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Abstract

Under-exposure introduces a series of visual degrada-

tion, i.e. decreased visibility, intensive noise, and biased

color, etc. To address these problems, we propose a nov-

el semi-supervised learning approach for low-light image

enhancement. A deep recursive band network (DRBN) is

proposed to recover a linear band representation of an en-

hanced normal-light image with paired low/normal-light

images, and then obtain an improved one by recomposing

the given bands via another learnable linear transformation

based on a perceptual quality-driven adversarial learning

with unpaired data. The architecture is powerful and flex-

ible to have the merit of training with both paired and un-

paired data. On one hand, the proposed network is well

designed to extract a series of coarse-to-fine band repre-

sentations, whose estimations are mutually beneficial in a

recursive process. On the other hand, the extracted band

representation of the enhanced image in the first stage of

DRBN (recursive band learning) bridges the gap between

the restoration knowledge of paired data and the perceptu-

al quality preference to real high-quality images. Its second

stage (band recomposition) learns to recompose the band

representation towards fitting perceptual properties of high-

quality images via adversarial learning. With the help of

this two-stage design, our approach generates the enhanced

results with well reconstructed details and visually promis-

ing contrast and color distributions. Extensive evaluations

demonstrate the superiority of our DRBN.

1. Introduction

In low-light conditions, a series of visual degradations,

i.e. low visibility, low contrast and intensive noises appear
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Figure 1. The visual results of different methods on a real low-

light image in LOL [30]. SICE [2] is a state-of-the-art fully super-

vised method and EnlightenGAN [11] is an unsupervised method

without paired supervision. Our DRBN well restores the global

illumination, suppresses noise and preserves structural details.

in captured images. It will be beneficial to use more ad-

vanced shooting devices and specialized photographic tech-

niques to alleviate some degradations. However, it is still

difficult to totally avoid the presence of noise even with up-

graded shooting devices. There is insufficient light reach-

ing camera sensors, causing the scene signals buried by

system noise. It would be helpful if longer exposure time

is taken to suppress noise, which however introduces blur-

riness. Therefore, the low-light enhancement methods at

the software end are expected. It aims to restore an image

captured in the low-light condition to a normal one, where

visibility, contrast, and noise are expected to be improved,

stretched, and suppressed, respectively. The enhancemen-

t process leads to visual quality improvement and offers a

good starting point for high-level computer vision tasks (i.e.

object detection and recognition).

It is non-trivial to enhance low-light images, because the

noise is usually easy to be amplified. In the past decades,
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many researchers have tried to address this problem. His-

togram equalization (HE) methods [23, 1] enhance the low-

light images by stretching the dynamic range, providing un-

desirable illumination with unintentionally amplified inten-

sive noise. Retinex theory-based methods [15] decompose

and process two layers of an image, reflectance and illumi-

nation layers, respectively. Several filters [14, 12, 28] are

designed for that decomposition. Many works [7, 9, 8, 18,

25] impose priors on the decomposed illumination and re-

flectance.

Recently, the prosperity of deep learning also inspires

the development of new deep-learning based approaches for

low-light enhancement. These methods [20, 4, 2, 24, 27]

learn to remove the related composite degradation based on

the well-prepared paired low/normal-light images and elab-

orately designed models. However, the existing loss func-

tions are not well aligned to human perception and do not

capture the intrinsic signal structure of an image, leading

to unsatisfactory visual results, e.g. biased color distribu-

tion and residual noise. Recently, EnlightenGAN [11] is

created without paired supervision, where the dataset with

only low/normal-light images (unnecessarily paired) are re-

quired. This method proves the feasibility to learn with un-

paired data for low-light enhancement. However, without

the paired supervision, fine details cannot be restored, and

the intensive noise is still present in enhanced results.

In general, the aforementioned popular deep-learning

based methods can be divided into two categories. The ful-

ly supervised methods are trained with paired supervision,

where the ground truth guidance is provided for detail sig-

nal modeling in the training phase. Therefore, the networks

are more capable of suppressing noise and impairing de-

tails. In unsupervised methods, the paired low/normal-light

images are unavailable. The knowledge on the enhance-

ment mapping is extracted from unpaired low/normal-light

image sets. It is easy to make this kind of dataset large-scale

with diversified content, therefore the methods can learn to

restore illumination, color, and contrast more adaptively.

Comprehensively considering the strengths, weakness-

es, and potentials of existing methods, in this paper, we ex-

plore to construct a unified architecture to have two kind-

s of merits. Specifically, a novel semi-supervised learning

framework is constructed for low-light image enhancemen-

t. A deep recursive band network (DRBN) is proposed to

offer a band representation to connect the signal fidelity

prior obtained from paired supervision and the perceptual

visual quality prior extracted by an unpaired high-quality

dataset, where images are selected by mean opinion scores.

In the first stage of DRBN, the network is trained on the

paired low/normal-light images. A linear band representa-

tion is first recovered via training with paired low/normal-

light images, whose estimations are mutually beneficial in

a recursive process. After that, the extracted band repre-

sentation of the enhanced image in the first stage of DRB-

N (recursive band learning) is used to bridge the gap be-

tween the restoration knowledge of paired data and the per-

ceptual quality provided by a high-quality image dataset.

Then, in the second stage of DRBN (band recomposition),

it learns to recompose the band representation towards fit-

ting visual properties of high-quality images via adversar-

ial learning. With the help of this two-stage design, our

approach generates the enhanced results with well recon-

structed details, and visually promising contrast and color

distributions. Our contributions are summarized as follows:

• To the best of our knowledge, we make the first at-

tempt to propose a semi-supervised learning frame-

work for low-light image enhancement, where a deep

recursive band representation is designed to connect

fully-supervised and un-supervised frameworks to in-

tegrate their superiorities.

• The proposed framework is well designed to extrac-

t a series of coarse-to-fine band representations. The

estimations of these band representations are mutual-

ly beneficial through the end-to-end training in a re-

cursive way, capable of removing noise and correcting

details.

• The deep band representations are recomposed under

the perceptual guidance of a quality-guided adversar-

ial learning. The “real images” for the discriminator

are selected perceptually based on mean opinion score

(MOS). As far as we know, this is also the first trial in

low-light image enhancement tasks.

2. Related Work

The earliest low-light enhancement methods adjust

the illumination uniformly, which easily causes over-

exposure and under-exposure, such as Histogram equaliza-

tion (HE) [23, 1]. Without local adaptation, the enhance-

ment leads to undesirable illumination and intensive noise.

Some methods [17, 35] enhance the visibility by applying

dehazing methods to the inverted low-light images. In these

methods, the off-line denoising operation [5] is applied to

suppress noise, which sometimes also leads to detail blurri-

ness.

Later on, Retinex-based methods [15] perform the joint

illumination adjustment and noise suppression via decom-

posing the image into illumination and reflectance layers

and adjusting them adaptively. Various priors, e.g. struc-

ture aware prior [9], weighted variation [8], and multiple

derivatives of illumination [7] are utilized to guide manipu-

lation of these two layers. Variants of Retinex models, e.g.

single-scale Retinex [14], multi-scale Retinex [12], natu-

ralness Retinex [28], and robust Retinex [18, 25] are de-

veloped to facilitate low-light image enhancement. These

3064



y

3

1ˆ t

sx
3

ˆ t

sx

y
2

ˆ t

sx

1
ˆ t

sx

3

1ˆ t

sx

2

1ˆ t

sx

1

1ˆ t

sx

1

1t

sf

2

t

sf

3

1t

sf

1

1t

sf

2

1t

sf

3

t

sf3

t

sf 3

1t

sf

1

t

sf
2

1t

sf 2

t

sf

1

t

sf

Conv (Stride=1) Conv (Stride=2) Deconv (Stride=2) Skip Connection
Forward

Discriminator
1 2 3
ˆ ˆ ˆ, ,n n n

s s sx x x
w

3ˆ
Fx

LQuality

x

High-Quality
Images

LFid

LRect x

(b) Band Recomposition
(Unpaired Data)

(a) Recursive Band Learning (Paired Data)Recurrence t Recurrence t+1

Figure 2. The framework of the proposed Deep Recursive Band Network (DRBN), which consists of two stages: recursive band learning

and band recomposition. (1) In the first stage, a coarse-to-fine band representation is learned and different band signals are inferred jointly

in a recursive process. The enhanced result from the last recurrence is used as the guidance of the next recurrence and the later recurrence

is only responsible to learn the residue in the feature and image domains at different scales. (2) In the second stage, the band representation

is recomposed to improve perceptual quality of the enhanced low-light image via a perceptual quality-guided adversarial learning.

methods show impressive results in illumination adjustment

and small noise removal. However, with only hand-crafted

constraints, these methods are not adaptive enough, and

their results present intensive noises and sometimes under-

exposed and over-exposed local details.

In recent years, deep-learning based low-light image en-

hancement brings in impressive performance gains. Lore et

al. [20] made the first attempt by proposing a deep auto-

encoder named Low-Light Net (LLNet) for contrast en-

hancement and noise removal. Later on, various methods

based on different network designs [26, 3, 24, 27, 30] are

proposed. These methods are trained on the paired dataset,

and their enhancement performance is largely dependen-

t on the dataset. Because the synthetic data cannot fully

characterize degradation in real scenarios and real captured

paired data includes limited kinds of scenarios, the results of

these methods are still imperfect, especially failing to han-

dle intensive noise. There are also works on deep-learning

based image enhancement from raw images [4], or the joint

task of low-light image enhancement and high-level com-

puter vision tasks, such as face detection [34], object detec-

tion [19], etc. In our work, we focus on perceptual quality

improvement of low-light images in RGB format. Different

from previous related studies, we develop a semi-supervised

framework, where the useful knowledge from the paired

and unpaired datasets is used jointly to provide perceptual

guidance for both detail signal modeling and global illumi-

nation, color and contrast recovery.

3. Deep Recursive Band Network for Semi-

Supervised Low-Light Enhancement

In this section, we illustrate our motivations at first. Af-

ter that, we convert the related methodologies into a deep

recursive band network (DRBN) for low-light image en-

hancement.

3.1. Motivation: Bridging the Gap Between Signal
Fidelity and Perceptual Quality

Recursive Band Learning. The paired training data pro-

vides strong signal fidelity constraint to correct detailed sig-

nals. Therefore, we first perform a recursive band learn-

ing to restore detail signals based on the guidance of the

paired data. In this process, besides the enhanced image x̂, a

series of band representations
{

∆x̂T

s1
,∆x̂T

s2
, ...,∆x̂T

sn

}

are

also generated progressively from y, where x̂ =
∑

n

i=1
x̂T

si
.

si denotes the order of the band representation. ∆x̂T

si
is

learned by fully-supervised learning on paired low/normal-

light data. The high-order band x̂T

si
depends on the low-

order one x̂T

si−1
.

Connecting Recursive Band Representation and Adver-

sarial Learning. However, with the signal fidelity con-

straint in the first stage, the good visual quality cannot nat-

urally achieved. Therefore, inspired by the recent image

enhancement methods based on the unpaired dataset, in the

second stage, we recompose the learned band representa-

tions in the first stage to obtain the results with better per-
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ceptual quality from the view of human perception as fol-

lows,

x̂ =
n
∑

i=1

wi

(

y,
{

∆x̂T

s1
,∆x̂T

s2
, ...,∆x̂T

sn

})

∆x̂T

si
(y) , (1)

where wi (·) is the learned weighting parameter for recom-

position. It recomposes band signals of an enhanced image,

which has been almost noise-free with well-reconstructed

details, to a new one with more superior illumination, con-

trast, and color distributions, namely better perceptual qual-

ity from the perspective of human vision.

3.2. Deep Recursive Band Network

Architecture Overview. As shown in Fig. 2, with the

above-mentioned motivations in mind, our network consist-

s of two parts: recursive band learning (relying on paired

data), and band recomposition (relying on unpaired data).

In the recursive band learning part, DRBN is constructed to

recover a normal-light image based on the low-light input

in a recursive way. The intermediate estimation, the out-

put of the previous recurrence, is used as the guidance input

of the next recurrence, which connects all band estimations

together in a joint estimation. Our DRBN adopts the resid-

ual learning in both feature and image domains. That is to

say, the latter recurrence only serves to estimate the residu-

al features and images to acquire better estimations. There-

fore, the later recurrence is more capable to model structural

details and suppress noise. In each recurrence, a series of

coarse-to-fine band representations are extracted and then

merged into the enhancement results. This band represen-

tation provides an effective tool to combine the power of

both the enhancement knowledge learned from the paired

images and the data prior of high-quality images. In the

band recomposition part, this band representation is feed-

forwarded into another network to produce a set of transfor-

m coefficients that manipulate and fuse these bands linearly.

An adversarial loss (named as quality loss), judging whether

an image is perceptually high-quality or not, is used as a

constraint. A set of high-quality images, selected by mean

opinion scores, are used to serve as the priors of human vi-

sion perception. In this way, the overall good results from

the perspective of both signal fidelity and human perceptual

quality are achieved.

Recursive Band Learning. We first aim to fully exploit the

power of paired data learning to recover each band signal of

an enhanced image. A series of U-Net like deep networks,

called band learning networks (BLN), are built as shown in

Fig. 2. Each BLN projects the input, i.e. the concatenation

of y and the enhanced result of the last recurrence x̂t−1

s3
, into

the feature space and then transforms the features by sever-

al convolutional layers. In intermediate layers, the spatial

resolutions of features are first down-sampled and then up-

sampled via stride convolutions and deconvolutions. There

are skip connections (denoted by red) to connect the fea-

tures with the same spatial resolution from shallow layers

to deep ones, which helps local information contained in

the features generated by shallow layers to reach the output.

Each BLN produces three features at the scales s1 = 1/4,

s2 = 1/2 and s3 = 1, respectively.

For the convenience, we illustrate the first recurrence of

the recursive learning:

[

f1

s1
, f1

s2
, f1

s3

]

= F 1

BLN F (y) ,

x̂1

s1
= F 1

R s1

(

f1

s1

)

, (2)

x̂1

s2
= F 1

R s2

(

f1

s2

)

+ FU

(

x̂1

s1

)

,

x̂1

s3
= F 1

R s3

(

f1

s3

)

+ FU

(

x̂1

s2

)

,

where f1

s1
, f1

s2
, f1

s3
are features extracted from y at their

corresponding scales, respectively; F 1

BLN F (·) is the related

process; F 1

R s1
(·), F 1

R s2
(·) and F 1

R s3
(·) are the process-

es of projecting the features back to the image domains at

the corresponding scales; FU (·) is the up-sampling process.

The image is firstly reconstructed at the roughest scale s1.

Then, at fine scales, the residual signals are predicted to be

parts of the whole result.

After that, at the t-th recurrence, only the residual fea-

tures and images are learned with the guidance of previous

estimated results. The concatenation of y and previously

estimated result x̂t−1

s3
is regarded as the input:

[

∆f t

s1
,∆f t

s2
,∆f t

s3

]

= F t

BLN F

(

y, x̂t−1

s3

)

,

f t

si
= ∆f t

si
+ f t−1

si
, i = 1, 2, 3,

x̂t

s1
= F t

R s1

(

f t

s1

)

, (3)

x̂t

s2
= F t

R s2

(

f t

s2

)

+ FU

(

x̂t

s1

)

,

x̂t

s3
= F t

R s3

(

f t

s3

)

+ FU

(

x̂t

s2

)

.

This formulation connects all band features closely, which

forms a joint optimization of all bands. At the final recur-

rence T (set to 4 in our work), the reconstruction loss is

applied as follows,

LRect = −
(

φ
(

x̂T

s3
, x

)

+ λ1φ
(

x̂T

s2
, FD (x, s2)

)

+λ2φ
(

x̂T

s1
, FD (x, s1)

))

, (4)

where FD(·) is the down-sampling process, given the scal-

ing factor si; φ (·) calculates SSIM values of the input im-

ages; λ1 and λ2 are weighting parameters.

In this way, our recursive band learning has the following

advantages:

• The high-order band inferred from the last recurrence

will have influence on the inference of the low-order

one in this recurrence. Therefore, the connection be-

tween the low and high-order bands are bi-directional,

and the high-order bands also provide useful guidance

to recover low-order bands.
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• The recursive estimation enables different bands to

learn to correct their estimations based on previous es-

timations of all bands.

• The recursive learning enhances the modeling capac-

ities. The later recurrence only needs to recover the

residue signals, guided by the estimation from previ-

ous recurrences. Therefore, accurate estimations can

be obtained and fine details are paid attention to.

Band Recomposition. With the power of paired data, the

band recovery process from the low-light images to the

normal-light ones can be well learned, with well restored

details and suppressed noise. Because the signal fidelity

is not alway well aligned to human visual perception, es-

pecially for some global properties of images, such as light,

color distribution, etc. Therefore, we further make our mod-

el learn to recompose the restored band signals with the per-

ceptual guidance of a high-quality image dataset via percep-

tual quality-guided adversarial learning. The high-quality

images selected from aesthetic visual analysis dataset [21]

based on the MOS values are used to represent the prior

knowledge of human perception. Another U-like network

is also utilized to model the recomposition process FRC (·)
to generate the coefficients to recompose the band signals

as follows,

{w1, w2, w3} = FRC

({

∆x̂T

s1
,∆x̂T

s2
,∆x̂T

s3

})

,

x̂F

3
=

3
∑

i=1

wi∆x̂T

si
, (5)

∆x̂T

si
= x̂T

si
− FU

(

x̂T

si−1

)

, i = 2, 3,

∆x̂T

s1
= x̂T

s1
,

where x̂F

3
is trained with the following three losses:

LDetail = −φ
(

x̂F

3
− x

)

, (6)

LPercept =
∥

∥FP(x̂
F

3
)− FP(x)

∥

∥

2

2
, (7)

LQuality = − logD
(

x̂F

3

)

, (8)

where D is the discriminator measuring the probability that

x̂F

3
is preferred by human vision. FP(·) is the process to

extract deep features from a pretrained VGG network.

The whole loss function in this stage is as follows,

LSBR = LPercept + λ3LDetail + λ4LQuality, (9)

where λ3 and λ4 are weighting parameters.

Summarization. In our DRBN, we first perform band rep-

resentation learning. Each band signal is learned to be re-

covered based on the guidance of paired dataset. This stage

ensures the signal fidelity and detail recovery. After, band

recomposition is performed to improve the visual quality of

the enhanced images with the perceptual guidance of the un-

paired dataset, where high-quality images serve as the prior

knowledge of human vision perception.

4. Experiments

This section illustrates the experimental evaluation.

More results and analysis (including some ablation studies)

are provided in the supplementary material.

Experimental Setting. To fully evaluate the proposed

method, we test our method on images from various scenes.

The LOL real captured low/normal light images [30] are

used for objective and subjective evaluations, since it is a re-

al captured dataset including highly degraded images which

most methods cannot achieve promising results. Beside,

the results of NPE [28] and DICM [16] are also provided

in the supplementary material. The compared methods in-

clude Bio-Inspired Multi-Exposure Fusion (BIMEF) [31],

Brightness Preserving Dynamic Histogram Equalization

(BPDHE) [10], Camera Response Model (CRM) [33], D-

ifferential value Histogram Equalization Contrast Enhace-

ment (DHECE) [22], Dong [6], Exposure Fusion Frame-

work (EFF) [32], Contrast Limited Adaptive Histogram

Equalization (CLAHE) [36], Low-Light Image Enhance-

ment via Illumination Map Estimation (LIME) [9], Multi-

ple Fusion (MF) [7], Multiscale Retinex (MR) [13] Joint

Enhancement and Denoising Method (JED) [25], Refined

Retinex Model (RRM) [18], Simultaneous Reflectance and

Illumination Estimation (SRIE) [8], Deep Retinex Decom-

position (DRD) [30], Deep Underexposed Photo Enhance-

ment (DeepUPE) [27], Single Image Contrast Enhancer

(SICE) [2], EnlightenGAN [11].

Implementation Detail. The network is trained via two

stages. In the first stage, the network is optimized by

ADAM optimizer. The learning rate is set to 0.0001. The

crop image size and batch size for training are set to 256

and 4, respectively. In the second stage, the generator and

discriminator are trained by ADAM optimizer. The learning

rate of the generator is set to 0.0001 and that of the discrim-

inator is set 1e-6. The crop image size and batch size for

training are set to 320 and 1, respectively. λ1, λ2, λ3, and

λ4 are set to 0.1, 0.1, 0.01 and 1, respectively.

We partition LOL dataset [30] for training and testing.

The training dataset includes 689 paired images with the in-

dex [1, 689] while the testing set includes 100 paired images

with the index [690, 789]. In the first stage, 300 epochs are

allowed while in the second stage, only 30 epochs are al-

lowed. In the second stage training, the first module (BLN)

is fixed. After 200 epochs in the first stage training, the

learning rate drops by 0.5. The hyper-parameter of Adam

optimizer is set as: β1 = 0.9, β2 = 0.999 and ε = 1e− 8.

Evaluation Criteria. We perform quantitative evaluation-

s to compare the performance of different methods. We
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Table 1. Quantitative results on real test images in LOL-Real dataset. EG denotes EnlightenGAN.
Metric BIMEF [31] BPDHE [10] CRM [33] DHECE [22] Dong [6] EFF [32] CLAHE [36] LIME [9] MF [7]

PSNR 17.85 13.84 19.65 14.64 17.26 17.85 13.13 15.24 18.73

SSIM 0.6526 0.4254 0.6623 0.4450 0.5270 0.6526 0.3709 0.4702 0.5590

SSIM-GC 0.7231 0.5936 0.6968 0.4521 0.5715 0.7231 0.3947 0.4905 0.5765

Metric MR [13] JED [25] RRM [18] SRIE [8] DRD [30] DeepUPE [27] SICE [2] EG [11] DRBN

PSNR 11.67 17.33 17.34 17.34 15.47 13.27 19.40 18.23 20.13

SSIM 0.4269 0.6654 0.6859 0.6859 0.5672 0.4521 0.6906 0.6165 0.8295

SSIM-GC 0.5158 0.7236 0.7459 0.7075 0.7476 0.7051 0.7250 0.6452 0.8492

(a) Input (b) NPE (c) DHECE (d) MF

(e) BIMEF (f) LIME (g) RRM (h) JED

(i) EnlightenGAN (j) UPE (k) DRBN (l) GT

Figure 3. The visual results of different methods. Left part: the original results. Right part: the results corrected by Gamma transformation

for better visibility.

adopt three objective evaluation metrics: Peak Signal-to-

Noise Ratio (PSNR), Structural SIMilarity (SSIM) [29],

and SSIM calculated based on the Gamma corrected result-

s, which is called SSIM-GC. PSNR is the ratio between the

maximum possible power of the normal light image and the

power of the enhanced image and measures the fidelity of

between them. SSIM considers more on image structures,

takes the image degradation as perceived change in struc-

tural information and incorporates luminance masking and

contrast masking terms into the metric. In the low-light en-

hancement task, the average luminance level is hard to be

predicted. Therefore, the detail fidelity might be not well

captured by PSNR and SSIM. Therefore, SSIM-GC is in-

troduced, where a global illumination is corrected first via

the Gamma transformation and then SSIM values are calcu-

lated.

Quantitative Evaluation. We compare different methods

quantitatively in Table 1. Our method achieves much bet-

ter results in both PSNR, SSIM, and SSIM-GC. The results

show our superiority in illumination restoration and struc-

ture recovery. The better result in SSIM-GC also shows our

superiority when the global illumination is deducted. The

SICE, EnligtenGAN and CRM also achieve superior PSNR

values, which means that they well restore the global illu-

mination. The generally low SSIM and SSIM-GC results

of previous methods demonstrate their limitations in restor-

ing structural details and stretching contrast, which are also

confirmed in the latter qualitative evaluations.

Qualitative Evaluation. We also conduct extensive qual-

itative evaluations in Fig. 3 and 4. The results shows that,

our DRBN achieves much superior quantitative and qual-

itative results to previous methods. In general, most of

previous methods fail to well restore global illumination

and structures. DHECE, LIME, NPE, and EnlightenGAN
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(a) Input (b) NPE (c) DHECE (d) MF

(e) BIMEF (f) LIME (g) RRM (h) JED

(i) EnlightenGAN (j) UPE (k) DRBN (l) GT

Figure 4. The visual results of different methods. Left part: the original results. Right part: the results corrected by Gamma transformation

for better visibility.

Figure 5. The first to fourth panels: low-light image, the result without perceptual guidance, the result with perceptual guidance, normal

light image.

well restore the global illumination of the results. How-

ever, in their results, the burred noise is amplified, which

heavily impairs the local details. RRM, MF, JED, and UP-

E suffer form under-exposure and poor visibility. In their

Gamma corrected results (right parts), noise is observed in

the results of RRM and JED. However, contrast of these t-

wo methods is not promising. Comparatively, our method

achieves very good perceptual visual quality, with good il-

lumination, color distribution, as well as clean and sharp

details.

Ablation Study for Two-Stage Design. We perform an

ablation study of our two-stage design in Fig. 5. Compar-

ing the results before and after the band recomposition, it

is observed that, the results become more colorful and the

contrast of the images is further boosted. Benefiting from

the guided knowledge from a high-quality dataset, overall

visibility and quality of these results even outperform the

ground truths at the bottom rows.
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(a) Low-Light Image (b) Enhanced Results by RBL (c) 1st order band (d) 2nd order band (e) 3rd order band

Figure 6. The visualization results of the learned bands by our DRBN. RBL denotes the recursive band learning.

(a) Enhanced Results by RBL (b) Enhanced Results by BR (c) 1st order weighting map (d) 2nd order weighting map (e) 3rd order weighting map

Figure 7. The visualization results of the learned weighting maps for band recomposition. RBL and BR denote the recursive band learning

and band recomposition, respectively.

5. Visualization of Recursive Band Learning

and Band Recomposition

We visualize the learned band representations and the

weighting masks for band recomposition in Fig. 6 and 7, re-

spectively. It is observed that, our RBL effectively extracts

a series of course-to-fine layered representations. After that,

band recomposition reconstructs the band signals adaptive-

ly. Comparing the weighting maps for different bands, it

is demonstrated that, the higher-order weighting maps are

more sparse and focus more on edges and structures.

6. Conclusion

In this paper, we aim to create a novel semi-supervised

learning method utilizing the knowledge of synthetic paired

low/normal-light images and unpaired high-quality data for

low-light image enhancement. To this end, we create a

two-stage network which restores the signal based on fi-

delity first and then further enhances the results to im-

prove overall visual quality. The DRBN recovers a lin-

ear band representation of an enhanced normal-light im-

age with paired low/normal-light images, and then obtain an

improved one by recomposing the given bands via another

learnable linear transformation, which is trained with a per-

ceptual quality-driven adversarial loss with unpaired high-

quality data. The two-stage design makes our approach

generate the enhanced results with well reconstructed de-

tails and visually promising contrast and color distribution-

s. Both qualitative and quantitative evaluations demonstrate

the advantages of the proposed method.
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