and server data. We emphasize that the previous

two approaches are limited to the classification task, and

cannot handle diverse tasks. Furthermore, they do not scale

to datasets beyond classification, and [37] does not scale to

a growing dataserver. Our approach achieves comparable

results to [37], and can be additionally applied to source

datasets with no classification labels such as MS-COCO, or

even datasets which are not labeled.

4.3. Ablation Experiments

Domain Confusion: To see how well the performance of

the proxy task reflects the domain confusion, we perform

an experiment comparing the proxy task performance and

d̂A(Ŝ, T). To estimate d̂A, we follow the same idea from

[6, 12, 19] and for each subset Ŝ , we estimate the domain

confusion. Figure 4 shows the domain confusion vs the

proxy task performance using several classification datasets

as the target (client) domain. In this plot, the highest aver-

age loss corresponds to the subset with the highest domain

confusion (i.e., Si that is the most indistinguishable from

the target domain). Notice that this correlates with the ex-

pert that gives the highest proxy task performance.

Ablation on gating and expert training: In Table 4, we

compare different instantiations of our approach on five

client classification datasets. For all instantiations, pre-

training on our selected subset significantly outperforms the

pre-training on a randomly selected subset of the same size.

Our result in Table 4 shows that under the same super-

class partition, the subsets obtained through sampling ac-

cording to the transferability measured by self-supervised

experts (SP+SS) yield a similar downstream performance

compared to sampling according to the transferability mea-

sured by the task-specific experts (SP+TS). This suggests

that self-supervised training for the experts can successfully

be used as a proxy to decide which data points from the

source dataset are most useful for the target dataset.

Scalability: Fig 7 analyzes the (simulated) required train-

ing time of the server as a new dataset is being incrementally

added to it. We simulate a comparison between [37] (which

needs to retrain the model on all datasets each time a dataset

is added, and thus scales linearly) and NDS (where expert

training is only ran on the additional dataset).

Limitations and Discussion: A limitation in our method

is that the annotation quality/statistics in the dataserver

datasets is not considered. This is shown in our instance

segmentation experiment where the gains from pre-training

on images sampled from OpenImages is smaller than pre-

training on MS-COCO. This is likely due to the fact that

MS-COCO has on average ∼7 instance annotations per im-

age while OpenImages contains many images without mask

annotations or at most ∼2 instance annotations per image.

OpenImages has further been labeled semi-automatically

and thus in many cases the annotations are noisy.

5. Conclusion

In this work, we propose a novel method that aims to op-

timally select subsets of data from a large dataserver given

a particular target client. In particular, we represent the

server’s data with a mixture of experts trained on a simple

self-supervised task. These are then used as a proxy to de-

termine the most important subset of the data that the server

should send to the client. We experimentally show that our

method is general and can be applied to any pre-training

and fine-tuning scheme and that our approach even handles

the case where no labeled data is available (only raw data).

We hope that our work opens a more effective way of per-

forming transfer learning in the era of massive datasets. In

the future, we aim to increase the capability of NDS to also

support other modalities such as 3D, text and speech.

Acknowledgments: The authors acknowledge partial support by

NSERC. SF acknowledges the Canada CIFAR AI Chair award at Vector In-

stitute. We thanks Relu Patrascu for his continuous infrastructure support.

We also thank Amlan Kar, Huan Ling and Jun Gao for early discussions,

and Tianshi Cao and Jonah Philion for feedback in the manuscript.

3900

References

[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Apos-

tol Natsev, George Toderici, Balakrishnan Varadarajan, and

Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale

video classification benchmark. ArXiv, abs/1609.08675,

2016. 1

[2] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash

Ravichandran, Subhransu Maji, Charless C. Fowlkes, Ste-

fano Soatto, and Pietro Perona. Task2vec: Task embedding

for meta-learning. 2019 IEEE/CVF International Confer-

ence on Computer Vision (ICCV), pages 6429–6438, 2019.

2

[3] David Acuna, Amlan Kar, and Sanja Fidler. Devil is in

the edges: Learning semantic boundaries from noisy annota-

tions. In CVPR, 2019. 2

[4] David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Ef-

ficient interactive annotation of segmentation datasets with

polygon-rnn++. In CVPR, 2018. 2

[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex

Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.

A theory of learning from different domains. Machine

Learning, 79:151–175, 2009. 5

[6] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando

Pereira. Analysis of representations for domain adapta-

tion. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors,

NeurIPS, pages 137–144. MIT Press, 2007. 6, 8

[7] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston. Curriculum learning. In Proceedings of the 26th

annual international conference on machine learning, pages

41–48. ACM, 2009. 3

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio

Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ra-

mage, Aaron Segal, and Karn Seth. Practical secure aggrega-

tion for privacy-preserving machine learning. In ACM Conf.

on Computer and Communications Security, 2017. 2

[9] Sergi Caelles, Alberto Montes, Kevis-Kokitsi Maninis,

Yuhua Chen, Luc Van Gool, Federico Perazzi, and Jordi

Pont-Tuset. The 2018 davis challenge on video object seg-

mentation. ArXiv, abs/1803.00557, 2018. 1

[10] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh

Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu

Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes:

A multimodal dataset for autonomous driving. ArXiv,

abs/1903.11027, 2019. 1

[11] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-

age segmentation with deep convolutional nets, atrous con-

volution, and fully connected crfs. CoRR, abs/1606.00915,

2016. 1

[12] Minmin Chen, Kilian Q Weinberger, Zhixiang Xu, and Fei

Sha. Marginalizing stacked linear denoising autoencoders.

Journal of Machine Learning Research, 16(1):3849–3875,

2015. 6, 8

[13] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A

downsampled variant of imagenet as an alternative to the ci-

far datasets, 2017. 7

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. CVPR,

pages 3213–3223, 2016. 6

[15] Gabriela Csurka. Domain adaptation for visual applications:

A comprehensive survey. arXiv preprint arXiv:1702.05374,

2017. 2

[16] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and

Serge J. Belongie. Large scale fine-grained categorization

and domain-specific transfer learning. CVPR, pages 4109–

4118, 2018. 2, 7, 8

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 2, 7

[18] Mark Everingham, Luc Van Gool, Christopher K. I.

Williams, John M. Winn, and Andrew Zisserman. The pascal

visual object classes (voc) challenge. International Journal

of Computer Vision, 88:303–338, 2009. 6

[19] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor S. Lempitsky. Domain-adversarial

training of neural networks. J. Mach. Learn. Res., 17:59:1–

59:35, 2015. 6, 8

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, 2012. 1

[21] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. In ICLR, 2018. 5

[22] Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard

mixtures of experts for large scale weakly supervised vision.

In CVPR, pages 6865–6873, 2017. 4

[23] Kaiming He, Ross B. Girshick, and Piotr Dollár. Rethinking

imagenet pre-training. CoRR, abs/1811.08883, 2018. 2, 6

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.

Girshick. Mask r-cnn. ICCV, pages 2980–2988, 2017. 1, 6

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CVPR, pages

770–778, 2015. 6, 7

[26] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.

Distilling the knowledge in a neural network. ArXiv,

abs/1503.02531, 2015. 4

[27] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and

Geoffrey E. Hinton. Adaptive mixtures of local experts. Neu-

ral Computation, 3:79–87, 1991. 4

[28] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,

Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,

and Sanja Fidler. Meta-sim: Learning to generate synthetic

datasets. In ICCV, 2019. 3

[29] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng

Yao, and Li Fei-Fei. Novel dataset for fine-grained image

categorization. In CVPR Workshop on Fine-Grained Visual

Categorization, Colorado Springs, CO, June 2011. 7

[30] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-

Fei. 3d object representations for fine-grained categorization.

In IEEE Workshop on 3D Representation and Recognition

(3dRR-13), Sydney, Australia, 2013. 7

3901

[31] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-

jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan

Popov, Matteo Malloci, Tom Duerig, and Vittorio Ferrari.

The open images dataset v4: Unified image classification,

object detection, and visual relationship detection at scale.

arXiv:1811.00982, 2018. 1, 6

[32] Hengduo Li, Bharat Singh, Mahyar Najibi, Zuxuan Wu, and

Larry S. Davis. An analysis of pre-training on object detec-

tion. ArXiv, abs/1904.05871, 2019. 6

[33] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

coco: Common objects in context. In ECCV, 2014. 1, 6

[34] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens van der Maaten. Exploring the limits of weakly

supervised pretraining. In ECCV, pages 181–196, 2018. 2

[35] H. Brendan McMahan, Eider Moore, Daniel Ramage, and

Blaise Agüera y Arcas. Federated learning of deep networks

using model averaging. ArXiv, abs/1602.05629, 2016. 2

[36] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christo-

pher J Pal, and Liam Paull. Active domain randomization.

arXiv preprint arXiv:1904.04762, 2019. 3

[37] Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Korn-

blith, Quoc V. Le, and Ruoming Pang. Domain adaptive

transfer learning with specialist models, 2018. 2, 7, 8

[38] M-E. Nilsback and A. Zisserman. Automated flower classifi-

cation over a large number of classes. In Proc. of the Indian

Conference on Computer Vision, Graphics and Image Pro-

cessing, Dec 2008. 7

[39] Sinno Jialin Pan and Qiang Yang. A survey on transfer

learning. IEEE Trans. on knowledge and data engineering,

22(10):1345–1359, 2009. 2

[40] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar.

Cats and dogs. In CVPR, 2012. 7

[41] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker.

Learning to simulate. arXiv preprint arXiv:1810.02513,

2018. 3

[42] Burr Settles. Active learning literature survey. Technical re-

port, University of Wisconsin-Madison Department of Com-

puter Sciences, 2009. 3

[43] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. PAMI,

39(4):640–651, Apr. 2017. 1

[44] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-

nav Gupta. Revisiting unreasonable effectiveness of data in

deep learning era. In ICCV, pages 843–852, 2017. 2

[45] Towaki Takikawa, David Acuna, Varun Jampani, and Sanja

Fidler. Gated-scnn: Gated shape cnns for semantic segmen-

tation. ArXiv, abs/1907.05740, 2019. 6

[46] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark

Brophy, Varun Jampani, Cem Anil, Thang To, Eric Camer-

acci, Shaad Boochoon, and Stan Birchfield. Training deep

networks with synthetic data: Bridging the reality gap by

domain randomization. In CVPR Workshop, pages 969–977,

2018. 2

[47] Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Am-

brish Tyagi, James M Rehg, and Visesh Chari. Learning to

generate synthetic data via compositing. In CVPR, pages

461–470, 2019. 3

[48] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011. 7

[49] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.

How transferable are features in deep neural networks? In

NeurIPS, 2014. 2

[50] Amir Roshan Zamir, Alexander Sax, William B. Shen,

Leonidas J. Guibas, Jagannath Malik, and Silvio Savarese.

Taskonomy: Disentangling task transfer learning. CVPR,

pages 3712–3722, 2018. 2, 5

[51] Shuai Zheng, Fan Yang, M. Hadi Kiapour, and Robinson Pi-

ramuthu. Modanet: A large-scale street fashion dataset with

polygon annotations. In ACM Multimedia, 2018. 6

[52] Yi Zhu, Karan Sapra, Fitsum A. Reda, Kevin J. Shih,

Shawn D. Newsam, Andrew Tao, and Bryan Catanzaro. Im-

proving semantic segmentation via video propagation and la-

bel relaxation. In CVPR, 2018. 6

3902

