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Figure 1: (a) Unlike existing knowledge distillation methods that focus on only the prediction or the middle activation, our

method explicitly distills knowledge about how the teacher model embeds the topological structure and transfers it to the

student model. (b) We display the structure of the feature space, visualized by the distance between the red point and the

others on a point cloud dataset. Here, each object is represented as a set of 3D points. Top Row: structures obtained from

the teacher; Middle Row: structures obtained from the student trained with the local structure preserving (LSP) module;

Bottom Row: structures obtained from the student trained without LSP. Features in the middle and bottom row are obtained

from the last layer of the model after training for ten epochs. As we can see, model trained with LSP learns a similar structure

as that of the teacher, while the model without LSP fails to do so.

Abstract

Existing knowledge distillation methods focus on con-

volutional neural networks (CNNs), where the input sam-

ples like images lie in a grid domain, and have largely

overlooked graph convolutional networks (GCN) that han-

dle non-grid data. In this paper, we propose to our best

knowledge the first dedicated approach to distilling knowl-

edge from a pre-trained GCN model. To enable the knowl-

edge transfer from the teacher GCN to the student, we

propose a local structure preserving module that explic-

itly accounts for the topological semantics of the teacher.

In this module, the local structure information from both

the teacher and the student are extracted as distributions,

and hence minimizing the distance between these distribu-

tions enables topology-aware knowledge transfer from the

†Corresponding author.

teacher, yielding a compact yet high-performance student

model. Moreover, the proposed approach is readily extend-

able to dynamic graph models, where the input graphs for

the teacher and the student may differ. We evaluate the pro-

posed method on two different datasets using GCN models

of different architectures, and demonstrate that our method

achieves the state-of-the-art knowledge distillation perfor-

mance for GCN models.

1. Introduction

Deep neural networks (DNNs) have demonstrated their

unprecedented results in almost all computer vision tasks.

The state-of-the-art performances, however, come at the

cost of the very high computation and memory loads, which

in many cases preclude the deployment of DNNs on the

edge side. To this end, knowledge distillation has been pro-
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posed, which is one of the main streams of model compres-

sion [14, 2, 38, 46]. By treating a pre-trained cumbersome

network as the teacher model, knowledge distillations aims

to learn a compact student model, which is expected to mas-

ter the expertise of the teacher, via transferring knowledge

from the teacher.

The effectiveness of knowledge distillation has been

validated in many tasks, where the performance of the

student closely approaches that of the teacher. Despite

the encouraging progress, existing knowledge distillation

schemes have been focusing on convolutional neural net-

works (CNNs), for which the input samples, such as im-

ages, lie in the grid domain. However, many real-life data,

such as point clouds, take the form of non-grid structures

like graphs and thus call for the graph convolutional net-

works (GCNs) [35, 10, 17, 12]. GCNs explicitly looks into

the topological structure of the data by exploring the local

and global semantics of the graph. As a result, conventional

knowledge distillation methods, which merely account for

the output or the intermediate activation and omit the topo-

logical context of input data, are no longer capable to fully

carry out the knowledge transfer.

In this paper, we introduce to our best knowledge the

first dedicated knowledge distillation approach tailored for

GCNs. Given a pre-trained teacher GCN, our goal is to train

a student GCN model with fewer layers, or lower-dimension

feature maps, or even a smaller graph with fewer edges. At

the heart of our GCN distillation is the capability to encode

the topological information concealed in the graph, which is

absent in prior CNN-based methods. As depicted in Fig. 1,

the proposed method considers the features of node as well

as the topological connections among them, and hence pro-

vides the student model richer and more critical information

about topological structure embedded by the teacher.

We illustrate the workflow of the proposed GCN knowl-

edge distillation approach in Fig. 2. We design a local

structure preserving (LSP) module to explicitly account for

the graphical semantics. Given the embedded feature of

node and the graph from teacher and student, the LSP mod-

ule measures the topological difference between them and

guides the student to obtain a similar topological embedding

as the teacher does. Specifically, LSP first generates distri-

bution for each local structure from both the student and the

teacher, and then enforces the student to learn a similar local

structure by minimizing the distance between the distribu-

tions. Furthermore, our approach can be readily extended to

dynamic graph models, where the graphs are not static but

constructed by the teacher and student model dynamically.

To see the distillation performance, we evaluate our

method on two different tasks in different domains include

Protein-Protein Interaction dataset for node classification

and ModelNet40 for 3D object recognition. The models

used in these two tasks are in different architectures. Ex-

periments show that our method consistently achieves the

best knowledge distillation performance among all the com-

pared methods, validating the effectiveness and generaliza-

tion of the proposed approach.

Our contributions are summarized as following:

• We introduce a novel method for distilling knowledge

from graph convolutional network. To the best of our

knowledge, this is the first dedicated knowledge distil-

lation method tailored for GCN models.

• We devise a local structure preserving (LSP) method

to measure the similarity of the local topological struc-

tures embedded by teacher and student, enabling our

method to be readily extendable to dynamic graph

models.

• We evaluate the proposed method on two different

tasks of different domains and on GCN models of dif-

ferent architectures, and show that our method outper-

forms all other methods consistently.

2. Related Work

Many methods have been proposed to distill the knowl-

edge from a trained model and transfer it to a student model

with smaller capacity [2, 38, 45]. Although there are many

distillation strategies that do not only utilize the output [14]

but also focus on the intermediate activation [31, 47, 16],

they are all designed for the deep convolutional network

with the grid data as input.

Our method, however, focuses on the graph convolu-

tional networks, which handles a more general input that

lies in the non-grid domain. To the best of our knowledge,

this is the first attempt along this line. In what follows, we

briefly review several tasks that are related to our method.

Knowledge Distillation. Knowledge Distillation (KD)

is first proposed in [14], where the goal is distilling the

knowledge from a teacher model that is typical large into

a smaller model so that the student model can hold a simi-

lar performance as the teacher’s. In this method, the output

of teacher is smoothed by setting a high temperature in the

softmax function, which make it contains the information

of the relationship among classes. Beside the output, in-

termediate activation can also be utilized to better train a

student network. FitNet [31] forces the student to learn a

similar features as teacher’s by adding an additional fully

connected layer to transfer features of student model. [47]

proposes a method to transfer the attention instead of the

feature itself to get a better distillation performance. More-

over, NST [16] provides a method to learn a similar activa-

tion of the neurons. There are also many other methods in

this field [23, 2, 38, 36, 24, 4, 34, 45, 5, 4], but none of them

provide a solution that is suitable for GCN.
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Figure 2: Framework of the proposed knowledge distillation method for GCNs. The local structure preserving module is the

core of the proposed method. Given the feature maps and the graphs from the teacher and the student, we first compute the

distribution of the local structure for each node and then match the distributions of the teacher with that of the student. The

student model will be optimized by minimizing the difference of distribution among all the local structures.

Knowledge Amalgamation. Knowledge amalgama-

tion [33, 22, 32, 44] aims to learn a student network from

multiple teachers from different domains. The student

model is trained as a multi-task model and learns from

all the teachers. For example, a method of knowledge

amalgamation is proposed in [43] to train a student model

from heterogeneous-task teachers include scene parsing

teacher, depth estimation teacher and surface-normal esti-

mation teacher. The student model will have a backbone

network trained from all the teachers’ knowledge and also

several heads for different tasks trained from the corre-

sponding teacher’s knowledge. MTZ [13] is a framework

to compress multiple but correlated models into one model.

The knowledge is distilled via a layer-wise neuron sharing

mechanism. CFL [25] distills the knowledge by learning a

common feature space, wherein the student model mimics

the transformed features of the teachers to aggregate knowl-

edge. Although many such methods are proposed, the mod-

els involved are usually limited within grid domain.

Graph Convolutional Network. In recent years, graph

convolutional network [9, 6, 21, 27, 10, 42] has been proved

to be a powerful model for non-grid data, which is typi-

cally represented as a set of nodes with features along with

a graph that represents the relationship among nodes. The

first GCN paper [17] shows that the GCN can be built by

making the first-order approximation of spectral graph con-

volutions. A huge amount of methods have been proposed

to make the GCN more powerful. GraphSAGE [12] gives

a solution to make the GCN model scalable for huge graph

by sampling the neighbors rather than using all of them.

GAT [35] introduces the attention mechanism to GCN to

make it possible to learn the weight for each neighbors auto-

matically. [15] improves the efficient of training by adaptive

sampling. In this paper, instead of designing a new GCN,

we focus on how to transfer the knowledge effectively be-

tween different GCN models.

3D Object Recognition. One of the setups for 3D ob-

ject recognition is predicting the label of the object given a

set of 3D points belong to it [28, 30]. Deep learning based

methods [39, 11, 7, 20, 29, 26] outperform the previous

methods that based on hand-crafted feature extractors [1, 3].

Moreover, GCN based methods [8, 19, 37, 18, 41], which

can directly encode the structure information from the set of

points, become one of the most popular directions along this

line. Graph in these methods are typically obtained by con-

necting the k nearest points, where the distance is measured

in the original space [18] or the learned feature space [37].

3. Method

In this section, we first give a brief description about the

GCN followed by the motivation of the proposed knowl-

edge distillation method that is based on the observation of

the fundamental mechanism of GCN. We then provide the

details about the local structure preserving (LSP) module,

which is the core of our proposed method. Moreover, we

explore the different choices of the distance functions used

in the LSP module. Finally, we give the scheme to extend

LSP to the dynamic graph models.

3.1. Graph Convolutional Network

Unlike the traditional convolutional networks that take

grid data as input and output the high-level features, the in-

put of graph convolutional networks can be non-grid, which

is more general. Such non-grid input data is typically repre-

sented as a set of features X = {x1, x2, ..., xn} ∈ R
F , and

a directed/undirected graph G = {V, E}. For example, in

the task of 3D object recognition, we can set xi as the 3D

coordination and E as the set of the nearest neighbors.

Given the input X and G, the core operation of graph

convolutional network is shown as:

x′
i = Aj:(j,i)∈Ehθ(gφ(xi), gφ(xj)), (1)

where hθ is a function that considers the features in pair

wise, gφ is a function to map the features into a new space,

A is the strategy of how to aggregate features from the

neighbors and get the new feature of the center node i.
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There are many choices of function h, function g and

the aggregation strategies. Take the graph attention net-

work [35] as an example. it can be formulated as

x′
i =

∑

j:j,i∈E

eMLP1(xi||xj)

∑

j:(j,i)∈E(e
MLP1(xi||xj))

MLP2(xi), (2)

where the function g is designed as a multilayer perceptron,

function h is another multilayer perceptron that takes pair of

nodes as input and predict the attention between them. The

aggregation strategy is weighted summing all the features

of neighbors according to the attention after normalization.

3.2. Motivation

The motivation of the proposed method is based on the

fundamental of graph convolutional network. As shown

in Eq. 1, the aggregation strategy (A) plays an important

role in embedding the features of nodes [21, 35], which is

learned during the training process. We thus aim to pro-

vide the student the information about the function that the

teacher has learned. However, it is challenging to distill

knowledge that exactly represents the aggregation function

and transfer it to the student. Instead of distilling the ag-

gregation function directly, we distill the outcomes of such

function: the embedded topological structure. The student

can then be guided by matching the structure embedded by

itself and that embedded by the teacher. We will show in the

following sections how to describe the topological structure

information and distill it to the student.

3.3. Local Structure Preserving

For the intermediate feature maps of a GCN, we can

formulate it as a graph G = {V, E} and a set of features

Z = {z1, z2, ..., zn} ∈ R
F , where n is the number of

nodes, F is the dimension of the feature maps. The lo-

cal structure can be summarized as a set of vectors LS =
{LS1, LS2, ..., LSn}, LSi ∈ R

d, where d is the degree of

the center node i of the local structure. Each element of the

vector is computed by

LSij =
eSIM(zi,zj)

∑

j:(j,i)∈E(e
SIM(zi,zj))

, (3)

SIM(zi, zj) = ||zi − zj ||
2
2. (4)

where SIM is a function that measures the similarity of

the given pair of nodes, which can be defined as the eu-

clidean distance between the two features. There are also

many other advanced functions can be used here, which we

will give more details in the following section. We take an

exponential operation and normalize the values across all

the nodes that point to center of the local structure. As a

result, for each node i, we can obtain its corresponding lo-

cal structure representation LSi ∈ R
d by applying Eq. 3.

Notice that for different center node, their local structure

representation may be in different dimension, which is de-

pended on it’s local graph.

In the setting of knowledge distillation, we are given a

teacher network as well as a student one, where the teacher

network is trained and fixed. We first provide here a local

structure preserving strategy under the situation that both

these two networks take the same graph as input but with

different layers and dimension of embedded features. For

the dynamic graph models, where the graph can be changed

during the optimization process, we will give a solution in

the section 3.5.

Given the intermediate feature maps, we can compute

the local structure vectors for both the teacher and the stu-

dent networks, which are donated as LSs and LSt. For

each center node i, the similarity of the local structure be-

tween the student’s and the teacher’s can be computed as

Si = DKL(LS
s
i ||LS

t
i ) =

∑

j:(j,i)∈E

LSs
ij log(

LSs
ij

LSt
ij

), (5)

where the Kullback Leibler divergence is adopted.

A smaller Si means a more similar distribution of the

local structure. Thus, we compute the similarity of the dis-

tributions over all the nodes of the given graph and obtain

the local structure preserving loss as

LLSP =
1

N

N
∑

i=1

Si. (6)

The total loss is formulated as:

L = H(ps, y) + λLLSP (7)

where y is the label and ps is the prediction of the student

model, λ is the hyperparameter to balance these two losses

and H represents cross entropy loss function that is also

adopted by many other knowledge distillation methods [31,

16, 47].

3.4. Kernel Function

The similarity measurement function shown in Eq. 4

makes a strong assumption about the feature space that the

similarity between pair of nodes is proportional to their eu-

clidean distance, which is typically not the truth. We thus

apply the kernel trick, which is very useful to map the vec-

tors to a higher dimension and compute the similarity, to

address this problem.

Kernel tricks are widely used in the traditional statisti-

cal machine learning methods. In that situation, the original

feature vector will be mapped to a higher dimension by a

implicit function ϕ. The similarity of the feature vector will

then be computed as the inner product of the two mapped

vectors as 〈ϕ(zi), ϕ(zj)〉. By adopting the kernel function,
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Figure 3: Handling models with a dynamic graph, where

the graph may be updated during the training process. We

address this problem by first adding virtual edges according

to the union of the two graphs from the student model and

teacher model. The local structure preserving module can

be then applied to the new graph directly.

we can compute the above two steps together without know-

ing the expression of ϕ.

There are several choices of the kernel functions. Three

of the most common used kernel functions are linear func-

tion (Linear), polynomial kernel function (Poly) and radial

basis function (RBF) kernel:

K(zi, zj) =











(zTi zj + c)d Poly

e−
1

2σ2
||zi−zj ||

2

RBF

zTi zj Linear

(8)

In this paper, we adopt and compare these three kernel func-

tions and also the L2 Norm. For the polynomial kernel func-

tion, d and c are set to two and zero respectively. For the

RBF, σ is set to one.

3.5. Dynamic Graph

While the above method can be applied to the GCN mod-

els that with a fixed graph as input, it lacks flexibility for dy-

namic graph models. In the setup of dynamic graph model,

both the feature of the nodes and the connection among

them can be changed. Take the DGCNN model [37] as an

example, the graph is initially constructed according to the

3D coordination of the input nodes/points and will be re-

constructed once a new feature of nodes are obtained.

The advantage of dynamic graph is that the graph can

represent the topological connection in a learned feature

space rather than always in the initial feature space. How-

ever, such dynamic graph method can cause a problem to

the local structure preserving module we mentioned above.

The left of Fig. 3 is a case of the intermediate graphs gen-

erated by the DGCNN model. For each layer, the graph is

constructed by finding the K closet nodes for each node,

where K is the hyperparameter. Directly computing the lo-

cal structure vector using above method is meaningless be-

cause the distributions will come from a total different order

of nodes.

We proposed a strategy to deal with such kind of situa-

tion by adding virtual edges to the graph in both the teacher

model and student one. As shown in Fig. 3, given the two

graphs constructed by the teacher and the student, which

typically do not hold the same distribution of edges, we ob-

tain the union of edges Eu
•i = {(j, i) : (j, i) ∈ Et|(j, i) ∈

Es} for each center node i. A similar local structure vector

can be obtained by replacing E with Eu in Eq. 3. Notice that

although we adding the virtual edges for both the graphs, we

only use them for local structure preserving module. The

models still use their original graph to aggregate and update

the feature of nodes. By considering the union structure of

these two graphs, the generated local structure vectors now

involve the nodes with the same distribution, which makes

it possible for the student network to learn the topological

relationship learned by the teacher.

Such strategy not only make it possible to compare

the embedded local structure with different distribution of

neighbors but also compare between local structure with

different size of neighbors. It means that we can distill the

knowledge from a teacher model with a large K to the stu-

dent model with smaller K.

4. Experiments

In this section, we first give a brief description about the

comparison methods. Then, we provide the experimental

setup include the datasets we used, the GCN models we

adopted and the details for each comparison methods. No-

tice that our goal is not to achieve the state-of-the-art per-

formance in each dataset or task but to transfer as mush as

information from the teacher model the student one. This

can be measured by the performance of the student model

when the same teacher pre-trained model is involved.

We adopt two datasets in different domains, One is the

protein-protein interaction (PPI) [48] dataset where the

graphs come from the human tissues. This is a com-

mon used dataset for node classification [35, 12]. Another

dataset is ModelNet40 [40] that contains point clouds come

from the CAD models, which is a common used dataset for

3D object analysis [28, 30, 19, 37].

We also evaluate the proposed knowledge distilla-

tion method on GCN models with different architectures.

Specifically, for the PPI dataset, GAT [35] model is adopted

that takes fixed graph as input. For the ModelNet40 dataset,

DGCNN [37] model with dynamic graph is adopted. We

show in the experiments that our proposed method achieve

the state-of-the-art distillation performance under various

setups.
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4.1. Comparison Methods

Since there is no knowledge distillation method designed

for GCN models, we implement three knowledge distilla-

tion methods that can be used directly in a GCN model in-

cludes KD method [14], FitNet method [31] and attention

transfer method (AT) [47]. Neuron selectivity transfer [16]

is also one of the knowledge distillation methods for tra-

ditional convolutional networks. We leave it out since it

makes an assumption that the size of the feature maps of

student’s and teacher’s should be in the same size, which is

not the case of our setup for the student and teacher mod-

els. Besides all the methods, we also set a baseline method

which is training the student model with the original loss.

The summary of the comparison methods is as follow:

• KD method [14] is the first attempt for distilling

knowledge from a teacher network. It utilizes a soften

labels generated by the teacher network as an addi-

tional supervision. The intuition behind this method

is that the soften label contains the similarity informa-

tion among the classes learned by the teacher network.

Since this method only relies on the output, it is suit-

able for most kinds of models.

• FitNet method [31] does not only make use of the

output of the teacher model but also consider the in-

termediate feature maps. This method based on an as-

sumption that the feature of the teacher model can be

recovered from the feature of the student when the stu-

dent is well trained. It introduces an additional map-

ping function to map the feature of student’s to that of

the teacher’s and compute the L2 distance between the

mapped feature and the teacher’s feature.

• Attention transfer method (AT) [47] provides an-

other way to transfer the knowledge in attention do-

main. In this method, the student model is forced to

focus on the similar spatial areas like the teacher does,

which is achieved by adding an L2 loss between their

attention maps. The attention map can be obtained

from the feature maps and keep in the same size with-

out consideration of the different channels.

4.2. Node Classification

In the node classification task, we are given the input

nodes with associated features and also the graph. The goal

is to generate the embedded feature for each node such that

nodes with different classes can be separated. We adopt

protein-protein interaction (PPI) dataset that contains 24

graphs corresponding to different human tissues. We fol-

low the same dataset splitting protocol, wherein 20 graphs

are used for training, two graphs are used for validation and

another two graphs are used for testing. The average num-

ber of nodes for each graph in this dataset is 2372 and each

node has an average degree of 14. The dimension of input

feature of the nodes is 50 and the number of class is 121.

For this dataset and task, we adopt GAT model for both

the teacher model and student model. Since this is a multi-

label task, where each node can belong to more than one

classes, the binary cross entropy loss is adopted. The archi-

tecture of these two models are shown as follow:

Model Layers Attention heads Hidden features

Teacher 3 4,4,6 256,256,121

Student 5 2,2,2,2,2 68,68,68,68,121

Table 1: Summary of the teacher and student models used

on the PPI dataset for node classification. The student net-

work is deeper than the teacher but with lower dimension of

hidden features.

Model Params RunTime Training F1 Score

Teacher 3.64M 48.5ms 1.7s/3.4G 97.6

Student Full 0.16M 41.3ms 1.3s/1.2G 95.7

Student KD [14] - - - -

Student AT [47] 0.16M 41.3ms 1.9s/1.4G 95.4

Student FitNet [31] 0.16M 41.3ms 2.4s/1.6G 95.6

Student LSP (Ours) 0.16M 41.3ms 2.0s/1.5G 96.1

Table 2: Node classification results on the PPI dataset.

Teacher model used on this dataset is a GAT model with

three hidden layers. full means the student model is trained

with the ground truth labels without the teacher model.

The results are shown in Tab. 2. Params represents the

total number of parameters; RunTime is the inference time

for one sample and Training is the training time/GPU mem-

ory usage for one iteration, which is measured in a Nvidia

1080Ti GPU. The optimizer, learning rate, weight decay

and training epochs are set to Adam, 0.005, 0 and 500 re-

spectively for all the methods. All other hyperparameters

for each method are tuned to obtain the best results on the

validation set. Specifically, for AT method, the attention is

computed by as
∑C

i=1 |Fi|; For ours, the kernel function is

set to RBF and λ is set to 100. Notice that the loss function

does not involve the softmax function. Therefore, the KD

method, which is used by setting a high temperature in a

softmax function, is not suitable here.

As what can be seen, all the knowledge distillation meth-

ods expect ours fail to provide a positive influence to the

student model and lead to a drop of the performance respect

to the performance of model trained with the original loss.

Our method, thanks to the ability to transfer the local struc-

ture information to the student model, provides a positive

influence and lead to a student model with the best perfor-

mance among all the comparison methods.

4.3. 3D Object Recognition

We adopt ModelNet40 [40] dataset for the 3D object

recognition task, wherein the object is represented by a set

of points with only the 3D coordination as features. There

7079



Epoch 1 Epoch 5 Epoch 10 Epoch 20 Epoch 50 Epoch 100

Near Far

Teacher

S
tu

de
nt

w
/o

 L
S
P

S
tu

de
nt

 w
/ L

S
P

St
ud

en
t w

/o
 L

S
P

S
tu

de
nt

w
/ L

S
P

S
tu

de
nt

w
/o

 L
S
P

S
tu

de
nt

w
/ L

S
P

S
tu

de
nt

w
/o

 L
S
P

S
tu

de
nt

w
/ L

S
P

S
tu

de
nt

w
/o

 L
S
P

S
tu

de
nt

w
/ L

S
P

Figure 4: Visualization of the structure of the learned feature space, depicted by the distance between the red point and others.

The features are extracted from the last layer of models. From left to right, we show the structure from the model trained in

epoch 1, 5, 10, 20, 50, and 100. The rightmost column are obtained from the teacher model. For each object, the lower row

is obtained from student model trained with our proposed method, and the upper row is obtained from student model trained

with cross entropy loss. Our proposed knowledge distillation method guides the student model to embed the local structure

as the teacher model does, leading to a similar structure in the very early training stage.

are 40 classes on this dataset and objects in each class come

from the CAD models.

In this experiment, the architecture of both the teacher

and student models is the same as DGCNN [37]. DCGNN

is a dynamic graph convolutional model that makes both

the advantages of the PointNet [28] and graph convolutional

network. The graph here is constructed according to the dis-

tance of the points in their feature space. Since the feature

space is different in different layers and different training

stages, the graph is also changed, making it a dynamic graph

convolutional model.

The teacher model is under the same setup as the orig-

inal paper: it has five graph convolutional layers followed

by two fully connected layers. The student model has four

graph convolutional layers with fewer feature map channels

followed by one fully connected layers. The size of graph

used in the student model, which is determined by the num-

ber of neighbors (K) when constructing the graph, is also

smaller than the teacher’s. The details of these two models

are summarized in Tab. 3.
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Model Layers Feature map’s size MLPs K

Teacher 5 64,64,128,256,1024 512,256 20

Student 4 32,32,64,128 256 10

Table 3: Summary of the teacher and student models used

on the ModelNet40 dataset. The student network is with

less layers, fewer channels, and smaller input graphs.

The results are shown in Tab. 4. For the KD method,

α is set to 0.1, the same as the original paper. The opti-

mizer, learning rate, momentum and training epoch are set

to SGD, 0.1, 0.9, 250 respectively for all the comparison

methods. The other hyperparameters for each method are

turned to obtain the best accuracy on the validation set. For

our method, the kernel function is set to RBF and λ is set to

100.

We can see from the results that both KD method and

AT method can boost the performance of the student model.

Our method, thanks to the ability to learn the structure in-

formation from dynamic graph, generates the best student

model for both the accuracy and mean class accuracy. The

student model with only fix percent parameters can achieve

a similar performance as the teacher model, which shows

the generalization ability of the proposed method for differ-

ent tasks and different architectures.

Model Params RunTime Training Acc mAcc

Teacher 1.81M 8.72ms 30s/4.2G 92.4 89.3

Student Full 0.1M 3.31ms 12s/1.4G 91.2 87.5

Student KD [14] 0.1M 3.31ms 15s/1.4G 91.6 88.1

Student AT [47] 0.1M 3.31ms 21s/1.7G 91.6 87.9

Student FitNet [31] 0.1M 3.31ms 28s/2.4G 91.1 87.9

Student LSP (Ours) 0.1M 3.31ms 29s/2.2G 91.9 88.6

Table 4: 3D object recognition results on ModelNet40.

Teacher network used here is a DGCNN model with four

graph convolutional layers.

4.4. Structure Visualization

In order to provide an intuitive understanding of the pro-

posed method, we visualize the structure of the learned fea-

ture space during the process of optimization, which is rep-

resented by the distance among points in the object. As

shown in Fig. 4, the student model trained with the pro-

posed method (shown in the lower row for each object) can

learn a similar structure as the teacher model very quickly

in the early training stage. It can partially explain why the

proposed method can generate a better student model.

4.5. Ablation and Performance Studies

To thoroughly evaluate our method, we provide here ab-

lation and performance studies include the influence of dif-

ferent kernel functions as well as the performance for dif-

ferent student model configurations. All the experiments for

this section are conducted on the ModelNet40 dataset.

Different Kernel Functions. We test all the three differ-

ent kernel functions as Eq. 8 and also the naive L2 Norm.

The results are shown in Tab. 5. All the functions can pro-

vide the positive information to get a better student model

and RBF works the best.

Model Acc mAcc

LSP w/ L2 Norm 91.4 88.3

LSP w/ Polynomial function 91.7 87.7

LSP w/ RBF 91.9 88.6

LSP w/ Linear function 91.5 87.8

Table 5: Performance with different kernel functions. RBF

achieves the overall best performance.

Different Model Configurations. We provide here the

experiments to evaluate the trade-off between the model

complexity and the performance when training with our

proposed method. Specifically, we change the student

model by adding more channels to each layer, adding one

more graph convolutional layers and adding one more fully

connected layers. Notice that student model with more

channels holds almost the same accuracy performance as

the teacher model but with less many parameters.

Model Params (M) RunTime (ms) Acc mAcc

W/ more Channels 0.44 3.83 92.3 88.7

W/ more Layers 0.14 4.26 92.1 89.2

W/ more MLPs 0.30 3.67 91.8 88.6

Table 6: Performance with different model configurations

to evaluate the trade-off between performance and model-

size/run-time.

5. Conclusion

In this paper, we propose a dedicated approach to dis-

tilling knowledge from GCNs, which is to our best knowl-

edge the first attempt along this line. This is achieved by

preserving the local structure of the teacher network during

the training process. We represent the local structure of the

intermediate feature maps as distributions over the similar-

ities between the center node of the local structure and its

neighbors, so that preserving the local structures are equiv-

alent to matching the distributions. Moreover, the proposed

approach can be readily extended to dynamic graph mod-

els. Experiments on two datasets in different domains and

on two GCN models of different architectures demonstrate

that the proposed method yields state-of-the-art distillation

performance, outperforming existing knowledge distillation

methods.
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