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Abstract

In this paper, we introduce a novel RGB-D based rel-

ative pose estimation approach that is suitable for small-

overlapping or non-overlapping scans and can output mul-

tiple relative poses. Our method performs scene completion

and matches the completed scans. However, instead of us-

ing a fixed representation for completion, the key idea is to

utilize hybrid representations that combine 360-image, 2D

image-based layout, and planar patches. This approach of-

fers adaptively feature representations for relative pose es-

timation. Besides, we introduce a global-2-local matching

procedure, which utilizes initial relative poses obtained dur-

ing the global phase to detect and then integrate geometric

relations for pose refinement. Experimental results justify

the potential of this approach across a wide range of bench-

mark datasets. For example, on ScanNet, the rotation trans-

lation errors of the top-1/top-5 predictions of our approach

are 28.6◦/0.90m and 16.8◦/0.76m, respectively. Our ap-

proach also considerably boosts the performance of multi-

scan reconstruction in few-view reconstruction settings.

1. Introduction

Estimating the relative pose between two RGB-D scans

is a crucial problem in 3D vision and robotics. In this pa-

per, we are interested in the setting where the overlapping

region between two input scans is small, or they may not

even overlap. Efficient and robust solutions to this extreme

relative pose problem (c.f. [49]) enjoy a wide range of ap-

plications. Examples include 3D reconstruction from a few

views [12] (e.g., RGB-D scans of an indoor scene captured

at a few distinctive locations), enhancing the performance

of interactive scanning [42, 35] when there are interruptions

during the acquisition process, early detection of loop clo-

sure [2], and solving jigsaw puzzles [8].

A standard pipeline in relative pose estimation or object

matching, in general, is to first extract features from the

input objects and then match these features to derive rel-

ative poses or dense correspondences [19, 1]. While early

works [15, 21] use hand-crafted features or matching proce-
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(a) RobustRecons (b) Ours (c) Ground-truth

Figure 1: Results of multi-scan alignment under the few-

view setting. Each block shows the results from 5 randomly

sampled scans of a 3D scene that show minimal overlaps.

(a) RobustRecons [9]. (b) Our approach. (c) Ground-truth.

dures, recent works [16, 33, 39] have focused on applying

deep neural networks to aid this pipeline. The challenge in

the extreme relative pose setting is that there are insufficient

features to match, and one has to leverage priors about the

underlying object/scene. In this paper, we focus on two as-

pects of utilizing deep neural networks to instill priors into

feature extraction and feature matching.

The first aspect focuses on completing the input scans

and matching completed scans [49]. This strategy learns

from data to predict the surrounding regions of each input

scan, turning non-overlapping scans into overlapping scans.

A critical factor in this context is the data representation

for scan completion. This representation not only dictates

the extracted features for relative pose estimation but also

affects the type of completion networks. Instead of focus-

ing on one data representation, a key contribution of this

paper is to combine multiple data representations (i.e., 360-

image [49], 2D layout [40], and planar patches [32]) for

scan completion. Our approach then extracts a subset of

consistent features to compute the relative pose. The pro-

posed hybrid representation exhibits two appealing advan-

tages. First, it alleviates the issue of lacking a particular

type of feature on the input scans (e.g., planar elements from
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non-planar scenes). Second, the matched features are adap-

tive to the input scan type and the relation between the input

scans (e.g., dense point-wise features among overlapping

regions and primitive features for non-overlapping scans).

The second aspect lies in the type of constraints between

features for relative pose estimation. Instead of using a

single module, our approach follows a global-2-local pro-

cedure. This procedure makes it possible to utilize dif-

ferent constraints at various pipeline stages. Specifically,

the global matching module computes initial relative poses

by performing spectral matching [28, 20] to align features

extracted from the completed scans. The local refinement

module, which benefits from having initial relative poses,

detects and integrates additional pairwise geometric rela-

tions (e.g., parallel planes and distances between planes) for

pose refinement. This sequential procedure can be easily

modified to output multiple relative poses to model ambi-

guities in extreme relative pose estimation.

We have evaluated our approach on scan pairs from

three benchmark datasets, including SUNCG [44], Matter-

port [6], and ScanNet [11]. For randomly sampled scan

pairs, the mean top-1 rotation/translation errors of our ap-

proach are 18.1◦/0.16m, 22.3◦/0.39m, and 28.6◦/0.90m,

on SUNCG, Matterport, and ScanNet, respectively. In con-

trast, the state-of-the-art approach achieved 31.1◦/0.27m,

34.2◦/0.53m, and 34.1◦/0.93m, respectively. These im-

provements show the advantage of using a hybrid 3D repre-

sentation for relative pose estimation. Moreover, the mean

top-5 errors in rotation/translation dropped to 7.8◦/0.21m,

14.3◦/0.41m, and 16.8◦/0.76m. These performance gains

show that ambiguities are abundant in extreme relative pose

estimation, and the multiple solutions returned by our ap-

proach can effectively address such ambiguities.

Besides, we demonstrate the usefulness of our approach

in multi-scan reconstruction. Experimental results show

that combing our method and the pose optimizer of MRF-

SFM [10] enables faithful 3D reconstructions from a few

views and outperforms state-of-the-art multi-scan recon-

struction approaches (See Figure 1).

2. Related Works

Relative pose estimation via feature matching. Global

relative pose estimation approaches usually fall into two

categories (c.f. [30, 48]). The first category of approaches

leverages global descriptors or performs Fourier transform

to align two input scans. These methods are most suitable

for matching complete objects. The second category of ap-

proaches performs feature matching, e.g., RANSAC [13],

robust regression [4], and spectral matching [20, 29], to es-

timate relative poses. However, these approaches still re-

quire that the input scans possess considerable overlapping

regions. In contrast, this paper focuses on relative pose es-

timation between potentially non-overlapping scans.

Relative pose estimation via local optimization. Besides

global matching, another category of relative pose estima-

tion approaches focuses on local pose refinement [46]. A

standard method is geometric alignment [3, 7], which min-

imizes point-wise distances between a pair of scans in their

overlapping region. However, existing approaches typically

require that the input scans are overlapping (c.f. [46]). In

contrast, this paper proposes to solve the local pose refine-

ment problem by learning and enforcing geometric relation

(perpendicular, parallel, co-planar), which is suitable for

both overlapping and non-overlapping scans.

Learning based relative pose estimation. Thanks to ad-

vances in deep learning that provide powerful tools to es-

tablish maps between different domains, recent works [33,

47, 51, 24, 39] formulate relative pose estimation as train-

ing pose estimation networks. Early works [33, 47, 51]

usually follow the procedure of feature extraction and then

relative pose estimation using a correlation module. Re-

cent works [24, 39] employ more sophisticated matching

techniques such as recurrent neural networks. However,

most existing approaches still require that the two input

scans possess significant overlaps, with the noticeable ex-

ception of [31], which first estimate local layout for partial

scans then use hand-coded floorplane priors to assembly all

pieces. Our approach differs in that we leverage the pri-

ors by explicitly learning a hybrid completion components

from data.

This work is most relevant to [49], which presents a rela-

tive pose estimation approach that first performs scene com-

pletion and then computes a single relative pose prediction

via geometric matching on the completed scenes. The dif-

ference in this work is that we employ a hybrid 3D scene

completion in contrast to the 360-image employed in [49].

Besides, our approach introduces a novel geometric match-

ing procedure that outputs multiple solutions and a learned

local pose refinement module.

Scene completion. Our approach is also motivated by re-

cent advances in inferring complete environments from par-

tial observations [37, 23, 45, 22, 52]. However, our ap-

proach differs from these approaches in two ways. First,

in contrast to returning the completion as the final out-

put [45, 52] or utilizing it for learning feature representa-

tions [37, 22] or motion policies [23], our approach treats

completions as an intermediate representation for feature

extraction and detecting geometric relations. More impor-

tantly, instead of using a single representation for scene

completion, our approach utilizes multiple representations

and lets the geometric matching module to pick the most

suitable representations for relative pose estimation.

3. Approach

This section describes the technical details of our ap-

proach. Section 3.1 presents an overview of our approach.

Section 3.2 to Section 3.4 discuss each component in depth.
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Figure 2: Our approach takes two potentially non-overlapping RGB-D scans as input and outputs one or multiple relative poses between

them. The proposed pipeline combines a global module and a local module. The global module takes a pair of RGB-D scans as input and

outputs multiple relative poses between them. The local module refines each relative pose by enforcing predicted geometric relations.

3.1. Problem Statement and Approach Overview

Our approach takes two RGB-D scans S1 and S2 of the

same scene as input and outputs multiple rigid transforma-

tions T12 = {T12} ⊂ SE(3) that align the two input scans.

As illustrated in Figure 2, our approach combines a global

module, which generates a set of candidate relative poses,

and a local module, which refines each candidate relative

pose. In doing so, our approach can output multiple relative

poses.

Global module. This module follows the standard pipeline

of first extracting features from the input scans and then

matching the extracted features. It begins with performing

scan completion to generate sufficient shared features be-

tween small-overlapping or non-overlapping scans. In par-

ticular, our approach utilizes three intermediate representa-

tions, i.e., 360-image [49], 2D layout [40], and planar prim-

itives [32], for scan completion. Given the completed scans,

this module then establishes consistent correspondences be-

tween extracted features and fit a rigid transformation to

each consistent set. To this end, we apply spectral match-

ing, which extracts consistent subsets of feature correspon-

dences by computing leading eigenvectors of a consistency

matrix among candidate correspondences. Each resulting

correspondence set generates an initial relative pose by rigid

pose regression.

Local module. In the same spirit as using ICP [3] to opti-

mize relative poses, our approach employs a local module

to refine each output of the global module. The motiva-

tion comes from the fact initial relative poses enable addi-

tional constraints, such as iteratively computed dense corre-

spondences and geometric relations (i.e., co-planar, parallel

planes, and perpendicular planes), for relative pose estima-

tion. Our approach also employs robust norms to remove

outliers in dense correspondences and geometric relations.

Network training. A fundamental property of our ap-

proach is that the local module solves a robust optimiza-

tion problem. Its optimal solution is generally insensitive

to small perturbations to the outputs of the global mod-

ule. Thus, we introduce two objectives for network training;

namely, the optimal solution of the local module is close

to the underlying ground-truth, and the global module pro-

vides effective initial solutions. The total objective function

for network training consists of three terms. The first term

trains the completion networks. The second term jointly

trains the completion networks and the spectral matching

procedure. The third term is enforced on the output of the

local module.

3.2. Global Module

The global module computes a set of relative poses

T = {(R12, t12)} between the input scans S1 with S2. This

module consists of two sub-modules. The first sub-module

performs scan completion and feature extraction from each

input scan Si. The result is summarized into a collection

of features Fθg (Si) = {f}, where θg denotes network pa-

rameters. Each f = {pf ,nf ,df} consists of a 3D posi-

tion pf , a 3D normal nf , and a feature descriptor df . Note

that although all extracted features share the same encoding,

this sub-module combines the strengths of scan completion

networks that are available under multiple representations

(e.g., 360-image, 2D-layout, and 3D planar patches).

The second sub-module computes initial relative poses

from correspondences between these extracted features.

Since the local module will refine each relative pose, this

sub-module uses spectral matching [28, 20], which is effi-

cient and can output multiple relative poses.

Scan completion sub-module. Our approach considers

three data representations (See Figure 3). Since we pri-

marily use state-of-the-art scan completion results, we only

highlight the main characteristics of each completion net-

work and defer the details to the supp. material.

The first representation is 360-image [45, 49], which rep-

resents a given 3D scene as a collection of multi-channel

images. The same as [49], we encode for each pixel its

position pf , normal nf . The completion network admits

an encoder-decoder architecture and outputs predicted po-

sition, normal, and descriptor channels. This representation

can generate dense completions. Besides, it is a generic

representation that does not place any assumptions about
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Figure 3: Matched correspondences between two scans across

different representations. All representations help. Note that to

make the visualization uncluttered, we only show a subset of com-

puted correspondences and draw edges of the walls.

the underlying scene. However, the quality of the predicted

features drops substantially among regions that are far from

the visible area of each scan (c.f. [49]).

The second representation is 2D layout. We first to pre-

dict the plane of the floor of each scan. We then turn each in-

put scan into an top-down view image by projecting points

of the scan onto a grid representation of the floor. Similar

to [27], the feature descriptor of each pixel collects the av-

eraged feature among 4 vertical bins. We train the feature

descriptor jointly with contrastive loss same as [49] and se-

mantic segmentation loss. The completion network again

employs an encoder-decoder architecture.

The third representation is planar patches [45, 43, 32].

To generate this representation, we perform RANSAC [14]

to extract planar patches from each input scan and the corre-

sponding complete 3D scene. We then perform PCA on the

points associated with each patch to extract its patch center.

The position pf and normal nf of this planar feature are

simply the patch center and plane normal, respectively. Its

feature descriptor df is the mean feature descriptor among

the points associated with this planar patch. The completion

network employs a variant of PointNet [38] by treating each

plane as a generalized point. Experimentally, we found that

this planar patch representation leads to better generaliza-

tion performance than the first two representations, but it

only involves planar patches.

Spectral matching sub-module. The output of the com-

pletion sub-module is a feature set Fθg (Si) for each scan

Si (that include dense pixels and planar features). Let

Mθg,p ⊂ Fθc(S1) × Fθg (S2) collect all correspondences

between the same type of features for the scan pair p =
(S1, S2). For representations of 360-image and 2D layout,

we match SIFT keypoint among the visible region of one

scan to the closest point on the other scan (in terms of fea-

ture descriptors) to reduce the number of feature correspon-

dences. As the global module only provides initial solutions

for the local module, we found that increasing the number

of feature matches has minor impacts on the results of the

local module.

The spectral matching sub-module extracts consistent

correspondence sets Mk ⊂ Mθg,p, 1 ≤ k ≤ K (K = 5 in

our experiments). Each correspondence set generates one

initial relative pose. This step follows [28, 49], which con-

struct a consistency matrix Cθg,αg,p ∈ R
|Mθg,p|×|Mθg,p|.

The value of each element

Cθg,αg,p(c, c
′) = scsc′gc,c′

where c and c’ represent a pair of correspondences, sc mod-

els the descriptor similarity of c, gc,c′ measures the preser-

vation of distances and angles between c and c′, and αg

represent hyper-parameters of sc and gc,c′ . Due to the space

constraint, please refer to the supp. material for details.

Given Cθg,αg,p, we follow [28, 49] to extract top K

matches, each of which is given by an indicator vector

uk ∈ [0, 1]|Mθg,p|. We employ the rigid regression for-

mulation in [18] to obtain the initial relative pose R⋆
k, t

⋆
k:

min
R,t

∑

c=(f1,f2)

uk(c)‖Rpf1
+ t− pf2

‖2 (1)

3.3. Local Module

The local module refines each initial relative pose ob-

tained from the global module. Benefited from having ini-

tial relative poses, this module employs different sets of fea-

tures for refinement. Specifically, it performs robust regres-

sion on iteratively updated closest point pairs and predicted

geometric relations (e.g., point pairs that lie on the same

plane) between the completed scans. In the following, we

first introduce how to predict geometric relations. We then

describe how to perform robust regression.

Geometric relations. We consider three types of geo-

metric relations that frequently occur in man-made scenes:

point pairs that share the same plane, point pairs that lie

on perpendicular planes, and point pairs that lie on par-

allel planes. Consider a down-sampled set of features

Fg
θg
(Si) ⊂ Fθg (Si) for each scan Si. Our implementation

uses 6000 random samples for each scan pair. Given all

feature pairs M̂l
θg,p

between these features the local mod-

ule trains a variant of PointNet++ [38] to classify each pair

c ∈ Ml
θg,p

into either no relation or one of the relations de-

scribed above, i.e., four categories in total. In the following,

we denote the probability of c belonging to the categories

of co-planar, parallel, and perpendicular as w1
θl
(c) ∈ [0, 1],

w2
θl
(c) ∈ [0, 1], and w3

θl
(c) ∈ [0, 1], respectively, where θl

denotes the network parameters of the relation prediction

network.

Robust regression. We begin with defining consistency

scores between a predicted geometric relation c = (f1, f2)
and the current rigid transformation (R, t):

f1
R,t(c) := ((Rpf1

+ t− pf2
)Tnf2)

2

+ ((Rpf1
+ t− pf2

)TRnf1)
2 (2)

f2
R(c) := 1− ((Rnf1)

Tnf2)
2 (3)

f3
R(c) := ((Rnf1)

Tnf2)
2 (4)
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In other words, f1, f2, and f3 force a point pair to satisfy

the co-planar, parallel, and perpendicular relations, respec-

tively. In addition, f1 also serves as a symmetric point-to-

plane measure for matching closest point pairs (c.f [41]).

The robust regression formulation generalizes the stan-

dard approach of using iteratively reweighted non-linear

least squares for rigid alignment [46]. Specifically, at each

iteration, it solves the following non-linear least squares:

min
R,t

∑

c∈Mnn
θc

w0
cf

1
R,t(c) + αr

(

∑

c∈M1

θc

w1
cw

1
θg
(c)f1

R,t(c)

+
∑

c∈M2

θc

w2
cw

2
θg
(c)f2

R(c) +
∑

c∈M3

θc

w3
cw

3
θg
(c)f3

R(c)
)

(5)

where Mnn
θc

collects nearest neighbor pairs from features

of Fθc(S1) to Fθc(S2), and vice-versa, based on the rela-

tive pose at the previous iteration. w0
c , w1

c , w2
c , and w3

c are

updated adpatively based on the current relative pose R, t:

w0
c := α2

0/(α
2
0 + f1

R,t(c)), w
1
c := α2

1/(α
2
1 + f1

R,t(c))

w2
c := α2

2/(α
2
2 + f2

R(c)), w
3
c := α2

3/(α
2
3 + f3

R(c)) (6)

where αl = {αr, α0, α1, α2, α3} are hyper-parameters,

which will be trained together with θg and θl.
With this setup, the robust regression procedure first ap-

plies (6) to set the term weights using the initial relative

pose. It then alternates among computing the nearest neigh-

bors, applying the Gauss-Newton method to solve (5), and

updating the term weights. In our implementation, we run

3 alternating iterations.

3.4. Network Training

Since the local module solves a robust optimization

problem, its optimal solution is insensitive to small per-

turbations to the outputs of the global module. Thus, in-

stead of training the combination of the local module and

the global module end-to-end, we utilize a decoupled ap-

proach in this paper. Specifically, our approach optimizes

all variables Θ = {θg, αg, θl, αl} by minimizing the fol-

lowing loss term:

min
Θ

l1(θg) + λ2l2(θl) + λ3l3(αg) + λ4l4(αl) (7)

where l1, l2, l3, and l4 train scan completion networks,

the geometric relation network, the spectral matching sub-

module, and the local module, respectively. λi are hyper-

parameters determined via 10-fold cross validation.

The scan completion loss l1(θg) combines the losses for

training the scan completion network under each data repre-

sentation. The geometric relation loss l2(θl) utilizes initial

relative poses that randomly perturbed from the underlying

ground-truth. Since the formulations of these two losses are

standard for network training, we leave the details to the

supp. material. In the following, we focus on the loss terms

for spectral matching sub-module and the local module.

Loss term for spectral matching. Consider the consis-

tency matrix Cp for a scan pair p = (S1, S2). Our goal

for training the spectral matching sub-module is to enforce

that the normalized indicator vector ugt
p of ground-truth cor-

respondences is a top eigenvector of Cp. Note that Cp is

dependent on αg , We omit them to make the notations un-

cluttered.

To avoid training a recurrent neural network con-

verted from power iteration for eigen-vector computation

(c.f. [36]), our approach utilizes three properties of a top

eigen-vector, i.e., a normalized vector u is a top eigen-

vector of a matrix C if (1) the corresponding eigenvalue

λ = uTCu, (2) Cu = λu, and (3) λ is maximized. Given

a collection of scan pairs P = {p} as, we define l3(αg) :=

∑

p∈P

(

‖Cpu
gt
p − (ugt

p

T
Cpu

gt
p )ugt

p ‖2 − ugt
p

T
Cpu

gt
p

)

.

Loss term for the local module. Define Ip(R, t) ∈ R
3×4

as one iteration of the IRNLS procedure from the cur-

rent pose (R, t), i.e., optimization and reweighting. Sim-

ilar to l3, we avoid training recurrent networks of the ro-

bust regression procedure by directly penalizing the differ-

ence between the ground-truth relative pose Rgt
p , tgtp and

Ip(Rgt, tgt):

l4(αl) =
∑

p∈P

‖(Rgt
p , tgtp )− Ip(Rgt, tgt)‖2F (8)

where ‖ · ‖F is the matrix Frobenius-norm. One intuition of

(8) is that when (Rgt
p , tgtp ) = Ip(Rgt, tgt), then (Rgt

p , tgtp )
becomes the stationary point of the IRNLS procedure.

Minimizing l4(αl) requires computing the derivatives of

Ip. Since Ip is based on a local optimum of (5), we use the

implicit function theorem [26] to back-propagate the gradi-

ents from the optimized poses to the predicted features and

geometric relations. Again, we defer the details to the supp.

material for the interest of space.

Training procedure. We train (7) through three phases.

The first phase trains each prediction network in isolation.

The second phase fixes the prediction networks and trains

the hyper-parameters of each module in isolation. The final

phase fine-tunes all the variables together by solving (7).

Network training involves the ADAM optimizer [25], and

please refer to the supp. material for details.

4. Experimental Evaluation

This section presents an experimental evaluation of the

proposed approach. Section 4.1 describes the experimen-

tal setup. Section 4.2 analyzes the experimental results and

compares the proposed approach with baseline approaches.

Section 4.3 and Section 4.4 analyze the global module and

the local module, respectively.
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Super4PCS RobustGR ScanComplete Ours Top1 Ours Top3 G.T. Scene G.T. Color

Figure 4: Qualitative comparison between our approach and baseline approaches. From left to right, we show the results of Su-

per4PCS [34],RobustGR [50], ScanComplete [49],Ours-Top1, Ours-Top3, and Ground Truth figures.

4.1. Experimental Setup

Datasets. We perform experimental evaluation using three

datasets:SUNCG [44], Matterport [6], and ScanNet [11],

where SUNCG provides synthetic data, Matterport and

ScanNet provide real data. For each room in each dataset,

we randomly sample 25 camera locations. For real data sets

such as ScanNet, the camera locations are sampled from the

recording sequences. For each dataset, we collect around

50k scan pairs for training, and 1k scan pairs for testing.

Note that the scenes of the training and testing scans do not

overlap.

Baseline approaches. We consider the five baseline ap-

proaches: Super4PCS [34], RobustGR [50], ScanCom-

plete [49], Ours-Global, and Ours-Local. Here, Super4PCS

is a widely used global scan matching method; RobustGR

is a state-of-the-art global scan matching method that is

based on robust regression; ScanComplete is a state-of-the-

art approach for indoor RGB-D registration that performs

scan completion using the 360-image representation. More-

over, Ours-Global is our approach without the local module.

Ours-Local is our approach without the global module, i.e.,

applying the local module directly on the completed scans.

Evaluation protocol. We follow the standard protocol

of reporting the relative angular error ‖ log(R⋆RgtT )‖/
√
2

and the relative translation error ‖tgt− t⋆‖. Here (Rgt, tgt)
and (R⋆, t⋆) denote the ground-truth and the output of a

method, respectively. In the presence of multiple outputs,

we define the best match as the one that minimizes the ro-

tation error. In this section, we report the rotation and the

translation errors among the top 1, 3, and 5 matches. The

order of the matches are given by the eigenvalues of the

consistency matrix Cθg,αg,p and the final scores of (5), re-

spectively. In addition, we divide scan pairs into two cate-

gories: overlapping and non-overlapping. The category of

overlapping scans consists of scans pairs that overlap by at

least 10% points (with respect to the scan with fewer num-
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SUNCG Matterport ScanNet

Rotation Trans Rotation Trans Rotation Trans

top1 top3 top5 top1 top3 top5 top1 top3 top5 top1 top3 top5 top1 top3 top5 top1 top3 top5

360-image (≥ 10%) 9.8 4.5 3.5 0.17 0.16 0.16 19.9 10.4 8.5 0.39 0.38 0.38 18.4 11.0 8.7 0.71 0.54 0.50

Plane (≥ 10%) 100.3 65.9 45.8 0.58 0.70 0.59 123.6 92.4 78.6 0.79 0.99 0.99 123.6 91.4 79.1 3.03 2.63 2.65

2D-layout (≥ 10%) 52.0 23.1 16.4 0.85 0.50 0.52 73.1 42.2 33.8 1.57 1.38 1.36 45.5 25.2 18.3 1.31 1.07 1.01

Ours (≥ 10%) 8.0 3.6 3.3 0.16 0.14 0.14 13.9 9.7 7.8 0.32 0.31 0.31 16.7 10.5 8.7 0.69 0.53 0.50

360-image (≤ 10%) 79.7 30.4 19.7 0.49 0.44 0.40 70.0 42.6 34.1 0.88 0.83 0.80 66.4 46.9 36.1 1.37 1.34 1.35

Plane(≤ 10%) 123.4 80.4 57.8 0.65 0.86 0.72 135.8 77.8 68.9 0.71 0.96 0.74 119.5 86.4 81.5 2.56 2.60 2.67

2D-layout(≤ 10%) 99.9 55.6 41.4 1.18 0.76 0.82 107.0 63.8 52.5 1.42 1.69 1.74 73.7 46.3 34.2 1.94 1.90 1.89

Ours (≤ 10%) 62.8 25.6 18.1 0.40 0.38 0.38 58.9 39.9 32.3 0.69 0.68 0.68 59.3 40.4 33.5 1.36 1.33 1.33

360-image (all) 31.1 12.4 8.5 0.27 0.24 0.23 34.2 19.0 15.3 0.53 0.50 0.49 34.1 22.7 17.7 0.93 0.79 0.78

Plane(all) 107.3 70.3 49.4 0.60 0.75 0.63 126.4 89.1 76.4 0.78 0.99 0.95 122.4 89.9 79.8 2.89 2.60 2.65

2D-layout(all) 66.6 33.0 24.0 0.95 0.58 0.61 82.1 47.9 38.8 1.53 1.46 1.46 56.3 32.1 23.5 1.50 1.33 1.30

Ours (all) 24.7 10.3 7.8 0.23 0.21 0.21 26.0 17.8 14.3 0.41 0.41 0.41 30.7 20.3 16.8 0.91 0.76 0.76

Table 1: Ablation study on global module. We show the comparison between our hybrid representation module and the single

representation module. The 10% refers to the overlap ratio. For each module , we also show the top1/top3/top5 error for

rotation and translation.

SUNCG Matterport ScanNet

Rotation Trans Rotation Trans Rotation Trans

4PCS-Overlap (≥ 10%) 45.2 0.22 49.7 0.53 31.3 0.94

RobustGR (≥ 10%)) 64.9 0.57 38.1 0.69 45.4 1.20

ScanComp. (≥ 10%) 9.8 0.17 19.9 0.39 18.4 0.71

Ours-Local (≥ 10%) 36.0 0.22 40.8 0.49 25.4 0.93

Ours-Global (≥ 10%) 8.0 0.16 13.9 0.31 16.7 0.69

Ours (≥ 10%) 5.0 0.11 10.7 0.29 14.1 0.67

ScanComp.(≤ 10%) 79.7 0.49 70.0 0.88 66.4 1.37

Ours-Local (≤ 10%) 105.0 0.31 115.6 0.49 67.2 1.34

Ours-Global (≤ 10%) 62.8 0.40 59.3 0.69 59.3 1.36

Ours (≤ 10%) 60.9 0.41 54.1 0.68 58.4 1.36

ScanComp.(all) 31.1 0.27 34.2 0.53 34.1 0.93

Ours-Local (all) 56.9 0.24 60.7 0.49 36.6 0.97

Ours-Global (all) 24.7 0.23 26.0 0.41 30.7 0.91

Ours (all) 18.1 0.16 22.3 0.39 28.6 0.90

Table 2: Benchmark evaluation on our approach and base-

line approaches. Ours-Local and Ours-Global stand for our

method with global module and local module removed, re-

spectively. We show the mean error for rotation and trans-

lation components for overlapping scan pairs (≥ 10%) and

non-overlapping scan pairs (≤ 10%), respectively.

ber of points). The category of non-overlapping contains

the remaining scans.

4.2. Analysis of Results

Table 2 and Figure 4 provide quantitative and qualita-

tive results of our approach and baseline methods. Over-

all, our approach outperforms baseline approaches consid-

erably. The mean rotation/translation errors of the best-

match of our approach are 18.1◦/0.16m, 22.3◦/0.39m, and

28.6◦/0.90m on SUNCG, Matterport, and ScanNet, respec-

tively. In contrast, the state of the art method only achieved

31.1◦/0.27m, 34.2◦/0.53m, and 34.1◦/0.93m, respectively.

Overlapping v.s. non-overlapping. In the overlap-

ping regime, the relative improvements of mean rota-

tion/translation errors are 40.8%/35.3%, 46.2%/25.6%, and

55.0%/5.6% on the three datasets described above, respec-

tively. Meanwhile, the relative improvements in the non-

overlapping regime are 23.6%/16.3%, 22.9%/22.7%, and

10.5%/0.7%, respectively. These statistics show the con-

sistency of our approach across different overlapping rates.

4.3. Analysis of the Global Module

We focus on analyzing two important aspects of the

global module, namely the effects of using hybrid repre-

sentation and multiple outputs.

Single representation versus hybrid representation. As

shown in Table 1, using hybrid representations leads to no-

ticeable performance gains when compared to using a sin-

gle representation. For mean rotation/translation errors, the

relative improvements from the top performing single rep-

resentation (ScanComplete in this case) are 20.4%/14.8%,

24.0%/22.6%, and 11.7%/2% on SUNCG, Matterport, and

ScanNet, respectively. It should be noted that the 2D layout

and Plane representations individually do not provide suf-

ficient features for relative pose estimation. However, they

provide complementary features to the 360-image represen-

tation that boost the overall performance of our approach.

This is also consistent with Figure 3, which shows that the

matched features consist of a mixture of planar features and

point features from 360-image and 2D layout.

Best match versus K-best. With multiple outputs, the

top-5 rotation/translation errors of the global module drop

significantly. The relative improvements on the three

datasets are 68.4%/8.7%, 45.0%/0.1%, and 45.2%/16.5%,

respectively. Besides, the relative improvements on non-

overlapping scans are significantly bigger than those on

overlapping scans. An explanation is that indoor scenes ex-

hibit approximate discrete symmetries, e.g., rotational sym-

metries of a box-shape, and such symmetries incur ambigu-

ities for non-overlapping scans (i.e., they lack detailed ge-

ometric features to lock their relative poses). On the other

hand, the orders of these symmetries are relatively small,

and top matches tend to capture them.
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SUNCG Matterport ScanNet

Rot Trans Rot Trans Rot Trans

Base-Global+Base-Local 31.9 0.45 33.6 0.52 34.1 0.93

Base-Global+Ours-Local 27.8 0.24 30.1 0.51 31.2 0.92

Ours-Global+Base-Local 25.9 0.44 25.4 0.40 30.4 0.91

Ours-Global+Ours-Local 18.1 0.16 22.3 0.34 28.6 0.90

Table 3: Benchmark evaluation on the different combina-

tion of global initialization and local refinement. We use

the strongest baseline [49] to serve as global module, and

SparseICP [5] as baseline local module. We show the mean

rotation and translation errors on each dataset.

In addition, the probability distribution of the rank of the

matches with the best rotational error are 42%, 17%, 17%,

10%, and 14%, respectively. In other words, 58% of the best

matches are not derived from the first eigen-vector. This

indicates the importance of leveraging multiple outputs. In

Section 4.5, we show that using multiple outputs for multi-

scan reconstruction is superior to using a single output.

4.4. Analysis of the Local Module

Overall, the local module leads to noticeable perfor-

mance gains from the outputs of the global module. As

shown in Table 2, the mean rotation/translation errors of the

top 1 match reduced from 24.7◦/0.23m to 18.1◦/0.16m on

SUNCG, from 26.0◦/0.41m to 22.3◦/0.39m on Matterport,

and from 30.7◦/0.91m to 28.6◦/0.90m on ScanNet, respec-

tively. These statistics indicate the robustness of our local

module.

Baseline comparison. Our approach outperforms the

robust version of ICP [5] when applied on the output of the

global module (See Table 3). The mean rotation/translation

errors reduce from 25.9◦/0.44m, 25.4◦/0.40m, and

30.4◦/0.91m to 18.1◦/0.16m, 22.3◦/0.34m, and

28.6◦/0.90m. Such improvements mainly come from

the predicted geometric relations. Our approach also

outperforms the baseline that combines the output of Scan-

Complete and our local module. The relative improvements

are salient across all the datasets. These statistics indicate

that having good initial poses for local refinement is key to

the success of relative pose estimation.

The quality of geometric relations prediction. The aver-

age accuracy of geometric relations across all three datasets

are 46%, 69%, 75%, and 93% for no-relation, perpen-

dicular, parallel, co-planar respectively. The statistics are

collected from scan pairs perturbed from the underlying

ground-truth by a random rotation with degree in [0, 30◦]
and a random translation in [−0.5m, 0.5m]3. Although the

predictions are imperfect, the success of our approach lies in

using robust norms to filter out wrong predictions automati-

cally. Due to space constraints, we leave a detailed analysis

of the predicted geometric relations to the supp. material.

5 Scans 10 Scans 15 Scans 20 Scans

Rot Trans Rot Trans Rot Trans Rot Trans

Fine2C.[17] 96.5 1.41 62.4 0.93 69.6 1.57 68.6 1.43

RobustRec[9] 33.1 0.78 25.1 0.52 16.5 0.33 12.3 0.26

Our-top-1 8.39 0.20 3.55 0.15 2.97 0.134 2.31 0.12

Our-top-3 5.77 0.18 3.12 0.12 2.26 0.112 1.88 0.10

Our-top-5 5.13 0.18 2.73 0.12 2.13 0.10 1.81 0.09

Table 4: Comparions on multi-scan alignment using our ap-

proach + MRF-SFM[10] and two baseline approaches. Our

approach shows a clear advantage in the sparse setting, e.g.,

using 5 scans.

4.5. Application in Few­View Reconstruction

We have studied the impacts of our relative pose estima-

tion approach in multi-scan alignment. To this end, we pair

our approach with the multi-view pose optimizer of MRF-

SFM [10]. The goal is to find the most consistent subset of

relative poses among the outputs of our approach. To an-

alyze the benefits of having multiple relative pose estima-

tions between each scan pair, we report the performance of

using top-1, top-3, top-5 outputs of our approach, respec-

tively. We performed an experimental study on ScanNet,

using 5/10/15/20 randomly sampled scans. Regarding the

evaluation protocol, we report absolute errors in rotations

and translations of aligned scans using the same metric for

evaluating relative poses. Since MRF-SFM extracts consis-

tent relative transformations, the mean rotation/translation

errors of the resulting absolute transformations are signif-

icantly reduced. The baseline approaches include Robus-

tRecons [9] and Fine-to-Coarse [17], which are two state-

of-the-art multi-scan alignment approaches. Fine-to-Coarse

additionally utilizes the scanning order among the input

scans.

As shown in Figure 1 and Table 4, our approach signifi-

cantly outperforms baseline approaches. The improvements

are salient in the sparse setting, where our approach shows

high-quality outputs. In such a sparse setting, RobustRe-

cons also outperforms Fine-to-Coarse, as the latter has to

utilize dense inputs to detect initial planes. Utilizing top-3

and top-5 matches also improves the performance. One ex-

planation is that there are more correct inputs for multi-scan

alignment when utilizing top-3 and top-5 matches.

5. Conclusions and Future Work

In this paper, we have introduced an approach for es-

timating the relative pose between two potentially non-

overlapping RGB-D scans. Our approach combines a global

module for computing candidate relative poses and a local

module for refining each candidate pose. Our method can

output multiple relative poses, and the resulting pose quality

is considerably better than state-of-the-art approaches for

both overlapping and non-overlapping scans.
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