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Abstract

We propose D3VO as a novel framework for monocu-

lar visual odometry that exploits deep networks on three

levels – deep depth, pose and uncertainty estimation. We

first propose a novel self-supervised monocular depth es-

timation network trained on stereo videos without any ex-

ternal supervision. In particular, it aligns the training im-

age pairs into similar lighting condition with predictive

brightness transformation parameters. Besides, we model

the photometric uncertainties of pixels on the input images,

which improves the depth estimation accuracy and provides

a learned weighting function for the photometric residu-

als in direct (feature-less) visual odometry. Evaluation re-

sults show that the proposed network outperforms state-of-

the-art self-supervised depth estimation networks. D3VO

tightly incorporates the predicted depth, pose and uncer-

tainty into a direct visual odometry method to boost both

the front-end tracking as well as the back-end non-linear

optimization. We evaluate D3VO in terms of monocular vi-

sual odometry on both the KITTI odometry benchmark and

the EuRoC MAV dataset. The results show that D3VO out-

performs state-of-the-art traditional monocular VO meth-

ods by a large margin. It also achieves comparable re-

sults to state-of-the-art stereo/LiDAR odometry on KITTI

and to the state-of-the-art visual-inertial odometry on Eu-

RoC MAV, while using only a single camera.

1. Introduction

Deep learning has swept most areas of computer vision

– not only high-level tasks like object classification, detec-

tion and segmentation [30, 39, 58], but also low-level ones

such as optical flow estimation [12, 65] and interest point

detection and description [11, 13, 79]. Yet, in the field of

Simultaneously Localization And Mapping (SLAM) or Vi-

sual Odometry (VO) which estimates the relative camera

poses from image sequences, traditional geometric-based

approaches [16, 17, 53] still dominate the field. While

monocular methods [16,52] have the advantage of low hard-

ware cost and less calibration effort, they cannot achieve
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Figure 1: We propose D3VO – a novel monocular visual odome-

try (VO) framework which exploits deep neural networks on three

levels: Deep depth (D), Deep pose (T t−1

t ) and Deep uncertainty

(Σ) estimation. D3VO integrates the three estimations tightly into

both the front-end tracking and the back-end non-linear optimiza-

tion of a sparse direct odometry framework [16].

competitive performance compared to stereo [53, 74] or

visual-inertial odometry (VIO) [44, 54, 56, 72], due to the

scale drift [62,77] and low robustness. Recently, there have

been many efforts to address this by leveraging deep neu-

ral networks [48, 68, 80, 83]. It has been shown that with

deep monocular depth estimation networks [26, 27, 43, 78],

the performance of monocular VO is boosted, since deep

networks are able to estimate depth maps with consistent

metric scale by learning a-priori knowledge from a large

amount of data [42].

In this way, however, deep neural networks are only

used to a limited degree. Recent advances of self- and un-

supervised monocular depth estimation networks [26, 86]

show that the poses of the adjacent monocular frames can

be predicted together with the depth. Since the pose esti-

mation from deep neural networks shows high robustness,

one question arises: Can the deep-predicted poses be em-

ployed to boost traditional VO? On the other hand, since
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SLAM/VO is essentially a state estimation problem where

uncertainty plays an important role [19, 63, 69] and mean-

while many learning based methods have started estimating

uncertainties, the next question is, how can we incorporate

such uncertainty-predictions into optimization-based VO?

In this paper, we propose D3VO as a framework for

monocular direct (feature-less) visual VO that exploits self-

supervised monocular depth estimation network on three

levels: deep depth, pose and uncertainty estimation, as

shown in Fig. 1. To this end, we first propose a purely

self-supervised network trained with stereo videos. The

proposed self-supervised network predicts the depth from a

single image with DepthNet and the pose between two ad-

jacent frames with PoseNet. The two networks are bridged

by minimizing the photometric error originated from both

static stereo warping with the rectified baseline and tem-

poral warping using the predicted pose. In this way, the

temporal information is incorporated into the training of

depth, which leads to more accurate estimation. To deal

with the inconsistent illumination between the training im-

age pairs, our network predicts the brightness transforma-

tion parameters which align the brightness of source and

target images during training on the fly. The evaluation on

the EuRoC MAV dataset shows that the proposed brightness

transformation significantly improves the depth estimation

accuracy. To integrate the deep depth into VO system, we

firstly initialize every new 3D point with the predicted depth

with a metric scale. Then we adopt the virtual stereo term

proposed in Deep Virtual Stereo Odometry (DVSO) [78] to

incorporate the predicted pose into the non-linear optimiza-

tion. Unlike DVSO which uses a semi-supervised monoc-

ular depth estimation network relying on auxiliary depth

extracted from state-of-the-art stereo VO system [74], our

network uses only stereo videos without any external depth

supervision.

Although the illumination change is explicitly modeled,

it is not the only factor which may violate the bright-

ness constancy assumption [40]. Other factors, e.g., non-

Lambertian surfaces, high-frequency areas and moving ob-

jects, also corrupt it. Inspired by the recent research on

aleatoric uncertainty by deep neural networks [35, 40], the

proposed network estimates the photometric uncertainty as

predictive variance conditioned on the input image. As a

result, the errors originated from pixels which are likely

to violate the brightness constancy assumption are down-

weighted. The learned weights of the photometric residuals

also drive us to the idea of incorporating it into direct VO

– since both the self-supervised training scheme and the di-

rect VO share a similar photometric objective, we propose

to use the learned weights to replace the weighting function

of the photometric residual in traditional direct VO which is

empirically set [61] or only accounts for the intrinsic uncer-

tainty of the specific algorithm itself [16, 37].

Robustness is one of the most important factors in de-

signing VO algorithm. However, traditional monocular vi-

sual VO suffers from a lack of robustness when confronted

with low textured areas or fast movement [72]. The typical

solution is to introduce an inertial measurement unit (IMU).

But this increases the calibration effort and, more impor-

tantly, at constant velocity, IMUs cannot deliver the metric

scale in constant velocity [50]. We propose to increase the

robustness of monocular VO by incorporating the estimated

pose from the deep network into both the front-end tracking

and the back-end non-linear optimization. For the front-

end tracking, we replace the pose from the constant veloc-

ity motion model with the estimated pose from the network.

Besides, the estimated pose is also used as a squared regu-

larizer in addition to direct image alignment [66]. For the

back-end non-linear optimization, we propose a pose en-

ergy term which is jointly minimized with the photometric

energy term of direct VO.

We evaluate the proposed monocular depth estima-

tion network and D3VO on both KITTI [25] and EuRoC

MAV [5]. We achieve state-of-the-art performances on both

monocular depth estimation and camera tracking. In par-

ticular, by incorporating deep depth, deep uncertainty and

deep pose, D3VO achieves comparable results to state-of-

the-art stereo/LiDAR methods on KITTI Odometry, and

also comparable results to the state-of-the-art VIO methods

on EuRoC MAV, while being a monocular method.

2. Related Work

Deep learning for monocular depth estimation. Su-

pervised learning [15, 43, 45] shows great performance on

monocular depth estimation. Eigen et al. [14, 15] pro-

pose to use multi-scale CNNs which directly regresses the

pixel-wise depth map from a single input image. Laina

et al. [43] propose a robust loss function to improve the

estimation accuracy. Fu et al. [24] recast the monocular

depth estimation network as an ordinal regression prob-

lem and achieve superior performance. More recent works

start to tackle the problem in a self- and unsupervised

way by learning the depth map using the photometric er-

ror [27, 28, 49, 73, 81, 82, 86] and adopting differentiable

interpolation [32]. Our self-supervised depth estimation

network builds upon MonoDepth2 [26] and extends it by

predicting the brightness transformation parameters and the

photometric uncertainty.

Deep learning for uncertainty estimation. The uncer-

tainty estimation of deep learning has recently been inves-

tigated in [35, 36] where two types of uncertainties are

proposed. Klodt et al. [40] propose to leverage the con-

cept of aleatoric uncertainty to estimate the photometric and

the depth uncertainties in order to improve the depth esti-

mation accuracy. However, when formulating the photo-

metric uncertainty, they do not consider brightness changes
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across different images which in fact can be modeled explic-

itly. Our method predicts the photometric uncertainty con-

ditioned on the brightness-aligned image, which can deliver

better photometric uncertainty estimation. Besides, we also

seek to make better use of our learned uncertainties and pro-

pose to incorporate them into traditional VO systems [16].

Deep learning for VO / SLAM. End-to-end learned

deep neural networks have been explored to directly predict

the relative poses between images with supervised [70, 75,

85] or unsupervised learning [46, 73, 82, 86]. Besides pose

estimation, CodeSLAM [2] delivers dense reconstruction

by jointly optimizing the learned prior of the dense geome-

try together with camera poses. However, in terms of pose

estimation accuracy all these end-to-end methods are infe-

rior to classical stereo or visual inertial based VO methods.

Building on the success of deep monocular depth estima-

tion, several works integrate the predicted depth/disparity

map into monocular VO systems [68, 78] to improve per-

formance and eliminate the scale drift. CNN-SLAM [68]

fuses the depth predicted by a supervised deep neural net-

work into LSD-SLAM [17] and the depth maps are refined

with Bayesian filtering, achieving superior performance in

indoor environments [29, 64]. Other works [10, 67] explore

the application of deep neural networks on feature based

methods ,and [34] uses Generative Adversarial Networks

(GANs) as an image enhancement method to improve the

robustness of VO in low light. The most related work to

ours is Deep Virtual Stereo Odometry (DVSO). DVSO pro-

poses a virtual stereo term that incooperates the depth es-

timation from a semi-supervised network into a direct VO

pipeline. In particular, DVSO outperforms other monocular

VO systems by a large margin, and even achieves compa-

rable performance to state-of-the-art stereo visual odometry

systems [53, 74]. While DVSO merely leverages the depth,

the proposed D3VO exploits the power of deep networks on

multiple levels thereby incorporating more information into

the direct VO pipeline.

3. Method

We first introduce a novel self-supervised neural net-

work that predicts depth, pose and uncertainty. The net-

work also estimates affine brightness transformation pa-

rameters to align the illumination of the training images in

a self-supervised manner. The photometric uncertainty is

predicted based on a distribution over the possible bright-

ness values [35, 40] for each pixel. Thereafter we introduce

D3VO as a direct visual odometry framework that incorpo-

rates the predicted properties into both the tracking front-

end and the photometric bundle adjustment backend.

3.1. Self-supervised Network

The core concept of the proposed monocular depth es-

timation network is the self-supervised training scheme

Figure 2: Examples of point clouds and trajectories delivered by

D3VO on KITTI Odometry Seq. 00, EuRoC MH 05 difficult and

V1 03 difficult. The insets on EuRoC show the scenarios with low

illumination and motion blur which are among the main reasons

causing failures of traditional purely vision-based VO systems.

which simultaneously learns depth with DepthNet and mo-

tion with PoseNet using video sequences [26,86]. The self-

supervised training is realized by minimizing the minimum

of the photometric re-projection errors between the tempo-

ral and static stereo images:

Lself =
1

|V |

�

p∈V

min
t�

r(It, It�→t). (1)

where V is the set of all pixels on It and t� is the index of

all source frames. In our setting It is the left image and

It� contains its two adjacent temporal frames and its op-

posite (right) frame, i.e., It� ∈ {It−1, It+1, Its}. The per-

pixel minimum loss is proposed in Monodepth2 [26] in or-

der to handle the occlusion among different source frames.

To simplify notation, we use I instead of I(p) in the re-

mainder of this section. It�→t is the sythesized It by warp-

ing the temporal stereo images with the predicted depth Dt,

the camera pose Tt�

t , the camera intrinsics K, and the dif-

ferentialble bilinear sampler [32]. Note that for Its→t, the

transformation Tts

t is known and constant. DepthNet also

predicts the depth map Dts of the right image Its by feed-

ing only the left image It as proposed in [27]. The training

of Dts requires to synthesize It→ts and compare with Its .

For simplicity, we will in the following only detail the loss
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Figure 3: Examples of affine brightness transformation on EuRoC

MAV [5]. Originally the source image (It� ) and the target image

(It) show different brightness. With the predicted parameters a, b,

the transformed target images Ia
�,b� have similar brightness as the

source images, which facilitates the self-supervised training based

on the brightness constancy assumption.

regarding the left image.

The common practice [27] is to formulate the photomet-

ric error as

r(Ia, Ib) =
α

2
(1−SSIM(Ia, Ib))+(1−α)||Ia−Ib||1 (2)

based on the brightness constancy assumption. However,

it can be violated due to illumination changes and auto-

exposure of the camera to which both L1 and SSIM [76] are

not invariant. Therefore, we propose to explicitly model the

camera exposure change with predictive brightness trans-

formation parameters.

Brightness transformation parameters. The change of

the image intensity due to the adjustment of camera expo-

sure can be modeled as an affine transformation with two

parameters a, b

Ia,b = aI + b. (3)

Despite its simplicity, this formulation has been shown to be

effective in direct VO/SLAM, e.g., [16, 18, 33, 74], which

builds upon the brightness constancy assumption as well.

Inspired by these works, we propose predicting the transfor-

mation parameters a, b which align the brightness condition

of It with It� . We reformulate Eq. (1) as

Lself =
1

|V |

�

p∈V

min
t�

r(I
at� ,bt�
t , It�→t) (4)

with

I
at� ,bt�
t = at→t�It + bt→t� , (5)

where at→t� and bt→t� are the transformation parameters

aligning the illumination of It to It� . Note that both param-

eters can be trained in a self-supervised way without any

supervisional signal. Fig. 3 shows the affine transformation

examples from EuRoC MAV [5].

Photometric uncertainty. Only modeling affine bright-

ness change is not enough to capture all failure cases of

the brightness constancy assumption. Other cases like non-

Lambertian surfaces and moving objects, are caused by the

intrinsic properties of the corresponding objects which are

not trivial to model analytically [40]. Since these aspects

can be seen as observation noise, we leverage the concept

of heteroscedastic aleatoric uncertainty of deep neural net-

works proposed by Kendall et al. [35]. The key idea is to

predict a posterior probability distribution for each pixel pa-

rameterized with its mean as well as its variance p(y|ỹ,σ)
over ground-truth labels y. For instance, by assuming the

noise is Laplacian, the negative log-likelihood to be mini-

mized is

− log p(y|ỹ,σ) =
|y − ỹ|

σ
+ log σ + const. (6)

Note that no ground-truth label for σ is needed for train-

ing. The predictive uncertainty allows the network to adapt

the weighting of the residual dependent on the data input,

which improves the robustness of the model to noisy data

or erroneous labels [35].

In our case where the “ground-truth” y are the pixel

intensities on the target images, the network will predict

higher σ for the pixel areas on It where the brightness con-

stancy assumption may be violated. Similar to [40], we im-

plement this by converting Eq. (4) to

Lself =
1

|V |

�

p∈V

mint� r(I
at� ,bt�
t , It�→t)

Σt

+ logΣt, (7)

where Σt is the uncertainty map of It. Fig. 4 shows the

qualitative results of the predicted uncertainty maps on

KITTI [25] and EuRoC [5] datasets, respectively. In the

next section, we will show that the learned Σt is useful for

weighting the photometric residuals for D3VO.

The total loss function is the summation of the self-

supervised losses and the regularization losses on multi-

scale images:

Ltotal =
1

s

�

s

(Ls
self + λLs

reg), (8)

where s = 4 is the number of scales and

Lreg = Lsmooth + βLab (9)

with

Lab =
�

t�

(at� − 1)2 + b2t� (10)

is the regularizer of the brightness parameters and Lsmooth

is the edge-aware smoothness on Dt [27].

To summarize, the proposed DepthNet predicts Dt, Dts

and Σt with one single input It. PoseNet predicts Tt�

t ,

at→t� and bt→t� with channel-wise concatenated (It, It� )

as the input. Both DepthNet and PoseNet are convolu-

tional networks following the widely used UNet-like archi-

tecture [59]. Please refer to our supplementary materials for

network architecture and implementation details.

3.2. D3VO

In the previous section, we introduced the self-

supervised depth estimation network which predicts the

depth map D, the uncertainty map Σ and the relative pose

Tt�

t . In this section, we will describe how D3VO integrates

these predictions into a windowed sparse photometric bun-

dle adjustment formulation as proposed in [16]. Note that
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in the following we use �· denoting the predictions from the

network as �D, �Σ and �Tt�

t to avoid ambiguity.

Photometric energy. D3VO aims to minimize a total

photometric error Ephoto defined as

Ephoto =
�

i∈F

�

p∈Pi

�

j∈obs(p)

Epj , (11)

where F is the set of all keyframes, Pi is the set of points

hosted in keyframe i, obs(p) is the set of keyframes in

which point p is observable and Epj is the weighted photo-

metric energy term when p is projected onto keyframe j:

Epj :=
�

p∈Np

wp

����
����(Ij [p

�]− bj)−
eaj

eai
(Ii[p]− bi)

����
����
γ

,

(12)

where N is the set of 8 neighboring pixels of p defined

in [16], a,b are the affine brightness parameters jointly esti-

mated by non-linear optimization as in [16] and || · ||γ is the

Huber norm. In [16], the residual is down-weighted when

the pixels are with high image gradient to compensate small

independent geometric noise [16]. In realistic scenarios,

there are more sources of noise, e.g., reflection [40], that

need to be modeled in order to deliver accurate and robust

motion estimation. We propose to use the learned uncer-

tainty �Σ to formulate the weighting function

wp =
α2

α2 +
���
����Σ(p)

���
���
2

2

, (13)

which may not only depend on local image gradient, but

also on higher level noise pattern. As shown in Fig. 4,

the proposed network is able to predict high uncertainty on

the areas of reflectance, e.g., the windows of the vehicles,

the moving object like the cyclist and the object boundaries

where depth discontinuity occurs.

The projected point position of p� is given by p� =
Π(Tj

iΠ
−1(p, dp)), where dp is the depth of the point p in

the coordinate system of keyframe i and Π(·) is the projec-

tion function with the known camera intrinsics. Instead of

randomly initializing dp as in traditional monocular direct

methods [16, 17], we initialize the point with dp = �Di[p]
which provides the metric scale. Inspired by [78], we intro-

duce a virtual stereo term E†
p

to Eq. (11)

Ephoto =
�

i∈F

�

p∈Pi


λE†

p
+

�

j∈obs(p)

Epj


 (14)

with

E†
p
= wp

���
���I†i [p†]− Ii[p]

���
���
γ

, (15)

I
†
i [p

†] = Ii[Π(Ts

−1
Π

−1(p†, Dis [p
†]))] (16)

with Ts the transformation matrix from the left to the right

image used for training DepthNet and

p† = Π(TsΠ
−1(p, dp)). (17)

The virtual stereo term optimizes the estimated depth dp
from VO to be consistent with the depth predicted by the

proposed deep network [78].

Pose energy. Unlike traditional direct VO ap-

proaches [19, 23] which initialize the front-end tracking for

each new frame with a constant velocity motion model, we

leverage the predicted poses between consecutive frames to

build a non-linear factor graph [41, 47]. Specifically, we

create a new factor graph whenever the newest keyframe,

which is also the reference frame for the front-end track-

ing, is updated. Every new frame is tracked with respect

to the reference keyframe with direct image alignment [66].

Additionally, the predicted relative pose from the deep net-

work is used as a factor between the current frame and the

last frame. After the optimization is finished, we marginal-

ize the last frame and the factor graph will be used for the

front-end tracking of the following frame. Please refer to

our supp. materials for the visualization of the factor graph.

The pose estimated from the tracking front-end is then

used to initialize the photometric bundle adjustment back-

end. We further introduce a prior for the relative keyframe

pose Ti
i−1 using the predicted pose �Ti

i−1. Note that �Ti
i−1

is calculated by concatenating all the predicted frame-to-

frame poses between keyframe i− 1 and i. Let

Epose =
�

i∈F−{0}

Log(�Ti
i−1T

i−1
i )�Σ−1

�ξi
i−1

Log(�Ti
i−1T

i−1
i ),

(18)

where Log: SE(3) → R
6 maps from the transformation ma-

trix T ∈ R
4×4 in the Lie group SE(3) to its correspond-

ing twist coordinate ξ ∈ R
6 in the Lie algebra se(3). The

diagonal inverse covariance matrix Σ
−1
�ξi
i−1

is obtained by

propagating the covariance matrix between each consecu-

tive frame pairs that is modeled as a constant diagonal ma-

trix.

The total energy function is defined as

Etotal = Ephoto + wEpose. (19)

Including the pose prior term Epose in Eq. 19 can be con-

sidered as an analogy to integrating the pre-integrated IMU

pose prior into the system with a Gaussian noise model.

Etotal is minimized using the Gauss-Newton method. To

summarize, we boost the direct VO method by introduc-

ing the predicted poses as initializations to both the tracking

front-end and the optimization backend, as well as adding

them as a regularizer to the energy function of the photo-

metric bundle adjustment.

4. Experiments

We evaluate the proposed self-supervised monocular

depth estimation network as well as D3VO on both the

KITTI [25] and the EuRoC MAV [5] datasets.
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RMSE RMSE (log) ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Approach Train lower is better higher is better

MonoDepth2 [27] MS 4.750 0.196 0.106 0.818 0.874 0.957 0.979

Ours, uncer MS 4.532 0.190 0.101 0.772 0.884 0.956 0.978

Ours, ab MS 4.650 0.193 0.105 0.791 0.878 0.957 0.979

Ours, full MS 4.485 0.185 0.099 0.763 0.885 0.958 0.979

Kuznietsov et al. [42] DS 4.621 0.189 0.113 0.741 0.862 0.960 0.986

DVSO [78] D*S 4.442 0.187 0.097 0.734 0.888 0.958 0.980

Ours MS 4.485 0.185 0.099 0.763 0.885 0.958 0.979

Table 1: Depth evaluation results on the KITTI Eigen split [15]. M: self-supervised monocular supervision; S: self-supervised stereo

supervision; D: ground-truth depth supervison; D*: sparse auxiliary depth supervision. The upper part shows the comparison with the

SOTA self-supervised network Monodepth2 [26] under the same setting and the ablation study of the brightness transformation parameters

(ab) and the photometric uncertainty (uncer). The lower part shows the comparison with the SOTA semi-supervised methods using stereo

as well as depth supervision. Our method outperforms Monodepth2 on all metrics and can also deliver comparable performance to the

SOTA semi-supervised method DVSO [78] that additionally uses the depth from Stereo DSO [74] as sparse supervision signal.

4.1. Monocular Depth Estimation

KITTI. We train and evalutate the proposed self-

supervised depth estimation network on the split of Eigen at

el. [15]. The network is trained on stereo sequences with the

pre-processing proposed by Zhou et al. [86], which gives

us 39,810 training quadruplets, each of which contains 3

(left) temporal images and 1 (right) stereo image, and 4,424

for validation. The upper part of Table 1 shows the com-

parison with Monodepth2 [26] which is the state-of-the-art

method trained with stereo and monocular setting, and also

the ablation study of the proposed brightness transformation

prediction (ab) and the photometric uncertainty estimation

(uncer). The results demonstrate that the proposed depth es-

timation network outperforms Monodepth2 on all metrics.

The ablation studies unveil that the significant improvement

over Monodepth2 comes largely with uncer, possibly be-

cause in KITTI there are many objects with non-Lambertian

surfaces like windows and also objects that move indepen-

dently such as cars and leaves which violate the brightness

constancy assumption. The lower part of the table shows the

comparison to the state-of-the-art semi-supervised methods

and the results show that our method can achieve competi-

tive performance without using any depth supervision.

In Figure 4 we show some qualitative results obtained

from the Eigen test set [15]. From left to right, the original

image, the depth maps and the uncertainty maps are shown

respectively. For more qualitative results and the general-

ization capability on the Cityscapses dataset [8], please re-

fer to our supp. materials.

EuRoC MAV. The EuRoC MAV Dataset [5] is a dataset

containing 11 sequences categorized as easy, medium and

difficult according to the illumination and camera motion.

This dataset is very challenging due to the strong motion

and significant illumination changes both between stereo

and temporal images. We therefore consider it as a nice

test bench for validating the effectiveness of our predic-

tive brightness transformation parameters for depth predic-

K
IT

T
I

E
u

R
o

C
 M

A
V

Figure 4: Qualitative results from KITTI and EuRoC MAV. The

original image, the predicted depth maps and the uncertainty maps

are shown from the left to the right, respectively. In particular, the

network is able to predict high uncertainty on object boundaries,

moving objects, highly reflecting and high frequency areas.

RMSE RMSE (log) ARD SRD δ < 1.25

Monodepth2 0.370 0.148 0.102 0.065 0.890

Ours, ab 0.339 0.130 0.086 0.054 0.929

Ours, uncer 0.368 0.144 0.100 0.065 0.892

Ours, full 0.337 0.128 0.082 0.051 0.931

Table 2: Evaluation results of V2 01 in EuRoC MAV [5]. The

performance of monocular depth estimation is boosted largely by

the proposed predictive brightness transformation parameters.

RMSE RMSE (log) ARD SRD δ < 1.25

[28] 0.971 0.396 0.332 0.389 0.420

Ours 0.943 0.391 0.330 0.375 0.438

Table 3: Evaluation results of V2 01 in EuRoC MAV [5] with the

model trained with all MH sequences.

tion. Inspired by Gordon et al. [28] who recently generated

ground truth depth maps for the sequence V2 01 by project-

ing the provided Vicon 3D scans and filtering out occluded

points, we also use this sequence for depth evaluations1.

Our first experiment is set up to be consistent as in [28],

for which we train models with the monocular setting on all

1We thank the authors of [28] to provide the processing code.
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MH sequences and test on V2 01 and show the results in

Table 3.

In the second experiment, we use 5 sequences MH 01,

MH 02, MH 04, V1 01 and V1 02 as the training set to

check the performance of our method in a relatively loos-

ened setting. We remove the static frames for training and

this results in 12,691 images of which 11,422 images are

used for training and 1269 images are used for validation.

We train our model with different ablations, as well as Mon-

odepth2 [26] as the baseline. The results in Table 2 show

that all our variations outperform the baseline and, in con-

trast to the case in KITTI, the proposed ab improves the

results on this dataset significantly. Please refer to the supp.

materials for more experiments on ab. In fact, it is worth

noting that the results in Table 3 (trained on one scene MH

and tested on another scene V) are worse than the ones in

Table 2 (trained on both MH and V), which implies that it is

still a challenge to improve the generalization capability of

monocular depth estimation among very different scenarios.

4.2. Monocular Visual Odometry

We evaluate the VO performance of D3VO on both

KITTI Odometry and EuRoC MAV with the network

trained on the splits described in the previous section.

KITTI Odometry. The KITTI Odometry Benchmark

contains 11 (0-10) sequences with provided ground-truth

poses. As summarized in [78], sequences 00, 03, 04, 05,

07 are in the training set of the Eigen split that the proposed

network uses, so we consider the rest of the sequences as the

testing set for evaluating the pose estimation of D3VO. We

use the relative translational (trel) error proposed in [25] as

the main metric for evaluation. Table 4 shows the compari-

son with other state-of-the-art mono (M) as well as stereo

(S) VO methods on the rest of the sequences. We refer

to [78] for the results of the compared methods. Traditional

monocular methods show high errors in the large-scale out-

door scene like the sequences in KITTI due to the scale drift.

D3VO achieves the best performance on average, despite

being a monocular methods as well. The table also contains

the ablation study on the integration of deep depth (Dd),

pose (Dp) and uncertainty (Du). It can be noticed that, con-

sistent with the results in Table 1, the predicted uncertainty

helps a lot on KITTI. We also submit the results on the test-

ing sequences (11-20) to the KITTI Odometry evaluation

server (link). At the time of submission, D3VO outperforms

DVSO and achieves the best monocular VO performance

and comparable to other state-of-the-art LiDAR and stereo

methods.

We further compare D3VO with state-of-the-art end-to-

end deep learning methods and other recent hybrid methods

and show the results in Table 5. Note that here we only show

the results on Seq.09 and 10, since most of the end-to-end

methods only provide the results on these two sequences.

01 02 06 08 09 10 mean

M

DSO [16] 9.17 114 42.2 177 28.1 24.0 65.8

ORB [52] 108 10.3 14.6 11.5 9.30 2.57 37.0

S

S. LSD [18] 2.13 1.09 1.28 1.24 1.22 0.75 1.29

ORB2 [53] 1.38 0.81 0.82 1.07 0.82 0.58 0.91

S. DSO [74] 1.43 0.78 0.67 0.98 0.98 0.49 0.89

Dd 1.16 0.84 0.71 1.01 0.82 0.73 0.88

Dd+Dp 1.15 0.84 0.70 1.03 0.80 0.72 0.87

Dd+Du 1.10 0.81 0.69 1.03 0.78 0.62 0.84

D3VO 1.07 0.80 0.67 1.00 0.78 0.62 0.82

Table 4: Results on our test split of KITTI Odometry. The results

of the SOTA monocular (M) methods are shown as baselines. The

comparison with the SOTA stereo (S) methods shows that D3VO

achieves better average performance than other methods, while be-

ing a monocular VO. We also show the ablation study for the inte-

gration of deep depth(Dd), pose(Dp) as well as uncertainty(Du).

Seq. 09 Seq. 10

E
n
d
-t

o
-e

n
d

UnDeepVO [46] 7.01 10.63

SfMLearner [86] 17.84 37.91

Zhan et al. [82] 11.92 12.45

Struct2Depth [6] 10.2 28.9

Bian et al. [1] 11.2 10.1

SGANVO [21] 4.95 5.89

Gordon et al. [28] 2.7 6.8

H
y
b
ri

d

CNN-SVO [48] 10.69 4.84

Yin et al. [80] 4.14 1.70

Zhan et al. [83] 2.61 2.29

DVSO [78] 0.83 0.74

D3VO 0.78 0.62

Table 5: Comparison to other hybrid methods as well as end-to-

end methods on Seq.09 and 10 of KITTI Odometry.

We refer to [28, 78, 83] for the results for the compared

methods. D3VO achieves better performance than all the

end-to-end methods by a notable margin. In general, hy-

brid methods which combine deep learning with traditional

methods deliver better results than end-to-end methods.

EuRoC MAV. As introduced in Sec. 4.1, EuRoC

MAV is very challenging for purely vision-based VO due

to the strong motion and significant illumination changes.

VIO methods [44, 56, 71, 72] dominate this benchmark

by integrating IMU measurements to get a pose or mo-

tion prior and meanwhile estimating the absolute scale.

We compare D3VO with other state-of-the-art monocular

VIO (M+I) as well as stereo VIO (S+I) methods on se-

quences MH 03 medium, MH 05 difficult, V1 03 difficult,

V2 02 medium and V2 03 difficult. All the other sequences

are used for training. We refer to [9] for the results of the

M+I methods. The results of DSO and ORB-SLAM are

shown as baselines. We also show the results from the pro-

posed PoseNet (End-end VO). For the evaluation metric, we

use the root mean square (RMS) of the absolute trajectory

error (ATE) after aligning the estimates with ground truth.

The results in Table 6 show that with the proposed frame-

work integrating depth, pose and uncertainty from the pro-
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Figure 5: Qualitative comparison of the trajectories on MH 05 difficult and V1 03 difficult from EuRoC MAV.

M03 M05 V103 V202 V203 mean

M

DSO [16] 0.18 0.11 1.42 0.12 0.56 0.48

ORB [52] 0.08 0.16 1.48 1.72 0.17 0.72

M
+

I

VINS [57] 0.13 0.35 0.13 0.08 0.21 0.18

OKVIS [44] 0.24 0.47 0.24 0.16 0.29 0.28

ROVIO [3] 0.25 0.52 0.14 0.14 0.14 0.24

MSCKF [51] 0.23 0.48 0.24 0.16 0.13 0.25

SVO [22] 0.12 0.16 X X X 0.14+X

VI-ORB [54] 0.09 0.08 X 0.04 0.07 0.07+X

VI-DSO [72] 0.12 0.12 0.10 0.06 0.17 0.11

End-end VO 1.80 0.88 1.00 1.24 0.78 1.14

Dd 0.12 0.11 0.63 0.07 0.52 0.29

Dd+Dp 0.09 0.09 0.13 0.06 0.19 0.11

Dd+Du 0.08 0.09 0.55 0.08 0.47 0.25

D3VO 0.08 0.09 0.11 0.05 0.19 0.10

S
+

I

VINS [57] 0.23 0.19 0.11 0.10 - 0.17

OKVIS [44] 0.23 0.36 0.13 0.17 - 0.22

Basalt [71] 0.06 0.12 0.10 0.05 - 0.08

D3VO 0.08 0.09 0.11 0.05 - 0.08

Table 6: Evaluation results on EuRoC MAV [5]. We show the re-

sults of DSO and ORB-SLAM as baselines and compare D3VO

with other SOTA monocular VIO (M+I) and stereo VIO (S+I)

methods. Note that for stereo methods, V2 03 difficult is excluded

due to many missing images from one of the cameras [71]. Despite

being a monocular method, D3VO shows comparable results to

SOTA monocular/stereo VIO. The best results among the monoc-

ular methods are shown as black bold and the best among the

stereo methods are shown as blue bold. The ablation study shows

that Dd+Dp delivers large improvement on V1 03 difficult and

V2 03 difficult where the camera motions are very strong.

posed deep neural network, D3VO shows high accuracy as

well as robustness and is able to deliver comparable results

to other state-of-the-art VIO methods with only a single

camera. We also show the ablation study for the integration

of predicted depth (Dd), pose (Dp) and uncertainty (Du)

and the integration of pose prediction improves the perfor-

mance significantly on V1 03 difficult and V2 03 difficult

where violent camera motion occurs.

Figure 5 shows the qualitative comparison of trajectories

obtained from DSO [16], ORB-SLAM [52], visual inertial

DSO [72], the end-to-end predicted poses from our network

and D3VO on the MH 03 and V1 03 sequences. All the 5

methods can deliver fairly good results on MH 05 difficult.

On V1 03 difficult where the motions are stronger and there

are many brightness inconsistencies between temporal and

stereo images, D3VO can still deliver comparable results to

VI-DSO, while using only a single camera.

5. Conclusion

We presented D3VO as a monocular VO method that en-

hances the performance of geometric VO methods by ex-

ploiting the predictive power of deep networks on three lev-

els integrating predictions of monocular depth, photomet-

ric uncertainty and relative camera pose. To this end, we

first introduced a novel self-supervised monocular depth es-

timation network which explicitly addresses the illumina-

tion change in the training set with predictive brightness

transformation parameters. The network achieves state-of-

the-art results on KITTI and EuRoC MAV. The predicted

depth, uncertainty and pose are then incorporated into both

the front-end tracking and back-end non-linear optimiza-

tion of a direct VO pipeline. We systematically evalu-

ated the VO performance of D3VO on the two datasets.

D3VO sets a new state-of-the-art on KITTI Odometry and

also achieves state-of-the-art performance on the challeng-

ing EuRoC MAV, rivaling with leading mono-inertial and

stereo-inertial methods while using only a single camera.

Acknowledgements We would like to thank Niclas Zeller,
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