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Abstract

Automated anatomical labeling plays a vital role in coro-

nary artery disease diagnosing procedure. The main chal-

lenge in this problem is the large individual variability in-

herited in human anatomy. Existing methods usually rely

on the position information and the prior knowledge of the

topology of the coronary artery tree, which may lead to un-

satisfactory performance when the main branches are con-

fusing. Motivated by the wide application of the graph neu-

ral network in structured data, in this paper, we propose

a conditional partial-residual graph convolutional network

(CPR-GCN), which takes both position and CT image into

consideration, since CT image contains abundant infor-

mation such as branch size and spanning direction. Two

majority parts, a partial-residual GCN and a conditions

extractor, are included in CPR-GCN. The conditions ex-

tractor is a hybrid model containing the 3D CNN and the

LSTM, which can extract 3D spatial image features along

the branches. On the technical side, the partial-residual

GCN takes the position features of the branches, with the

3D spatial image features as conditions, to predict the label

for each branches. While on the mathematical side, our ap-

proach twists the partial differential equation (PDE) into

the graph modeling. A dataset with 511 subjects is col-

lected from the clinic and annotated by two experts with

a two-phase annotation process. According to the five-fold

cross-validation, our CPR-GCN yields 95.8% meanRecall,

95.4% meanPrecision and 0.955 meanF1, which outper-

forms state-of-the-art approaches.

1. Introduction

Cardiovascular disease is one of the leading causes of

death worldwide [21]. Cardiac CT angiography (CCTA)

image is widely adopted for the diagnosis of the cardiovas-

cular disease because of its non-invasion and high sensitiv-
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Figure 1. Examples of coronary arteries for different subjects.

Each color indicates a specific branch. The number of branches,

the direction, and the connection all vary between these two sub-

jects. The left vessel tree containing 10 branches is more complete,

while multiple vessel branches are missing in the right one.

ity [15]. In the clinic, doctors need a series of manual labor

to obtain the diagnostic report, which is a time-consuming

effort. If a computer-aided diagnosis (CAD) system can

generate the diagnostic report automatically, a huge amount

of time can be saved. While automated anatomical labeling

of the coronary artery tree extracted from CCTA image is a

prerequisite step in the automated CAD system.

The coronary artery tree consists of two components,

i.e., left domain (LD) and right domain (RD). Also they

both originate from the aorta. According to [23], the

main coronary arteries of interest are left main (LM), left

descending artery (LAD), left circumflex artery (LCX),

left ramus-intermedius (RI), obtuse margin (OM), diagonal

artery (D), septal artery (S), right coronary artery (RCA),

right posterior lateral branches (R-PLB), right posterior de-

scending artery (R-PDA), right acute marginal artery (AM)

(shown in Figure 1). From prior knowledge, we know that

LAD, LCX, and RI are from LM. R-PLB, R-PDA, and AM

are from RCA. Also S’s and D’s are from LAD, while OM’s

are from LCX. This makes the whole coronary artery tree as

structured data. Normally, RCA, LM, LAD, and LCX are

treated as the main branches. Other branches are treated as

the side branches.

Several anatomical labeling techniques have been devel-

oped for coronary arteries [23, 3, 22], brain arteries [1],

abdominal arteries [18, 25] and airways [10]. However,
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as shown in Figure 1, the coronary arteries vary much

among subjects, which is the main challenge for the label-

ing system. The number of branches, the length and size

of each branch, and the direction that the branch span all

vary from person to person. [23, 3] both rely on registra-

tion algorithm and prior knowledge. They first identified

four main branches (i.e, LM, LAD, LCX and RCA) and

then labeled the side branches (e.g., AM, R-PDA, D, etc.).

Finally, the results were refined by logical rules which are

translated from the clinical experience. But these conven-

tional methods are not data-driven, i.e., they can not lever-

age the advantage of big data. Recently, in [22], the author

brought a novel deep neural network (TreeLab-Net), which

can learn from the position features extracted from the coro-

nary artery centerlines for labeling the segments. Although,

this model is data-driven, it only utilizes position informa-

tion from vessel centerline and leaves the full information

in the CCTA images aside. In addition, the input for the

TreeLab-Net is built by topological structure. Missing the

main branches (e.g., LM, RCA, etc.) might have deep influ-

ence in labeling the side branches. Therefore, a robust and

self-adaptive model is needed for this structured data.

In the deep learning field, it’s quite mature for the study

in Euclidean space where elements are treated equally.

However, there are normally two view aspects for the struc-

tured data. In [5, 4], the authors viewed the structured data

from a manifold-valued aspect. Also in [14, 12, 26] where

the structured data can be viewed as the graph, the authors

introduced the graph models with nodes and edges, which

can be used to extract the information from the relationship

between each node in the structured graph data. It’s natural

to treat the coronary arteries as the tree because of the path

the branches spread and the connection among the branches.

In this paper, we propose a conditional partial-residual

graph convolutional network (CPR-GCN), which can make

full use of both position information and 3D image infor-

mation in the CCTA volume. The partial-residual block

is applied to the position domain features to enhance the

features. Also, we use 3D Convolutional Neural Network

(CNN) together with Bidirectional Long Short-Term Mem-

ory (BiLSTM) to extract the features along each branches as

the conditions for the graph model. These two parts com-

pose the CPR-GCN which can be trained end-to-end.

In a summary, our main contributions are as follows:

• We propose the CPR-GCN, a conditional partial-

residual graph convolutional network, which can label

the coronary artery tree end-to-end.

• To our best knowledge, this is the first time we take 3D

image features into consideration in coronary artery la-

beling field.

• Our CPR-GCN and the hybrid model (i.e., 3D CNNs

following BiLSTMs) can be jointly trained. We evalu-

ate the CPR-GCN on a large private collected dataset.

Our approach outperforms the state-of-the-art result.

2. Related Work

Most of the related work can be divided into two cate-

gories, i.e., traditional based and deep learning based. Tra-

ditional methods are based on the knowledge and the topol-

ogy of the coronary arteries. Normally, they require two

steps of registration and correction. With the development

of deep learning, there are also some methods on the graph-

based structural data. These methods extract features as

nodes and train the model with the data they acquire. Also

these methods heavily depend on the size and quality of the

dataset.

2.1. Traditional Methods

Most traditional methods are based on registration. In

[23], the author presented a two-step method. In the regis-

tration step, the main branches, LM, LAD, LCX, and RCA,

are identified. Then the rest branches are matched after-

ward. In [3], they built the 3D models for both right dom-

inant and left dominant. The 3D coronary trees from sub-

jects are aligned with the 3D models to get the label of each

segment. They also applied the logical rules to fulfill the

clinical experience.

However, traditional methods highly rely on the main

branches. If the main branches are missing in the automated

segmentation system, the performance will deteriorate dra-

matically. Also, they require prior knowledge about how

the coronary tree span. Thus if some sub-branches are miss-

ing, it will affect the topology and the performance. Finally,

all these traditional methods have the human-interpretation,

which means that if the topology is too complicated, the

automatic system will raise the information that it is not ca-

pable of determining.

2.2. Deep Learning Based Methods

With the power of deep learning, the TreeLab-Net is de-

veloped in [22]. They combined the multi-layer percep-

tion encoder network and the bidirectional tree-structural

LSTM to construct the TreeLab-Net. They used several se-

lected features from positions and stacked the Child-Sum

Tree LSTMs as the components. The left and right coro-

nary arteries are trained independently.

In this method, the missing branches will cause a mas-

sive problem since this will change the layer index of the

nodes inside the tree. With the tree-structured model, the

message is only passing between nearby layers. The closer

the branches are to the root nodes, the higher impact they

will raise. The left and right are also classified with the rules

and the thresholds. This method has a strong assumption

that the branches will only bifurcate so that each node in the
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Figure 2. The framework for the CPR-GCN. The two parts, conditions extractor and partial-residual GCN, compose our CPR-GCN model.

The backbone of our model is in the green bounding box. The orange bounding box extracts extra information from image domain. The

⊕ is the residual connection block on the features x. The ⊗ means using control points along the centerlines to extract the moving cubes

from CCTA images.

tree-structure can only have two children. But in the coro-

nary arteries, it’s quite reasonable that several sub-branches

bifurcate from the points near to each other. So the node

for the parent branch will return to have more than two chil-

dren, which is beyond the capacity of the TreeLab-Net.

In a broad sense, the TreeLab-Net is a simplified version

of the graph models. In [14], the author brought out the

Graph Convolutional Networks (GCN) which operate di-

rectly on graphs. By projecting the graphs into the Fourier

domain, the author defined the convolution operator and fil-

ter kernels in the Fourier domain using the Chebyshev poly-

nomials. In [17], they modified the Graph Neural Networks

(GNN) [19] to use gated recurrent units.

Even though these graph models are successful in molec-

ular fingerprints [7] and protein interface prediction [8],

they have not been used in labeling coronary arteries. Also

graph models also suffer from shallow structure problems.

Since stacking multiple GCN layers will result in over-

smoothing [16].

3. Our Approach

In this section, we detail the CPR-GCN, which makes

full use of both CCTA images and the position of the coro-

nary artery centerlines. As shown in Figure 2, our method

considers both CCTA images and the features from posi-

tions mentioned in [22]. The centerlines are extracted using

the automated coronary artery tracking system [24]. Then,

our CPR-GCN extracts the features from the centerlines

within SCTS2 block. Also, in the image domain, we use the

sub-sampled control points on centerlines to get the moving

cubes with a fixed radius γ along each branches as the image

domain data. The conditions for our CPR-GCN model are

obtained with the 3D CNN and the BiLSTM. The detailed

architecture of the CPR-GCN model is shown in Table 1.

Table 1. The details of the parameters in our model. The frame-

work is shown in Figure 2.

Block Details

SCTS2 first, middle, and last points

tangent direction and first-last direction

3D CNN

kernel size = 3, in channel = 1, out channel = 16

maxpooling size = 2

kernel size = 3, in channel = 16, out channel = 32

maxpooling size = 2

kernel size = 3, in channel = 32, out channel = 64

maxpooling size = 2

BiLSTM layer = 4, hidden size = 128

CPR-GCN
out channel = 256

out channel = 256

out channel = 256

Fully Connected
out channel = 128

out channel = # of classes

3.1. Position Domain Features

In [22], the author introduced a spherical coordinate

transform 2D (SCT2D) which transforms the positions

Pk = [(xi, yi, zi)]
Lengthk

i=1 in 3D into the azimuth and ele-

vation angles [(ϕi, θi)]
Lengthk

i=1 . They argued that this could

normalize the variance of centerlines in the default Carte-

sian coordinate system. However, it is noticeable that ϕ and

θ have the periodic 2π. So with limiting the range of the

angle to be [0, 2π), the small amount of shaking, due to the

noise, will return to be 2π difference near the angle 0.

The similar idea of using spherical coordinate transform

is applied in our approach. Since each branches are pro-

cessed separately, so as to get the azimuth and elevation an-

gles, we need to define the origin and the x, y, z axes for

each branches. For each branches, the first control point is

chosen as the origin. The direction pointing from the first

point to the second point is defined as z axis. The vector

from the first point to the last point of the centerline lies in

y − z plane.

To overcome the instability due to the periodic, we use

the S2 manifold to represent ϕ, θ. The S2 manifold is the

3805



Figure 3. The details of the framework in the image domain. We

use 3D CNN and the BiLSTM to learn the conditions in the image

domain for our partial-residual block. We use the last state as the

final representative of the conditions.

sphere with unit radius in R
3. A trivial method is to use the

2× 2 matrix M =

[

sinθ sinϕ
cosθ cosϕ

]

. Because of the periodic

of sin(·) and cos(·), the matrix M is stable on the whole

manifold S2. This kind of spherical coordinate transforma-

tion is called SCTS2 in the rest of this paper. The Cartesian

coordinate and the S2 manifold transformation is in Eq. 1.

x = rsinθcosϕ r =
√

x2 + y2 + z2

y = rsinθsinϕ cosθ = z/r, θ ∈ [0, π] (1)

z = rcosθ sinϕ = x/(rsinθ), cosϕ = y/(rsinθ)

We use the similar features mentioned in [22]: (1) The

S2 projection and the normalized 3D positions of the first

point, center point, and the last point. (2) Directional vector

between first and last points and the tangential direction at

the start point in both 3D and S2.

3.2. Image Domain Conditions

Most of the medical images, including Magnetic Res-

onance Imaging (MRI) and the CCTA we use, lie in 3D.

The branches, unlike other images, have the sequential de-

pendency. Thus we use the 3D CNN to extract the spa-

tial features and use the BiLSTM afterward to summarize

the tubular sequential features. An example of processing

the R-PLB branch is shown in Figure 3. The z dimension

of CCTA images are the slices, which might have differ-

ent spacing from x and y dimensions. So we resample all

the CCTA images to have the same spacing v along x, y, z
dimensions.

Using the automatic segmentation method, we can get

the centerlines of all branches (P1, P2, ..., Pn) which build

into a coronary artery tree. We separate the branches where

the centerlines end or bifurcate. If the starting points of

the children branches are close to each other, we consider

all these children branches are from the same point on the

parent branch. The control points of the centerlines are

smoothed using the Catmull-Rom spline [20]. Finally, the

control points are sub-sampled with the same length.

Figure 4. The rules we used to build the graph for the CPR-GCN.

Whenever the branches bifurcate, new node is added in the graph.

So main branches (e.g., RCA, LAD, etc.) might be represented by

multiple nodes in the graph. For example, two red nodes in the

right box belong to RCA.

The image domain data is the cubes Ik with the fixed ra-

dius γ around each control points of Pk. Three layers of 3D

CNN and 3D maxpooling are used to extract the features of

Ik. The weights of CNN are shared among the segments.

In order to train the model in a mini-batch manner, these

feature vectors are padded to the maxnk=1(Lengthk) as the

input of the multi-layer bidirectional LSTM [9]. The last

hidden state is treated as the final conditions y, which rep-

resents the image information of this branch. We treat this

as the conditional information since the images are of less

importance than the position domain features.

3.3. PartialResidual Block of GCN

The layer-wise propagation rule for the traditional GCN

is Eq. 2. In the multi-layer GCN, the features X of nodes is

the input for the first layer, X ∈ R
n×d0 . Here, the n is the

number of nodes. The d0 is the dimension of the features

for each nodes. The A is the adjacency matrix for the graph.

The W l is the layer-wise trainable weights, W l ∈ R
dl×dl+1 .

The σ(·) is the activation function. In this paper, we choose

ReLU(·) = max(0, ·) as our activation function to include

the nonlinear ability.

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H lW l) (2)

Ã = A+ IN , D̃ii =
∑

j

Ãij

The Ã is the adjacency matrix A added the self-loop identity

matrix IN . The input for the first layer is H0 = X .

Our conditional partial-residual block requires both the

position features x and the CCTA image domain conditions

y. The combination of the features and conditions from two

domains is used as the representative of the nodes in the

graph model. The edges are defined as the parent-children

relationship. As we mentioned above, the topology of

the whole coronary tree is collected from (P1, P2, ..., Pn).
Whenever the branches bifurcate, we treat these parent-

children branches as three (or more) nodes. The edges are

from the parent branch to the children branches. This will

build the graph of the subject with the adjacency matrix
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A. As shown in Figure 4, the RCA first bifurcates the AM

and then bifurcates the R-PLB and R-PDA. So the extracted

graph has 4 edges and 5 nodes.

In [11], the author argued that the deep residual learn-

ing framework (Figure 5 (a)) can help in the performance.

Instead of directly learning the map H(x), the neural net-

work learns the residual part F(x) := H(x) − x assum-

ing the input and the output having the same dimension.

When changing the output dimension, it’s a straightforward

method to add the linear projection Ws by the shortcut con-

nection:

z = F(x,Wi) +Wsx (3)

Also in [2], the authors extended the idea of residual con-

nection into the Residual Gated Graph ConvNets. The up-

dated propagation rule is:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H lW l) +H l (4)

If we view the residual connection in Eq. 4 as a continuous

function of l and add enough number of layers. In the limit,

[6] parameterized the continuous dynamics of hidden units

using the ordinary differential equation (ODE):

dH(l)

dl
= fA(H(l),W (l), l) (5)

In our setup, we have two kinds of input: position domain

features x(l) and the CCTA image domain conditions y. If

we treat l as the layer index number and x is the function

of layer l in Eq. 5, we have the partial differential equation

(PDE) on x, y:

∇H l(x(l), y) =
∂H l(x, y)

∂x
dx+

∂H l(x, y)

∂y
dy (6)

=
∂H l(x, y)

∂x

dx

dl
dl (7)

= GCNA(x, y)dl (8)

Eq. 7 is based on the fact that we treat y as the conditions.

We use the trainable GCNA(x, y) to approach the partial

Figure 5. The partial-residual block in the CPR-GCN. It can

strengthen some part of the features to have more influence on

the final layer while absorbing the other as the conditions. (a) is

the traditional residual block, (b) is our partial-residual.

differential
∂Hl(x,y)

∂x
dx
dl

. If we take H0 = x(0) = X and

approximate dl = 1, we have

H1 = ∇H l(x, y)dl +H0

= GCNA(x, y) +X (9)

as the discrete numerical estimates. In our case, as shown in

Figure 5 (b), the discrete partial-residual block of the CPR-

GCN takes the weighted X because of the change of the

channel sizes. If we push our PDE a bit further, we can

have:

Hk =

∫

∇H l(x, y)dx+H0

=

∫ k

0

GCNA(x, y)dl +X (10)

Also, the X here should be weighted for the flexibility of

the channels.

3.4. Data Flow

The algorithm of our CPR-GCN is shown in Alg. 1.

CCTA image I , centerlines P1, P2, ..., Pn and reference la-

bels GT1, GT2, ..., GTn compose the training sample of the

model. We first build the graph A via the bifurcation of

P1, P2, ..., Pn. The position domain feature x and the im-

age domain feature y are extracted via SCTS2 and a hybrid

network (i.e., 3D CNN following BiLSTMs). In addition,

we concatenate x and y as the input of GCN layers with x
as the shortcut in residual connection. At last, a fully con-

nected layer predicts the final labeling L1, L2, ..., Ln and

our object is to minimize the cross-entropy of these two dis-

tributions, i.e., GT1, GT2, ..., GTn and L1, L2, ..., Ln.

Algorithm 1: Training procedure of our approach

Data: CCTA image (I), centerlines (P1, P2, ..., Pn)

Ground truth: GT1, GT2, ..., GTn

A← Build Graph(P1, P2, ..., Pn);

x1, x2, ..., xn ← SCTS2(P1, P2, ..., Pn);
I1, I2, ..., In ← I ⊗ (P1, P2, ..., Pn);
y1, y2, ..., yn ← BiLSTM← 3D CNN(I1, I2, ..., In);

H ←GCNA(x, y) + x;

L1, L2, ..., Ln ← FC(H);
loss←Cross Entropy(L,GT );

4. Experimental Results

4.1. Dataset and Evaluation Metrics

To our best knowledge, a public dataset with CCTA im-

age and annotation of coronary artery labeling is not avail-

able until now. Previous works [23, 3, 22] all collected a

private experimental dataset from clinic. For instance, con-

ventional methods [23, 3] only used 58 and 83 subjects re-

spectively, while deep learning based method [22] used a
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larger dataset with 436 subjects. In this study, we collected

the largest relevant dataset from clinic. All vessel center-

lines are first extracted using[24]. This dataset contains 511

subjects and all of them are annotated by two experts with

a two-phase annotation process. These two experts give a

label to every branch alone in the first round. Then the an-

notation results are merged and experts take discussions on

inconsistent ones to obtain a final label. These 511 subjects

and corresponding annotation compose our experimental

dataset. The average number of branches in each subject is

9.65, with standard deviation (std) 2.13. The largest num-

ber of branches is 15, and the smallest number is 3. After

bifurcated and separated, the average number of segments

is 13.23. The detail is mentioned in Table 2. The edges in

the table represent the relationship in the graph we build for

each subject. The average number of edges in each graph is

11.18.

The evaluation is performed on all branch seg-

ments by the predicted label and the ground truth la-

bel. The recall rate for each segments is calculated

by Recall =
tp

tp+fp
|(label = i). The precision is

Precision =
tp

tp+fn
|(label = i). The F1 score is F1 =

2Precision×Recall
Precision+Recall |(label = i). Since the numbers of seg-

ments in are imbalance, we also use the mean metrics of all

classes for the segments. meanRecall = 1
n

∑n
i=1 Recall.

It is similar for the other metrics.

4.2. Implementation Details

Hyper-parameters selection The CCTA images are scaled

to v = 0.5 mm voxel spacing. Since the radius of branches

usually ranges in (0, 3) mm, i.e., (0, 6) voxels. So the radius

of the cube is chosen to be γ = 12 voxels to keep the an-

gel, size, and the texture information. Thus the subsampling

rate for the centerline positions is 10 voxels to have over-

lapping as well as keep the sequential information along the

branches.

Training The dataset is randomly and equally divided into

five subsets. In the training stage, we use a five-fold cross-

validation strategy to evaluate all subjects in the dataset.

The proposed CPR-GCN model has two trainable compo-

nents, i.e, 3D CNN following LSTMs (3D CNN module),

GCNs following a FC layer (GCN module). A series of 3D

image cubes extracted along the vessel centerlines from the

3D CCTA image are the input of the 3D CNN module. The

Table 2. The basic information for the dataset we use. Segments

are the branches after bifurcating. The edges are the relationship

between segments.

Number Avg.(std)) Max Min

Branches 4929 9.65 (2.13) 15 3

Segments 6760 13.23 (3.55) 22 3

Edges 5714 11.18 (3.56) 20 2

position domain features extracted from the vessel tree via

SCTS2 are concatenated with the output of the 3D CNN

module. The GCN module takes these combined features

as input and predicts the label for every segment. In addi-

tion, the reference labels are needed to compute the cross-

entropy loss with the predicted labels. The 3D image cubes,

position domain features and the reference labels compose

the training samples. Our CPR-GCN model is trained in an

end-to-end manner.

The algorithm is implemented using PyTorch with an

NVIDIA Tesla P100 GPU. We use Adam optimizer [13]

with an initial learning rate of 0.001. Each mini-batch con-

tains 8 coronary artery trees. For each training period, we

train the CPR-GCN model up to 200 epochs which takes

2.7 hours. So the total training time for five-fold cross-

validation is 13.5 hours.

Testing We first choose the best model in each fold accord-

ing to the overall testing precision ignored classes. Then we

use each model to evaluate the corresponding testing data.

During inference, the average time spent on the CPR-GCN

model is 0.045 s per case, which is greatly important in the

clinical utilization.

Results Since there is not a public dataset in this field and

conventional methods only evaluated their performance on

a small private dataset. We also reproduced the conven-

tional method and the deep learning based TreeLab-Net.

Considering conventional methods [23, 3] mainly rely on

registration and prior knowledge, we only reproduce [3]

which has a improvement on [23]. Table 3 reports the detail

performance on our dataset. Our CPR-GCN achieves the

highest meanRecall of 0.958, meanPrecision of 0.954 and

meanF1 of 0.955, which outperforms other methods with a

large margin.

All the models have performed well on the main

branches. But the side branches are also a crucially impor-

tant part of the automated anatomical labeling in the CAD

system. In our approach, we treat the main branches and

side branches equally. So compared with other two-step

methods, most of the side branches, such as OM and R-

PDA, performs better in our approach. But since the num-

ber of segments of the main branches like LM and RCA is

relatively large, the performance of these main branches is

better. For the side branches, especially for the D and OM,

the number of samples in the dataset is relatively small. So

the performance is slightly worse than the main branches.

4.3. Ablation Study

To make sure that all the components of the CPR-GCN

perform well, we design the ablation study experiments.

Image domain condition One of the major difference be-

tween our approach and the other methods is that we use the

extra information from CCTA images domain. As shown in
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Table 3. Comparisons of conventional method [3], deep learning based TreeLab-Net [22] and our CPR-GCN on our dataset. Recall,

precision and F1 score are used as the evaluation metrics.

Method Metric RCA R-PDA R-PLB AM LM LAD LCX RI D OM S Avg(std)

Conventional [3]

Recall 0.918 0.850 0.852 0.893 0.984 0.911 0.832 0.848 0.799 0.720 0.835 0.859±0.066

Precision 0.925 0.835 0.860 0.871 0.991 0.929 0.810 0.803 0.781 0.739 0.865 0.855±0.069

F1 0.922 0.842 0.856 0.882 0.987 0.920 0.821 0.825 0.789 0.730 0.850 0.857±0.067

TreeLab-Net [22]

Recall 0.950 0.858 0.818 0.871 0.996 0.948 0.913 0.770 0.816 0.805 0.862 0.873±0.067

Precision 0.948 0.823 0.842 0.871 0.970 0.937 0.936 0.714 0.841 0.807 0.859 0.868±0.072

F1 0.949 0.840 0.830 0.871 0.983 0.942 0.924 0.741 0.829 0.807 0.860 0.871±0.069

Our CPR-GCN

Recall 0.994 0.930 0.944 0.991 0.994 0.990 0.982 0.921 0.936 0.896 0.954 0.958±0.033

Precision 0.987 0.946 0.947 0.983 0.984 0.986 0.971 0.896 0.883 0.933 0.974 0.954±0.035

F1 0.990 0.938 0.945 0.987 0.989 0.988 0.976 0.909 0.909 0.914 0.964 0.955±0.032

the second column of Table 5, if we only remove the im-

age domain conditions, the metrics, i.e., meanRecall, mean-

Precision and meanF1 will drop over 2.0%. For instance,

the meanF1 score is 0.934 compared with 0.955 in our

CPR-GCN.

Residual GCN connection Also, our approach brought the

partial-residual connection in the graph model. In this part,

we only remove the residual connection in the GCN block

and keep other setting the same as the CPR-GCN. The third

column in Table 5 reports that the F1 score will drop to

0.947. This argues that with the help from residual, our

model can absorb the features from both position and im-

age domain as well as keep the original position domain

features.

Undirected graph In this part, we build the undirected

graph, which means adding the opposite edges from the

original graph. Detailed results are illustrated in Table 5,

the fourth column. Although the average metrics among

classes (i.e, meanRecall, meanPrecision and meanF1) are

slightly worse than our best result, several classes (e.g, LM,

LAD, R-PDA, etc.) for undirected graph have higher preci-

sion than directed graph. It is worth to note that we select

directed graph to achieve higher average metrics. In clinical

practice, we can make choice according to the requirement

of the doctors.

Figure 6. Ablation study of repeated GCN blocks. 1 GCN, 2 GCN,

3 GCN and 4 GCN represent stacking corresponding number of

the GCN blocks

Repeated GCN blocks [16] reports that stacking multiple

GCN layers will result in over-smoothing. We also con-

duct the experiment to answer how the number of GCN

blocks influences the performance. Considering the con-

nection complexity in coronary tree graph, we respectively

evaluate our CPR-GCN with 1, 2, 3, 4 GCN layers. Figure

6 illustrates that we can improve the performance by stack-

ing GCN blocks, especially from 1 GCN block to 2 GCN

blocks. However, the model with 4 GCN blocks has no ob-

vious improvement compared with 3 GCN blocks. There-

fore we use 3 GCN blocks in our CPR-GCN. The depth of

the graph for the coronary artery tree mostly is less than 4,

which might lead to the evaluation results.

4.4. Synthetic "Data Attack"

We hold the opinion that our CPR-GCN is more robust

when main branch in the vessel tree is missing. So we first

build a synthetic dataset from our original dataset. 20% LM

and RCA branches is randomly removed. Most of the other

side branches (e.g., LCX, LAD, RI, AM, etc.) directly origi-

nate from those two branches. In this new synthetic dataset,

295 RCA and LM branches are removed. 1123 of 6760

vessel segments directly connect with these 295 missing

branches. Since conventional methods [23, 3] strictly rely

on the main branches. We only evaluate the trained CPR-

GCN and TreeLab-Net [22] on this synthetic dataset. As

shown in Table 4, our CPR-GCN drops almost 2.6% while

the TreeLab-Net drops almost 6.7% in three average met-

rics. This demonstrates that our method is more robust.

Table 4. Experimental results of TreeLab-Net [22] and our CPR-

GCN on the original dataset and synthetic dataset. 20% RCA and

LM is randomly removed in the synthetic dataset.

Method Dataset meanRecall meanPrecision meanF1

TreeLab-Net [22]
Original 0.873 0.868 0.871

Synthetic 0.806 0.799 0.802

Our CPR-GCN
Original 0.958 0.954 0.955

Synthetic 0.931 0.928 0.929
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Table 5. Part of the ablation study results for our approach. The image domain conditions, as well as the partial-residual connection, are

both essential parts of the CPR-GCN.

Ablation Study
Without image domain conditions Without residual connection Undirected graph Our CPR-GCN

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

LM 0.990 0.994 0.992 0.959 0.984 0.971 0.996 0.998 0.997 0.984 0.994 0.989

LAD 0.977 0.983 0.980 0.975 0.978 0.976 0.987 0.993 0.990 0.986 0.990 0.988

LCX 0.938 0.964 0.951 0.946 0.963 0.955 0.963 0.980 0.971 0.971 0.982 0.977

RI 0.880 0.904 0.892 0.917 0.871 0.893 0.875 0.904 0.890 0.896 0.921 0.909

RCA 0.982 0.989 0.986 0.980 0.981 0.980 0.989 0.994 0.992 0.987 0.994 0.991

D 0.842 0.877 0.859 0.883 0.934 0.908 0.889 0.924 0.906 0.883 0.936 0.909

S 0.954 0.954 0.954 0.979 0.948 0.963 0.967 0.937 0.952 0.974 0.954 0.964

OM 0.830 0.814 0.822 0.915 0.913 0.914 0.912 0.904 0.908 0.933 0.896 0.914

R-PDA 0.938 0.927 0.933 0.952 0.950 0.951 0.960 0.939 0.949 0.947 0.944 0.945

R-PLB 0.925 0.925 0.925 0.951 0.930 0.941 0.947 0.953 0.950 0.946 0.930 0.938

AM 0.977 0.977 0.977 0.968 0.971 0.969 0.988 0.997 0.993 0.983 0.994 0.987

Avg. 0.930 0.937 0.934 0.948 0.947 0.947 0.952 0.957 0.954 0.954 0.958 0.955

Std. 0.054 0.053 0.053 0.037 0.036 0.035 0.038 0.036 0.036 0.035 0.033 0.032

5. Discussion

As shown above, our approach achieves state-of-the-art

result. The CPR-GCN takes the image domain information

from 3D CCTA images as the conditions for our approach.

So as to stress the importance of the features from position

domain, we introduced the partial-residual block on the po-

sition domain features.

Image domain information As far as we know, we are

the first to include the image domain information as the

conditions. The result, which is shown above, suggests

that even though the position domain features are important

components of the automated anatomical labeling of coro-

nary arteries, the CCTA images weigh more than just for se-

mantic segmentation. For example, the sizes and the shrink-

ing points are not visible in the centerline-based position

features, which may be extracted from the images. So even

though the positions themselves have relatively rich infor-

mation in this problem, all the other methods lack the ability

to absorb the information from the original 3D CCTA im-

age.

Partial-Residual block One of the main contributions of

our approach is that we brought the partial-residual block.

In the traditional residual block, all dimensions of the input

x are treated equally. But in the coronary arteries labeling

problem, the positions are proven to play an important role.

So as to stress this importance as well as use the extra infor-

mation inside the CCTA images, we use the partial-residual

block to treat the image domain in formations as the extra

conditions of the model. With the ablation study, we no-

tice that this kind of structure can improve the metric from

0.947 to 0.955. Also, it can make the model more stable.

Robustness Our CPR-GCN is purely driven by data. So

the CPR-GCN can make use of the enormous size of data.

Without prior knowledge and the hard-coded “rule”, the

CPR-GCN is more robust to the noises. All the nodes in

our graph, which represent different segments, weigh the

same in the CPR-GCN. So the wrong classification of LM

or other major branches has less chance to spread through

all other branches. In order to prove this opinion, we con-

duct a interesting synthetic ”Data Attack” experiment. The

results show that missing main branch has less impact on

our CPR-GCN than other deep leaning method.

Disadvantages and future work There are still some fu-

ture works for this problem. Since we treat every branches

equally, the imbalance among branches is an issue. It’s

noticeable that the main branches perform better than side

branches due to the number of samples are different. There

will also be some tiny branches missing after the segmenta-

tion, which will increase the imbalance. Also in this model,

we use the discrete approximation of the PDE. In the future,

the model can be pushed forward to the continuous model.

6. Conclusion

In this paper, we propose the end-to-end conditional

partial-residual graph convolutional network (CPR-GCN)

model for automated anatomical labeling of coronary ar-

teries, where few alternatives are available. Compared with

the traditional methods and the recent deep learning based

methods, our approach achieves the state-of-the-art result.

We show that with the conditional partial-residual block,

both information in position domain and CCTA image do-

main can be taken into consideration. On the experiment

side, we show that our CPR-GCN is more robust and flex-

ible compared with others. The result also shows that the

CCTA image domain matters in coronary arteries labeling.

Importantly, we show that our algorithmic contributions fa-

cilitate the CAD system.
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