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Abstract

Prevalence of voxel-based 3D single-stage detectors

contrast with underexplored point-based methods. In this

paper, we present a lightweight point-based 3D single stage

object detector 3DSSD to achieve decent balance of accu-

racy and efficiency. In this paradigm, all upsampling layers

and the refinement stage, which are indispensable in all ex-

isting point-based methods, are abandoned. We instead pro-

pose a fusion sampling strategy in downsampling process

to make detection on less representative points feasible. A

delicate box prediction network, including a candidate gen-

eration layer and an anchor-free regression head with a 3D

center-ness assignment strategy, is developed to meet the

demand of high accuracy and speed. Our 3DSSD paradigm

is an elegant single-stage anchor-free one. We evaluate it on

widely used KITTI dataset and more challenging nuScenes

dataset. Our method outperforms all state-of-the-art voxel-

based single-stage methods by a large margin, and even

yields comparable performance with two-stage point-based

methods, with amazing inference speed of 25+ FPS, 2⇥
faster than former state-of-the-art point-based methods.

1. Introduction

3D scene understanding has attracted much attention

since it benefits many applications, such as autonomous

driving [7] and augmented reality [17]. In this paper, we fo-

cus on the fundamental task of 3D object detection, which

predicts 3D bounding boxes and class labels for each in-

stance within a point cloud.

Although great breakthrough has been made in 2D de-

tection, it is still not possible to directly apply these 2D

methods to 3D because of the unique characteristics of point

cloud. Compared with 2D images, point cloud is sparse, un-

ordered and locality sensitive, making it hard to use convo-

lution neural networks (CNNs) for parsing. How to convert

and utilize raw point cloud data has become the primary

problem in the detection task.

Several existing methods convert point clouds from

sparse formation to compact representations by projecting

them to images [4, 11, 8, 18, 5], or subdividing them to

equally distributed voxels [16, 26, 33, 29, 28, 12]. We call

these methods voxel-based ones, which require voxelization

on the whole point cloud. Features in each voxel are gen-

erated by either PointNet-like backbones [21, 22] or hand-

crafted features. Then a variety of 2D detection paradigms

can be applied in the compact voxel space. Although these

methods are straightforward and efficient, they suffer from

information loss during voxelization and encounter perfor-

mance bottleneck.

Another stream is with point-based methods [31, 32, 23].

They take raw point clouds as input, and predict bounding

boxes based on each point. Specifically, they are composed

of two stages. In the first stage, set abstraction (SA) layers

are used for downsampling and extracting context features.

Afterwards, feature propagation (FP) layers are applied for

upsampling and broadcasting features to points, which are

discarded during downsampling. A 3D region proposal net-

work (RPN) is then applied for generating proposals cen-

tered at each point. Based on these proposals, a refinement

module is developed in the second stage to give final pre-

diction. These methods achieve better performance. But

inference usually takes much longer time.

Our Contributions Different from all previous methods,

we develop a lightweight and efficient point-based 3D sin-

gle stage object detection framework. Our key observation

is that in point-based methods, FP layers and the refine-

ment stage consume half of the inference time. However,

it is non-trivial to abandon FP layers. Under the current

sampling strategy in SA with only furthest-point-sampling

based on 3D Euclidean distance (D-FPS), foreground in-

stances with only a few interior points may be lost after

sampling. Consequently, it is impossible for them to be de-

tected, which leads to huge performance drop.

In STD [32], without upsampling and only conducting

detection on remaining downsampled points, the perfor-

mance drops by about 9%. That is why FP layers must be

used for point upsampling, albeit a large amount of extra

computation is consumed. To deal with this issue, we first
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propose a new sampling strategy based on feature distance,

called F-FPS, which effectively preserves interior points of

various instances. Our final sampling strategy becomes a

fusion version of F-FPS and D-FPS.

To better exploit the representative points retained after

SA layers, we develop a box prediction network, which uti-

lizes a candidate generation layer (CG), an anchor-free re-

gression head and a 3D center-ness assignment strategy. In

the CG layer, we first shift representative points from F-FPS

to generate candidate points. This shifting operation is su-

pervised by the relative locations between the representative

points and centers of their corresponding instances.

Then, we treat these candidate points as centers, find

their surrounding points from the whole set of representa-

tive points from both F-FPS and D-FPS, and extract their

features through multi-layer perceptron (MLP) networks.

These features are finally fed into an anchor-free regres-

sion head to predict 3D bounding boxes. We also design

a 3D center-ness assignment strategy, which assigns higher

classification scores to candidate points closer to instance

centers, in order to retrieve precise localization prediction.

We evaluate our method on widely used KITTI [6]

dataset, and more challenging nuScenes [3] dataset. Exper-

iments show that our model outperforms all state-of-the-art

voxel-based single-stage methods by a large margin, and

even achieves comparable performance with all two-stage

point-based methods at a much faster inference speed. Our

primary contribution is manifold.

• We propose a lightweight and effective point-based

3D single-stage object detector 3DSSD. We remove

computational-heavy FP layers and the refinement

module, which are however indispensable in all exist-

ing point-based methods.

• A novel fusion sampling strategy in SA layers is de-

veloped to keep adequate interior points of different

foreground instances. It preserves rich information for

regression and classification.

• We design a box prediction network to better effective-

ness and efficiency. Experimental results show that our

framework outperforms all single-stage methods, and

yields comparable performance to state-of-the-art two-

stage methods with much higher efficiency (38ms per

scene).

2. Related Work

3D Object Detection with Multiple Sensors There are

several methods exploiting the way to fuse information

from multiple sensors for object detection. MV3D [4]

projects LiDAR point cloud to bird-eye view (BEV) in order

to generate proposals. These proposals with other informa-

tion from images, front view and BEV are then sent to the

second stage to predict final bounding boxes. AVOD [11]

extends MV3D by introducing image features in the pro-

posal generation stage. MMF [14] fuses information from

depth maps, LiDAR point clouds, images and maps to ac-

complish multiple tasks including depth completion, 2D ob-

ject detection and 3D object detection. These tasks benefit

each other and enhance final performance on 3D object de-

tection.

3D Object Detection with LiDAR Only Mainly two

streams of methods deal with 3D object detection only us-

ing LiDAR data. One is voxel-based, which applies vox-

elization on the entire point cloud. The difference among

these voxel-based methods lies on the initialization of voxel

features. In [26], each non-empty voxel is encoded with

6 statistical quantities by the points within this voxel. Bi-

nary encoding is used in [13] for each voxel grid. Vox-

elNet [33] utilizes PointNet [21] to extract features of each

voxel. Compared to [33], SECOND [28] applies sparse con-

volution layers [9] for parsing the compact representation.

PointPillars [12] treats pseudo-images as the representation

after voxelization.

Another line is point-based, which takes raw point cloud

as input, and generates predictions based on each point. F-

PointNet [20] and IPOD [31] adopt 2D-mechanism-like de-

tection or segmentation to filter most useless points, and

generate predictions from kept useful points. PointRCNN

[23] utilizes PointNet++ [22] with SA and FP layers to ex-

tract features for each point, proposes a region proposal net-

work (RPN) to generate proposals, and applies a refinement

module to predict bounding boxes and class labels. These

methods outperform voxel-based ones, and yet with much

longer inference time. They cannot be applied to real-time

autonomous driving systems.

STD [32] takes advantage of both point- and voxel-based

methods. It uses raw point cloud as input, applies Point-

Net++ to extract features, proposes a PointsPool layer for

converting features from sparse to dense representation, and

finally utilizes CNNs in the refinement module. It’s speed

is faster than former point-based methods, and meanwhile

is still much slower than voxel-based ones. As analyzed

above, all point-based methods are composed of two stages

of proposal generation – including SA layers and FP layers

– and refinement for accurate prediction. It is the first at-

tempt in this paper not to use FP layers and the refinement

module, so as to speed up the whole procedure.

3. Our Framework

In this section, we first analyze the bottleneck of point-

based methods, and describe our proposed fusion sampling

strategy. Next, we present the box prediction network in-

cluding a candidate generation layer, anchor-free regres-

sion head and our 3D center-ness assignment strategy. Fi-
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Figure 1. Illustration of the 3DSSD framework. It has a backbone box prediction network that includes a candidate generation layer and an

anchor-free prediction head. (a) Backbone network. It takes the raw point cloud (x, y, z, r) as input, and generates global features for all

representative points through several SA layers with fusion sampling (FS) strategy. (b) Candidate generation layer (CG). It downsamples,

shifts and extracts features for representative points after SA layers. (c) Anchor-free prediction head.

nally, we discuss the loss function. The whole framework

of 3DSSD is illustrated in Figure 1.

3.1. Fusion Sampling

Motivation As aforementioned, there are two streams

of methods in 3D object detection, which are point-based

and voxel-based frameworks. Albeit accurate, point-based

methods are more time-consuming compared to voxel-

based ones. All current point-based methods [32, 23, 31]

are composed of the two stages of proposal generation and

prediction refinement.

In first stage, SA layers are applied to downsample points

for better efficiency and enlarging receptive fields, while FP

layers are applied to broadcast features for dropped points

during downsampling process, in order to recover all points.

In the second stage, a refinement module optimizes propos-

als from RPN to get more accurate prediction. SA layers are

necessary for extracting features of points. We reiterate that

FP layers and the refinement module limit the efficiency,

as shown in Table 1. We are thus motivated to design a

lightweight and effective point-based single stage detector.

Challenge It is non-trivial to remove FP layers. SA layers

in backbone utilize D-FPS to choose a subset of points as

the downsampled representative points. Without FP layers,

the box prediction network has to be conducted on those

surviving representative points. Nonetheless, this sampling

method only takes the relative locations among points into

consideration. Consequently a large portion of surviving

representative points are actually background ones, due to

the large amount.

Now with a limited number Nm of the total represen-

tative points, for remote (or small) instances, their inner

points are not likely to be selected, because the amount is

much smaller than that of background points. The situa-

tion becomes even worse on more complex datasets, like

nuScenes [3].

Statistically, we use points recall – the quotient between

the number of instances whose interior points survived in

Methods SA layers (ms) FP layers (ms) Refinement Module (ms)

Baseline 40 14 35

Table 1. Running time of different components in our reproduced

PointRCNN [23] model, which has 4 SA layers and 4 FP layers

for feature extraction, and a refinement module with 3 SA layers

for prediction.

Methods 4,096 1,024 512

D-FPS 99.7 % 65.9 % 51.8 %

F-FPS (λ=0.0) 99.7 % 83.5 % 68.4 %

F-FPS (λ=0.5) 99.7 % 84.9 % 74.9 %

F-FPS (λ=1.0) 99.7 % 89.2 % 76.1 %

F-FPS (λ=2.0) 99.7 % 86.3 % 73.7 %

Table 2. Points recall among different sampling strategies on

nuScenes dataset. “4,096”, “1,024” and “512” stand for the

amounts of representative points in the subset.

the sampled representative points and the total number of

instances, to help illustrate this fact. As listed in the first

row of Table 2, with 1,024 (or 512) representative points,

point recalls are only 65.9% (or 51.8%) respectively, which

means nearly half of the instances are totally erased and

cannot be detected. To ameliorate this problem, most of

existing methods apply FP layers to recall those abandoned

useful points during downsampling, under the heavy cost of

computation during inference.

Feature-FPS In order to preserve positive points (interior

points within any instance) and erase those useless nega-

tive points (points locating on background), we consider not

only spatial distance but also semantic information of each

point during the sampling process. We note that semantic

information is well captured by the deep neural network.

So, utilizing the feature distance as the criterion in FPS can

remove many similar negative points on background. It is

intriguing that positive points of remote objects can still sur-

vive because semantic features of points from different ob-

jects are distinct from each other.

However, only taking the semantic feature distance as

the sole criterion would preserve quite a number of points
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Figure 2. Illustration of the shifting operation in the CG layer. The

gray rectangle represents an instance with all positive represen-

tative points from F-FPS (green) and D-FPS (blue). The red dot

represents instance center. We only shift points from F-FPS under

the supervision of their distances to the center of an instance.

within one instance, which introduces redundancy. For ex-

ample, given a car, there is prominent difference between

features of points around the windows and those of wheels.

As a result, points around the two parts are respectively

sampled, while points in either part are already informative

for regression.

Therefore, to reduce the redundancy and increase the di-

versity, we apply both spatial distance and semantic feature

distance as the criteria in FPS. It is formulated as

C(A,B) = λLd(A,B) + Lf (A,B), (1)

where Ld(A,B) and Lf (A,B) represent L2 X � Y � Z
distance and L2 feature distance between two points. λ is

the balance factor. We call this sampling method Feature-

FPS (F-FPS). The comparison of using different λ is shown

in Table 2, which demonstrates that combining the two dis-

tances in the downsampling operation is more powerful than

only using feature distance where λ is set to 0.

Moreover, as illustrated in Table 2, using F-FPS with

1,024 representative points and setting λ to 1 guarantee

that 89.2% of the instances are preserved in nuScenes [3]

dataset, 23.3% higher than the D-FPS sampling strategy.

Fusion Sampling A large amount of positive points

within different instances are preserved through SA layers

thanks to F-FPS. However, with the limited number Nm

of total representative points, many negative points are dis-

carded during the downsampling process, which benefits re-

gression and yet hampers classification. During the group-

ing stage in a SA layer, which aggregates features from

neighboring points, a negative point is unable to find enough

surrounding points, making it impossible to enlarge its re-

ceptive field.

As a result, it is difficult to distinguish between positive

and negative points, leading to poor performance in classi-

fication. Our experiments also demonstrate this limitation

in ablation study. Although the model with F-FPS yields a

higher recall rate and better localization accuracy than the

one with D-FPS, it mistakenly treats several negative points

as positive ones, leading to drop of classification accuracy.

The analysis above indicates that, after a SA layer, not

only positive points should be sampled as many as possible,

but also we need to gather enough negative points for more

reliable classification. We present a novel fusion sampling

strategy (FS), in which both F-FPS and D-FPS are applied

during a SA layer, to retain more positive points for local-

ization and enough negative points for classification as well.

Specifically, we sample Nm

2
points respectively with F-

FPS and D-FPS and feed the two sets together to the fol-

lowing grouping operation in a SA layer.

3.2. Box Prediction Network

Candidate Generation Layer After the backbone net-

work implemented with several SA layers and fusion sam-

pling, we gain a subset of points from both F-FPS and D-

FPS, which are used for final prediction. In former point-

based methods, another SA layer is applied to extract fea-

tures before the prediction head. There are three steps in a

normal SA layer, including center point selection, surround-

ing points extraction and semantic feature generation.

In order to further reduce computation cost and fully uti-

lize the advantage of fusion sampling, we present a can-

didate generation layer (CG) before our prediction head,

which is a variant of SA layer. Since most of representative

points from D-FPS are negative, useless in bounding box

regression, we only take those from F-FPS as initial center

points. They are shifted under the supervision of their rela-

tive locations to their corresponding instances as illustrated

in Figure 2, same as the way of VoteNet [19]. We call these

new points after shifting candidate points.

Then we treat these candidate points as the center ones

in our CG layer. We use candidate points rather than orig-

inal ones as the center for the sake of performance, which

will be discussed in detail later. Next, we find the surround-

ing points of each candidate point from the whole repre-

sentative point set containing points from both D-FPS and

F-FPS with a pre-defined range threshold and concatenate

their normalized location and semantic features as input.

MLP layers are finally applied to extract features. These

features are sent to the prediction head for regression and

classification. This entire process is illustrated in Figure 1.

Anchor-free Regression Head With fusion sampling

strategy and the CG layer, our model can safely remove

the time-consuming FP layers and the refinement mod-

ule. In the regression head, we have two options of build-

ing anchor-based or anchor-free prediction network. For

anchor-based head, we need to construct multi-scale and

multi-orientation anchors to cover objects with various sizes

and orientations. In complex scenes like those in the

nuScenes dataset [3], objects are from 10 different cate-

gories with a wide range of orientations. We thus need at

least 20 anchors, including 10 different sizes and 2 different
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Figure 3. Backbone network of 3DSSD on KITTI (left) and nuScenes (right) datasets.

orientations (0,π/2) in an anchor-based model. To avoid

this cumbersome setting with multiple anchors and stick

with our lightweight design, we utilize anchor-free regres-

sion head instead.

In the regression head, for each candidate point, we pre-

dict distance (dx, dy, dz) to its corresponding instance, as

well as size (dl, dw, dh) and orientation of its corresponding

instance. Since there is no prior orientation of each point,

we apply hybrid of classification and regression formulation

following [20] in orientation angle regression. Specifically,

we define Na equally split orientation angle bins and clas-

sify the proposal orientation angle into one of these bins.

Residual is regressed with respect to the bin value. Na is

set to 12 in our experiments.

3D Center-ness Assignment Strategy In the training

process, we need an assignment strategy to assign la-

bels for each candidate point. In 2D single-stage detec-

tors, intersection-over-union (IoU) [15] threshold or mask

[25, 30] can be used. FCOS [25] adopts a continuous center-

ness label, which replaces original binary classification la-

bel to further help distinguish among pixels. It assigns

higher center-ness scores to pixels closer to instance cen-

ters, leading to relatively better performance compared to

IoU- or mask-based assignment strategy.

However, it is not optimal to directly apply center-ness

labels to the 3D detection task. Given that all LiDAR points

are located on surfaces of objects, the center-ness labels are

all very small and similar. It is almost impossible to distin-

guish good predictions from other points.

Instead of utilizing original representative points in point

cloud, we resort to the predicted candidate points, which

are supervised to be close to instance centers. Candidate

points closer to instance centers tend to get more accurate

localization predictions. Thus 3D center-ness labels are able

to distinguish among them easily.

For each candidate point, we define its center-ness label

in two steps. We first determine if it is within an instance

lmask, which is a binary value. Then we draw a center-

ness label according to its distance to 6 surfaces of its cor-

responding instance. The center-ness label is calculated as

lctrness =
3

s

min(f, b)

max(f, b)
⇥

min(l, r)

max(l, r)
⇥

min(t, d)

max(t, d)
, (2)

where (f, b, l, r, t, d) represent the distance to front, back,

left, right, top and bottom surfaces respectively. The fi-

nal classification label is the multiplication of lmask and

lctrness.

3.3. Loss Function

The overall loss is composed of classification loss, re-

gression loss and shifting loss, as

L =
1

Nc

X

i

Lc(si, ui) + λ1

1

Np

X

i

[ui > 0]Lr

+ λ2

1

N∗
p

Ls,

(3)

where Nc and Np are the numbers of total candidate points

and positive candidate points for foreground instances. In

the classification loss, we denote si and ui as the predicted

classification score and center-ness label for point i respec-

tively and use cross entropy loss as Lc.

The regression loss Lr includes distance regression loss

Ldist, size regression loss Lsize, angle regression loss

Langle, and corner loss Lcorner. We utilize the smooth-

l1 loss for Ldist and Lsize, in which the targets are offsets

from candidate points to their corresponding instance cen-

ters and sizes of corresponding instances respectively.

Angle regression loss contains orientation classification

loss and residual prediction loss as

Langle = Lc(d
a
c , t

a
c ) +D(dar , t

a
r), (4)

where dac and dar are predicted angle class and residual,

while tac and tar are their targets. Corner loss is the distance

between the predicted 8 corners and assigned ground-truth,

expressed as

Lcorner =

8
X

m=1

kPm �Gmk , (5)
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where Pm and Gm are the location of ground-truth and pre-

diction for point m.

As for the shifting loss Ls, which is the supervision of

shifts prediction in CG layer, we utilize a smooth-l1 loss

to calculate the distance between the predicted shifts and

residuals from representative points to their corresponding

instance centers. N∗

p is the amount of positive representa-

tive points from F-FPS.

4. Experiments

We evaluate our model on two datasets. They are the

widely adopted KITTI Object Detection Benchmark [6, 7],

and the larger and more complex nuScenes dataset [3].

4.1. KITTI

There are 7,481 training images/point clouds and 7,518

test ones with three categories of Car, Pedestrian and Cyclist

in the KITTI dataset. We evaluate our method on all three

classes and use average precision (AP) metric to evaluate

different methods. During evaluation, we follow the official

KITTI evaluation protocol – that is, the IoU threshold is 0.7

for class Car and 0.5 for Pedestrian and Cyclist.

Implementation Details To align network input, we ran-

domly choose 16k points from the entire point cloud per

scene. The detail of backbone network is illustrated in Fig-

ure 3. The network is trained by ADAM [10] optimizer with

an initial learning rate 0.002 and batch size 16 equally dis-

tributed on 4 GPU cards. The learning rate is decayed by 10

at 40 epochs. We train our model for 50 epochs.

We adopt 4 different data augmentation strategies on

KITTI dataset in order to prevent overfitting. First, we use

the mix-up strategy [28], which randomly adds foreground

instances with their inner points from other scenes to cur-

rent point cloud. For each bounding box, we also rotate it

following a uniform distribution ∆θ1 2 [�π/4,+π/4] and

add a random translation (∆x,∆y,∆z). Finally, each point

cloud is randomly flipped along x-axis. We randomly ro-

tate each point cloud around z-axis (upper-direction) and

rescale it.

Main Results In Table 3, we compare our method with

state-of-the-art 3D detectors on KITTI test set. Since Au-

gust 2019, KITTI changes the mAP calculation criterion to

using 40 recall positions rather than the 11 recall positions

applied in former KITTI test server. For papers published

before that time, we cannot directly cite the results, and in-

stead re-compute them using the new mAP calculation. So

there may be misalignment between the results in Table 3

and in original papers.

As illustrated in Table 3, our method outperforms all

state-of-the-art voxel-based single stage detectors by a large

margin on all three classes. On the main metric, i.e., AP

on “moderate” instances in class Car, our method outper-

forms SECOND [28] and PointPillars [12] by 3.61% and

5.26% respectively. Still, it retains comparable performance

to state-of-the-art point-based method STD [32] with more

than 2⇥ faster inference time.

Our method outperforms the two-stage methods of part-

Aˆ2 net and PointRCNN by 1.08% and 3.93% respec-

tively. Moreover, we prove its superiority by comparing

with multi-sensors methods of MMF [14] and F-ConvNet

[27] – our method intriguingly achieves 2.14% and 3.18%
improvement respectively. On the other two classes Pedes-

trian and Cyclist, our 3DSSD even goes beyond these two-

stage object detectors. It outperforms STD [32] on these

two classes by 1.8% and 2.51% respectively. We present

several qualitative results in Figure 4.

4.2. nuScenes

nuScenes is a more challenging dataset. It contains 1,000

scenes, gathered from Boston and Singapore considering

heavy traffic and highly challenging driving situations. It

provides 1.4M 3D objects in 10 classes, along with ob-

ject attributes and velocity. There are about 40k points per

frame.

In order to predict velocity and attribute, all former meth-

ods combine points from current frame and previous frames

in 0.5s, gathering about 400k points. With such a large

amount of points, all previous point-based two-stage meth-

ods perform less satisfyingly than voxel-based ones due to

the GPU memory limitation.

In the benchmark, a new evaluation metric called

nuScenes detection score (NDS) is also presented, which

is a weighted sum between mean average precision

(mAP), the mean average errors of location (mATE), size

(mASE), orientation (mAOE), attribute (mAAE) and veloc-

ity (mAVE). We use TP to denote the set of the five mean

average errors. NDS is calculated as

NDS =
1

10
[5mAP +

X

mTP∈TP

(1�min(1,mTP ))]. (6)

Implementation Details For each key frame, we simi-

larly combine its points with those in previous 0.5s frames

to get richer point cloud input. Then, we apply voxelization

for randomly sampling point clouds to align input and keep

original distribution. We randomly choose 65,536 voxels,

including 16,384 from the key frame and 49,152 from oth-

ers. The voxel size is [0.1, 0.1, 0.1]. 1 interior point is

randomly selected from each voxel. We feed these 65,536

points into our point-based network.

The backbone network is illustrated in Figure 3. The

training schedule is the same as the one on KITTI dataset.

We only apply flip augmentation during training.
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Type Method Modality
Car (%) Pedestrian (%) Cyclist (%)

Easy Mod Hard Easy Mod Hard Easy Mod Hard

2-stage

F-PointNet [20]

RGB + LiDAR

82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01

AVOD-FPN [11] 83.07 71.76 65.73 50.46 42.27 39.04 63.76 50.55 44.93

F-ConvNet [27] 87.36 76.39 66.69 52.16 43.38 38.80 81.98 65.07 56.54

PointRCNN [23]

LiDAR

86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53

MMLab-PartAˆ2 [24] 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93

STD [32] 87.95 79.71 75.09 53.29 42.47 38.35 78.69 61.59 55.30

1-stage

SECOND [28]

LiDAR

84.65 75.96 68.71 45.31 35.52 33.14 75.83 60.82 53.67

PointPillars [12] 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92

Ours 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90

Table 3. 3D AP Results on KITTI test set for class Car, Pedestrian and Cyclist drawn from official Benchmark [1].

Car Ped Bus Barrier TC Truck Trailer Moto Cons. Veh. Bicycle mAP

SECOND [28] 75.53 59.86 29.04 32.21 22.49 21.88 12.96 16.89 0.36 0 27.12

PointPillars [12] 70.5 59.9 34.4 33.2 29.6 25.0 20.0 16.7 4.5 1.6 29.5

Ours 81.20 70.17 61.41 47.94 31.06 47.15 30.45 35.96 12.64 8.63 42.66

Table 4. AP on nuScenes dataset. The results of SECOND come from its official implementation [2].

mAP mATE mASE mAOE mAVE AAE NDS

PP [12] 29.5 0.54 0.29 0.45 0.29 0.41 44.9

Ours 42.6 0.39 0.29 0.44 0.22 0.12 56.4

Table 5. NDS on nuScenes dataset. “PP” represents PointPillars.

Method Easy Moderate Hard

VoxelNet [33] 81.97 65.46 62.85

SECOND [28] 87.43 76.48 69.10

PointPillars [12] - 77.98 -

Ours 89.71 79.45 78.67

Table 6. 3D detection AP on KITTI val set of our model for “Car”

compared to other state-of-the-art single-stage methods.

Main results We show NDSs and mAPs for different

methods in Table 5, and compare their APs of each class in

Table 4. As illustrated in Table 5, our method yields better

performance compared to all voxel-based single-stage solu-

tions by a large margin. It also outperforms these methods

in terms of AP of each class, as illustrated in Table 4.

The results manifest that our model deals well with dif-

ferent objects with a large variance on scale. Even for a

huge scene with many negative points, our fusion sampling

strategy is still capable to gather enough positive points. In

addition, better results on velocity and attribute prove that

our model also better gather and separate information from

different frames.

4.3. Ablation Studies

All ablation studies are conducted on KITTI dataset [6].

We follow VoxelNet [33] to split original training set to

3,717 images/scenes train set and 3,769 images/scenes val

set. All “AP” results in ablation studies are calculated on

“Moderate” difficulty level in class Car with 11 recall posi-

tions for fair comparison.

Results on Validation Set We report the performance on

KITTI validation set and and compare it with other state-

D-FPS F-FPS FS

recall (%) 92.47 98.45 98.31

AP (%) 70.4 76.7 79.4

Table 7. Points recall and AP from different sampling methods.

IoU Mask 3D center-ness

without shifting (%) 70.4 76.1 43.0

with shifting (%) 78.1 77.3 79.4

Table 8. AP among different assignment strategies. “with shifting”

means using shifts in the CG layer.

of-the-art voxel-based single-stage methods in Table 6. On

the most important “moderate” difficulty level, our method

outperforms by 1.47%, 2.97% and 13.99% compared to

PointPillars, SECOND and VoxelNet respectively. This il-

lustrates the vast effectiveness of our strategies.

Effect of Fusion Sampling Strategy Our fusion sam-

pling strategy is composed of F-FPS and D-FPS. We com-

pare points recall and AP among different sub-sampling

methods in Table 7. Sampling strategy containing F-FPS

yield higher points recall than that with D-FPS only.

In Figure 5, we also present visual examples to illustrate

the benefit of F-FPS in fusion sampling. In addition, the fu-

sion sampling strategy yields a much higher AP, i.e., 2.7%
better than the one with F-FPS only. The reason is that the

fusion sampling method can gather enough negative points,

which enlarge receptive fields and accomplish accurate clas-

sification results.

Effect of Shifting in CG Layer In Table 8, we compare

performance when using (and not using) shifting represen-

tative points from F-FPS in CG layer. Under different as-

signment strategies, APs of models with shifting are all

higher than those without these operations. It means if the

candidate points are closer to the centers of instances, it is

generally easier to retrieve their corresponding instances.
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Figure 4. Visualizing results of 3DSSD on KITTI (top) and nuScenes (bottom) datasets. The ground truth and predictions are labeled in

red and green respectively.

Figure 5. Comparison between representative points after fusion sampling (top) and D-FPS only (bottom). The whole point cloud and all

representative points are colored in white and yellow respectively. Positive representative points are shown in red.

F-PointNet [20] PointRCNN [23] STD[32] Ours

time (ms) 170 100 80 38

Table 9. Inference time among different point-based methods.

Effect of 3D Center-ness Assignment We compare per-

formance of different assignment strategies including IoU,

mask and 3D center-ness label. As shown in Table 8, with

the shifting operation, the model using center-ness label

gains better performance than the other two strategies.

Inference Time The total inference time of 3DSSD is

38ms, tested on KITTI dataset with a Titan V GPU. We

compare inference time between 3DSSD and all existing

point-based methods in Table 9. As illustrated, our method

is much faster than all these methods.

It is noteworthy that our method even keeps a level of

similar inference speed compared to state-of-the-art voxel-

based single-stage methods. For example, SECOND uses

40ms in inference while ours is 38ms. Among all exist-

ing methods, ours is only slower than PointPillars, which

has been enhanced by several implementation optimization

strategies, such as TensorRT, which however is not used so

far in our implementation. Our method still have much po-

tential to be further accelerated.

5. Conclusion

In this paper, as the first attempt, we have proposed a

lightweight and efficient point-based 3D single-stage object

detection framework. We introduced a novel fusion sam-

pling strategy to remove the time-consuming FP layers and

the refinement module, which were however needed in all

existing point-based methods. In the prediction network, a

candidate generation layer was designed to further reduce

computation cost and utilize downsampled representative

points. Our anchor-free regression head with 3D center-

ness label boosted the final performance. All these effective

designs enabled our model to work satisfyingly in terms of

both performance and inference time.
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