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Abstract

We study the problem of 3D shape reconstruction from

2D landmarks extracted in a single image. We adopt the

3D deformable shape model and formulate the reconstruc-

tion as a joint optimization of the camera pose and the

linear shape parameters. Our first contribution is to ap-

ply Lasserre’s hierarchy of convex Sums-of-Squares (SOS)

relaxations to solve the shape reconstruction problem and

show that the SOS relaxation of minimum order 2 empiri-

cally solves the original non-convex problem exactly. Our

second contribution is to exploit the structure of the polyno-

mial in the objective function and find a reduced set of ba-

sis monomials for the SOS relaxation that significantly de-

creases the size of the resulting semidefinite program (SDP)

without compromising its accuracy. These two contribu-

tions, to the best of our knowledge, lead to the first certi-

fiably optimal solver for 3D shape reconstruction, that we

name Shape⋆. Our third contribution is to add an outlier

rejection layer to Shape⋆ using a truncated least squares

(TLS) robust cost function and leveraging graduated non-

convexity to solve TLS without initialization. The result is a

robust reconstruction algorithm, named Shape#, that toler-

ates a large amount of outlier measurements. We evaluate

the performance of Shape⋆ and Shape# in both simulated

and real experiments, showing that Shape⋆ outperforms lo-

cal optimization and previous convex relaxation techniques,

while Shape# achieves state-of-the-art performance and is

robust against 70% outliers in the FG3DCar dataset.

1. Introduction

3D object detection and pose estimation from a single

image is a fundamental problem in computer vision. De-

spite the progress in semantic segmentation [11], depth es-

timation [20], and pose estimation [16, 43], reconstructing

the 3D shape and pose of an object from a single image re-

mains a challenging task [2, 49, 37, 42, 18, 35].

A typical approach for 3D shape reconstruction is to first

detect 2D landmarks in a single image, and then solve a

model-based optimization to lift the 2D landmarks to form

a 3D model [48, 49, 35, 25, 40]. For the optimization to

be well-posed, the unknown shape is assumed to be a 3D

deformable model, composed by a linear combination of

basis shapes, handcrafted or learned from a large corpus

of training data [8]. The optimization then seeks to jointly

optimize the coefficients of the linear combination (shape

parameters) and the camera pose to minimize the reprojec-

tion errors between the 3D model and the 2D landmarks.

This model-based paradigm has been successful in several

applications such as face recognition [4, 10], car model fit-

ting [25, 12], and human pose estimation [49, 35].

Despite its long history and broad range of applications,

there is still no globally optimal solver for the non-convex

optimization problem arising in 3D shape reconstruction.

Therefore, most existing solutions adopt a local optimiza-

tion strategy, which alternates between solving for the cam-

era pose and the shape parameters. These techniques, as

shown in prior works [35, 12], require an initial guess for

the solution and often get stuck in local minima. In addi-

tion, 2D landmark detectors are prone to produce outliers,

causing existing methods to be brittle [40]. Therefore, the

motivation for this paper is two-fold: (i) to develop a cer-

tifiably optimal shape reconstruction solver, and (ii) to de-

velop a robust reconstruction algorithm that is insensitive to

a large amount of outlier 2D measurements (e.g., 70%).

Contributions. Our first contribution is to formulate the

shape reconstruction problem as a polynomial optimization

problem and apply Lasserre’s hierarchy of Sums-of-Squares

(SOS) relaxations to relax the non-convex polynomial op-

timization into a convex semidefinite program (SDP). We

show the SOS relaxation of minimum order 2 empirically

solves the non-convex shape reconstruction problem exactly

and provides a global optimality certificate. The second

contribution is to apply basis reduction, a technique that ex-

ploits the sparse structure of the polynomial in the objective

function, to reduce the size of the resulting SDP. We show

that basis reduction significantly improves the efficiency of

the SOS relaxation without compromising global optimal-

ity. To the best of our knowledge, this is the first certifi-

ably optimal solver for shape reconstruction, and we name

it Shape⋆. Our third contribution is to robustify Shape⋆ by

adopting a truncated least squares (TLS) robust cost func-

tion and solving the resulting robust estimation problem us-
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ing graduated non-convexity [3]. The resulting algorithm,

named Shape#, is robust against 70% outliers and does not

require an initial guess.

The rest of this paper is organized as follows. Section 2

reviews related work. Section 3 introduces notation and

preliminaries on SOS relaxations. Section 4 introduces the

shape reconstruction problem. Section 5 develops our SOS

solver (Shape⋆). Section 6 presents an algorithm (Shape#)

to robustify the SOS relaxation against outliers. Section 7

provides experimental results in both simulations and real

datasets, while Section 8 concludes the paper.

2. Related Work

We limit our review to optimization-based approaches

for 3D shape reconstruction from 2D landmarks. The inter-

ested reader can find a review of end-to-end shape and pose

reconstruction using deep learning in [18, 37, 17].

Local Optimization. Most existing methods resort to

local optimization to solve the non-convex joint optimiza-

tion of shape parameters and camera pose. Blanz and Vet-

ter [4] propose a method for face recognition by fitting a

morphable model of the 3D face shape and texture to a

single image using stochastic Newton’s method to escape

local minima. Gu and Kanade [10] align a deformable

point-based 3D face model by alternatively deforming the

3D model and updating the 3D pose. Using similar al-

ternating optimization, Ramakrishna et al. [35] tackle 3D

human pose estimation by finding a sparse set of basis

shapes from an over-complete human shape dictionary us-

ing projected matching pursuit; the approach is further im-

proved by Fan et al. [9] to include pose locality constraints.

Lin et al. [25] demonstrate joint 3D car model fitting and

fine-grained classification; car model fitting in cluttered im-

ages is investigated in [12]. To mitigate the impact of out-

lying 2D landmarks, Li et al. [24] propose a RANSAC-type

method for car model fitting and Wang et al. [40] replace

the least squares estimation with an ℓ1-norm minimization.

Convex Relaxation. More recently, Zhou et al. [48] de-

velop a convex relaxation, where they first over-parametrize

the 3D deformable shape model by associating one rotation

with each basis and then relax the resulting Stiefel man-

ifold constraint to its convex envelope. Although show-

ing superior performance compared to local optimization,

the convex relaxation in [48] comes with no optimality

guarantee and is typically loose in practice. In addi-

tion, Zhou et al. [49] model outliers using a sparse matrix

and augment the optimization with an ℓ1 regularization to

achieve robustness against 40% outliers. In contrast, we

will show that our convex relaxation comes with certifiable

optimality, and our robust reconstruction approach can han-

dle 70% outliers.

3. Notation and Preliminaries

We use Sn to denote the set of n×n symmetric matrices.

We write A ∈ Sn
+ (resp. A ∈ Sn

++) to denote that the ma-

trix A ∈ Sn is positive semidefinite (PSD) (resp. positive

definite (PD)). Given x = [x1, . . . , xn]
T, we let R[x] (resp.

R[x]d) be the ring of polynomials in n variables with real

coefficients (resp. with degree at most d), and [x]d be the

vector of all
(
n+d
d

)
monomials with degree up to d.

We now give a brief summary of SOS relaxations for

polynomial optimization. Our review is based on [5, 30,

22]. We first introduce the notion of SOS polynomial.

Definition 1 (SOS Polynomial [5]) A polynomial p(x) ∈
R[x]2d is said to be a sums-of-squares (SOS) polynomial

if there exist polynomials q1, . . . , qm∈R[x]d such that:

p(x) =

m∑

i=1

q2i (x). (1)

We use Σn (resp. Σn,2d) to denote the set of SOS poly-

nomials in n variables (resp. with degree at most 2d). A

polynomial p(x) ∈ R[x]2d is SOS if and only if there exists

a PSD matrix Q ∈ SNQ

+ with NQ =
(
n+d
d

)
, such that:

p(x) = [x]TdQ[x]d, (2)

and Q is called the Gram matrix of p(x).

Now consider the following polynomial optimization:

min
x∈Rn

f(x) (3)

s.t. hi(x) = 0, i = 1, . . . ,m,

gk(x) ≥ 0, k = 1, . . . , l,

where f, hi, gk ∈ R[x] are all polynomials and let X be

the feasible set defined by hi, gk. For convenience, denote

h := (h1, . . . , hm), g0 := 1 and g = (g0, . . . , gl). We call

〈h〉 := {h ∈ R[x] : h =
∑m

i=1 λihi, λi ∈ R[x]}, (4)

〈h〉2β := {h ∈ 〈h〉 : deg(λihi) ≤ 2β}, (5)

the ideal and the 2β-th truncated ideal of h, where deg(·)
is the degree of a polynomial. The ideal is simply a sum-

mation of polynomials with polynomial coefficients, a con-

struct that will simplify the notation later on. We call

Q(g) := {g ∈ R[x] : g =
∑m

k=0 skgk, sk ∈ Σn}, (6)

Qβ(g) := {g ∈ Q(g) : deg(skgk) ≤ 2β}, (7)

the quadratic module and the β-th truncated quadratic

module generated from g. Note that the quadratic module is

similar to the ideal, except now we require the polynomial

coefficients to be SOS. Apparently, if p(x) ∈ 〈h〉 + Q(g),
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then p(x) is nonnegative on X 1. Putinar’s Positivstellen-

satz [34] describes when the reverse is also true.

Theorem 2 (Putinar’s Positivstellensatz [34]) Let X be

the feasible set of problem (3). Assume 〈h〉 + Q(g) is

Archimedean, i.e., M − ‖x‖22 ∈ 〈h〉2β + Qβ(g) for some

β ∈ N and M > 0. If p(x) ∈ R[x] is positive on X , then

p(x) ∈ 〈h〉+Q(g).

Based on Putinar’s Positivstellensatz, Lasserre [21] de-

rived a sequence of SOS relaxations that approximates the

global minimum of problem (3) with increasing accuracy.

The key insight behind Lasserre’s hierarchy is twofold. The

first insight is that problem (3), which we can write suc-

cinctly as minx∈X f(x), can be equivalently written as

max
x,γ

γ, s.t.f(x) − γ ≥ 0 on X (intuition: the latter pushes

the lower bound γ to reach the global minimum of f(x)).
The second intuition is that we can rewrite the condition

f(x)−γ ≥ 0 on X , using Putinar’s Positivstellensatz (The-

orem 2), leading to the following hierarchy of Sums-of-

Squares relaxations.

Theorem 3 (Lasserre’s Hierarchy [21]) Lasserre’s hier-

archy of order β is the following SOS program:

max γ, s.t. f(x)− γ ∈ 〈h〉2β +Qβ(g), (8)

which can be written as a standard SDP. Moreover, let f⋆

be the global minimum of (3) and f⋆
β be the optimal value

of (8), then f⋆
β monotonically increases and f⋆

β → f⋆

when β → ∞. More recently, Nie [30] proved that un-

der Archimedeanness, Lasserre’s hierarchy has finite con-

vergence generically (i.e., f⋆
β = f⋆ for some finite β).

In computer vision, Lasserre’s hierarchy was first used

by Kahl and Henrion [15] to minimize rational functions

arising in geometric reconstruction problems, and more re-

cently by Probst et al. [33] as a framework to solve a set

of 3D vision problems. In this paper we will show that the

SOS relaxation as written in eq. (8) allows using basis re-

duction to exploit the sparsity pattern of polynomials and

leads to significantly smaller semidefinite programs.

4. Problem Statement: Shape Reconstruction

Assume we are given N pixel measurements Z =
[z1, . . . , zN ] ∈ R

2×N (the 2D landmarks), generated from

the projection of points belonging to an unknown 3D shape

S ∈ R
3×N onto an image. Further assume the shape S

that can be represented as a linear combination of K pre-

defined basis shapes Bk ∈ R
3×N , i.e. S =

∑K
k=1 ckBk,

1If p ∈ 〈h〉+Q(g), then p = h+g, with h ∈ 〈h〉 and g ∈ Q(g). For

any x ∈ X , since hi(x) = 0, so h(x) =
∑

λihi = 0; since gk(x) ≥ 0
and sk(x) ≥ 0, so g =

∑

skgk ≥ 0. Therefore, p = h+ g ≥ 0

where {ck}Kk=1 are (unknown) shape coefficients. Then, the

generative model of the 2D landmarks reads:

zi = ΠR

(
K∑

k=1

ckBki

)

+ t+ ǫi, i = 1, . . . , N, (9)

where Bki denotes the i-th 3D point on the k-th basis shape,

ǫi ∈ R
2 models the measurement noise, and Π is the

(known) weak perspective projection matrix:

Π =

[
sx 0 0
0 sy 0

]

, (10)

with sx and sy being constants2. In eq. (9), R ∈ SO(3) and

t ∈ R
2 model the (unknown) rotation and translation of the

shape S relative to the camera (only a 2D translation can be

estimated). The shape reconstruction problem consists in

the joint estimation of the shape parameters {ck}Kk=1 and

the camera pose (R, t)3.
Without loss of generality, we adopt the nonnegative

sparse coding (NNSC) convention [49] and assume all the
coefficients ck are nonnegative4. Due to the existence of
noise, we solve the following weighted least squares opti-
mization with Lasso (ℓ1-norm) regularization:

min
ck≥0,k=1,...,K

t∈R
2,R∈SO(3)

N
∑

i=1

wi

∥

∥

∥

∥

∥

zi−ΠR

(

K
∑

k=1

ckBki

)

−t

∥

∥

∥

∥

∥

2

+α

K
∑

k=1

|ck| (11)

The ℓ1-norm regularization (controlled by a given con-

stant α) encourages the coefficients ck to be sparse when

the shape S is generated from only a subset of the ba-

sis shapes [49] (note that the ℓ1-norm becomes redundant

when using the NNSC convention). Contrary to previous

approaches [49, 35], we explicitly associate a given weight

wi ≥ 0 to each 2D measurement zi in eq. (11). On the

one hand, this allows accommodating heterogeneous noise

in the 2D landmarks (e.g., wi = 1/σ2
i when the noise ǫi is

Gaussian, ǫi ∼ N (0, σ2
i I2)). On the other hand, as shown

in Section 6, the weighted least squares framework is useful

to robustify (11) against outliers.

5. Certifiably Optimal Shape Reconstruction

This section shows how to develop a certifiably opti-

mal solver for problem (11). Our first step is to alge-

braically eliminate the translation t and obtain a translation-

free shape reconstruction problem, as shown below.

2The weak perspective camera model is a good approximation of the

full perspective camera model when the distance from the object to the

camera is much larger than the depth of the object itself [48]. [50] showed

that the solution obtained using the weak perspective model provides a

good initialization when refining the pose for the full perspective model.
3Shape reconstruction in the case of a single 3D model, i.e., K = 1, is

called shape alignment and has been solved recently in [44].
4The general case of real coefficients is equivalent to the NNSC case

where for each basis Bk we also add the basis −Bk .
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Theorem 4 (Translation-free Shape Reconstruction)
The shape reconstruction problem (11) is equivalent to the
following translation-free optimization:

min
ck≥0,k=1,...,K

R∈SO(3)

N
∑

i=1

∥

∥

∥

∥

∥

z̃i−ΠR

(

K
∑

k=1

ckB̃ki

)
∥

∥

∥

∥

∥

2

+α

K
∑

k=1

|ck| (12)

where z̃i and B̃ki can be computed as follows:

z̃i =
√
wi(zi − z̄w), with z̄w =

∑N
i=1

wizi∑
N
i=1

wi
, (13)

B̃ki =
√
wi(Bki − B̄w

k ), with B̄w
k =

∑N
i=1

wiBki∑
N
i=1

wi
. (14)

Further, let R⋆ and c⋆k, k = 1, . . . ,K, be the global mini-

mizer of the above translation-free optimization (12), then

the optimal translation t⋆ can be recovered as:

t⋆ = z̄w −ΠR⋆

(
K∑

k=1

c⋆kB̄
w
k

)

. (15)

A formal proof of Theorem 4 can be found in the Sup-

plementary Material. The intuition behind Theorem 4 is

that if we express the landmark coordinates and 3D basis

shapes with respect to their (weighted) centroids z̄w and

B̄w
k , k = 1, . . . ,K, we can remove the dependence on the

translation t. This strategy is inspired by Horn’s method

for point cloud registration [14], and generalizes [49] to the

weighted and non-centered case.

5.1. SOS Relaxation

This section applies Lasserre’s hierarchy as described in

Theorem 3 to solve the translation-free shape reconstruction

problem (12). We do this in two steps: we first show prob-

lem (12) can be formulated as a polynomial optimization in

the form (3); and then we add valid constraints to make the

feasible set Archimedean.

Polynomial Optimization Formulation. Denote c =
[c1, . . . , ck]

T ∈ R
K , r = vec(R) = [rT1 , r

T

2 , r
T

3 ]
T ∈ R

9,

with ri, i = 1, 2, 3 being the i-th column of R, then x :=
[cT, rT]T ∈ R

K+9 is the unknown decision vector in (3).

Consider the first term in the objective function of (12). We

can write:

qi(x):=‖z̃i−ΠR(
∑K

k=1
ckB̃ki)‖2

=‖z̃i−Π
∑K

k=1
ckRB̃ki‖2

, (16)

then it becomes clear that qi(x) is a polynomial function of

x with degree 4. Because the Lasso regularization is linear

in c, the objective function f(x) is a degree-4 polynomial.

Now we consider the feasible set of (12). The inequal-

ity constraints ck ≥ 0 are already in generic form (3) with

gk(x) = ck, k = 1, . . . ,K, being degree-1 polynomials.

As for the R ∈ SO(3) constraint, it has already been shown

in related work [38, 6] that enforcing R ∈ SO(3) is equiv-

alent to imposing 15 quadratic equality constraints.

Lemma 5 (Quadratic Constraints for SO(3) [38, 6])

For a matrix R ∈ R
3×3, the constraint R ∈ SO(3)

(where SO(3) := {R : RTR = I3, detR = +1} is

the set of proper rotation matrices) is equivalent to the

following set of degree-2 polynomial equality constraints

(hi(x) = 0, i = 1, . . . , 15):






h1 = 1− ‖r1‖2, h2 = 1− ‖r2‖2, h3 = 1− ‖r3‖2
h4 = rT1 r2, h5 = rT2 r3, h6 = rT3 r1

h7,8,9 = r1 × r2 − r3

h10,11,12 = r2 × r3 − r1

h13,14,15 = r3 × r1 − r2

(17)

where ri ∈ R
3, i = 1, 2, 3, denotes the i-th column of R

and “×” represents the vector cross product.

In eq. (17), h1,2,3 constrain the columns to be unit vectors,

h4,5,6 constrain the columns to be mutually orthogonal, and

h7−15 constrain the columns to satisfy the right-hand rule

(i.e., the determinant constraint)5.

In summary, the translation-free problem (12) is equiv-

alent to a polynomial optimization with a degree-4 objec-

tive f(x), constrained by 15 quadratic equalities hi(x)
(eq. (17)) and K linear inequalities gk(x) = ck.

Archimedean Feasible Set. The issue with the feasible

set defined by inequalities ck ≥ 0 and equalities (17) is that

〈h〉 + Q(g) is not Archimedean, which can be easily seen

from the unboundedness of the linear inequality ck ≥ 06.

However, we know the linear coefficients must be bounded

because the pixel measurement values Z lie in a bounded

set (the 2D image). Therefore, we propose to normalize the

2D measurements and the 3D basis shapes: (i) for 2D mea-

surements Z, we first divide them by sx and sy (eq. (10)),

and then scale them such that they lie inside a unit circle; (ii)

for each 3D basis shape Bk, we scale Bk such that it lies

inside a unit sphere. With this proper normalization, we can

add the following degree-2 inequality constraints (c2k ≤ 1)

that bound the linear coefficients:

gK+k(x) = 1− c2k, k = 1, . . . ,K. (18)

Now we can certify the Archimedeanness of 〈h〉+Q(g):

K + 3− ‖x‖22 =

K∑

k=1

1 · gK+k

︸ ︷︷ ︸

∈Q1(g)

+h1 + h2 + h3
︸ ︷︷ ︸

∈〈h〉2

, (19)

with M = K + 3 and β = 1 (cf. Theorem 2).

Apply Lasserre’s Hierarchy. With Archimedeanness,

we can now apply Lasserre’s hierarchy of SOS relaxations.

5We remark that the 15 equality constraints in (17) are redundant. For

example, h1,2,3,7,8,9 are sufficient to fully constrain R ∈ SO(3). We

also found that, empirically, choosing h1,2,3 and h7−15 yields similar

tightness results as choosing all 15 constraints.
6M − ‖x‖22 ≥ 0 requires x to have bounded ℓ2-norm.
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Proposition 6 (SOS Relaxations for Shape Reconstruction)

The SOS relaxation of order β (β ≥ 2)7 for the translation-

free shape reconstruction problem (12) is the following

convex semidefinite program:

max
γ∈R,S0∈S

N0
+

Sk∈SNs
+

, k=1,...,2K

λi∈R
Nλ ,i=1,...,15

γ (20)

s.t. f(x)− γ = [x]TβS0[x]β +
∑2K

k=1

(

[x]Tβ−1Sk[x]β−1

)

gk(x) +

∑15
i=1

(
λT

i [x]2β−2

)
hi(x), (21)

where f(x) is the objective function defined in (12),

gk(x), k = 1, . . . , 2K are the inequality constraints ck, 1−
c2k, hi(x), i = 1, . . . , 15 are the equality constraints de-

fined in (17), and N0 :=
(
K+9+β

β

)

, Ns :=
(
K+8+β
β−1

)

,

Nλ :=
(
K+7+2β
2β−2

)

are the sizes of matrices and vectors.

While a formal proof of Proposition 6 is given in the Sup-

plementary Material, we observe that (20) immediately re-

sults from the application of Lasserre’s hierarchy to (8),

by parametrizing Qβ(g) with monomial bases [x]β−1, [x]β
and PSD matrices S0, Sk, k = 1, . . . , 2K (one for each gk),

and by parametrizing 〈h〉2β with monomial basis [x]2β−2

and coefficient vectors λi, i = 1, . . . , 15 (one for each hi).

Problem (20) can be written as an SDP and solved glob-

ally using standard convex solvers (e.g. YALMIP [26]). We

call the SDP written in (20) the primal SDP. The dual SDP

of (20) can be derived using moment relaxation [21, 23, 22],

which is readily available in GloptiPoly 3 [13].

Extract Solutions from SDP. After solving the

SDP (20), we can extract solutions to the original non-

convex problem (12), a procedure we call rounding.

Proposition 7 (Rounding and Duality Gap) Let f⋆
β = γ⋆

and S
β⋆
0 ,Sβ⋆

k ,λβ⋆
i be the optimal solutions to the SDP (20)

at order β; compute vβ⋆ as the eigenvector corresponding

to the minimum eigenvalue of S
β⋆
0 , and then normalize vβ⋆

such that the first entry is equal to 1. Then an approximate

solution to problem (12) can be obtained as:

ĉβ = projg([v
β⋆]c); r̂β = projh([v

β⋆]r), (22)

where [vβ⋆]c (resp. [vβ⋆]r) denotes the entries of vβ⋆

corresponding to monomials c (resp. r), and projg (resp.

projh) denotes projection to the feasible set defined by g

(resp. h). Specifically for problem (12), projg is round-

ing each coefficient ck to the [0, 1] interval, and projh is

the projection to SO(3). Moreover, let f̂β be the value of

7The minimum relaxation order is 2 because f(x) has degree 4.

the objective function evaluated at the approximate solu-

tion x̂β := [(ĉβ)T, (r̂β)T]T, then the following inequality

holds (weak duality):

f⋆
β ≤ f⋆ ≤ f̂β , (23)

where f⋆ is the true (unknown) global minimum of prob-

lem (12). We define the relative duality gap ηβ as:

ηβ = (f̂β − f⋆
β)/f̂β , (24)

which quantifies the quality of the SOS relaxation.

Certifiable Global Optimality. Besides extracting so-

lutions to the original problem, we can also verify when the

SOS relaxation solves the original problem exactly.

Theorem 8 (Certificate of Global Optimality) Let f⋆
β =

γ⋆ and S
β⋆
0 be the optimal solutions to the SDP (20) at

order β. If corank(Sβ⋆
0 ) = 1 (the corank is the dimension

of the null space of S
β⋆
0 ), then f⋆

β is the global minimum

of problem (12), and the relaxation is said to be tight at

order β. Moreover, the relative duality gap ηβ = 0 and

the solution x̂β extracted using Proposition 7 is the unique

global minimizer of problem (12).

The proof of Theorem 8 is given in the Supplementary

Material. Empirically (Section 7), we observed that the re-

laxation is always tight at the minimum relaxation order

β = 2. Note that even when the relaxation is not tight, one

can still obtain an approximate solution using Proposition 7

and quantify how suboptimal the approximate solution is

using the relative duality gap ηβ .

5.2. Basis Reduction

Despite the theoretical soundness and finite convergence

at order β = 2, the size of the SDP (20) is N0 =
(
K+9+β

β

)

,

which for β = 2 becomes
(
K+11

2

)
, implying that the size

of the SDP grows quadratically in the number of bases K.

Although there have been promising advances in improv-

ing the scalability of SDP solvers (see [28] for a thorough

review), such as exploiting sparsity [41, 39, 29] and low-

rankness [7, 36], in this section we demonstrate a simple

yet effective approach, called basis reduction, that exploits

the structure of the objective function to significantly reduce

the size of the SDP in (20).

In a nutshell, basis reduction methods seek to find a

smaller, but still expressive enough, subset of the full vector

of monomials [x]β on the right-hand side (RHS) of eq. (21),

to explain the objective function f(x) on the left-hand side

(LHS). There exist standard approximation algorithms for

basis reduction, discussed in [31, 32] and implemented in

YALMIP [27]. However, in practice we found the basis

selection method in YALMIP failed to find any reduction
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for the SDP (20). Therefore, here we propose a problem-

specific reduction, which follows from the examination of

which monomials appear on the LHS of (21).

Proposition 9 (SOS Relaxation with Basis Reduction)

The SOS relaxation of order β = 2 with basis reduction for

the translation-free shape reconstruction problem (12) is

the following convex semidefinite program:

max
γ∈R,S0∈S

N′

0
+

Sk∈S
N′

s
+

,k=1,...,2K,

λi∈R
N′

λ ,i=1,...,15

γ (25)

s.t. f(x)− γ = m2(x)
TS0m2(x) +

∑2K
k=1([r]

T

1Sk[r])gk(x) +
∑15

i=1(λ
T

i [c]2)hi(x), (26)

where N ′
0 = 10K + 10, N ′

s = 10, N ′
λ =

(
K+2
2

)
, and

m2(x) = [1, cT, rT, cT ⊗ rT]T ∈ R
N0 , and where ⊗ is the

Kronecker product.

Comparing the SDP (25) and (20), the most significant

change is replacing the full monomial basis [x]β in (20)

with a much smaller monomial basis m2(x) that excludes

degree-2 monomials purely supported in c and r. This

reduction is motivated by analyzing the monomial terms

in f(x). Although a formal proof of the equivalence be-

tween (20) and (25) remains open, we provide an intuitive

explanation in the Supplementary Material. After basis re-

duction, the size of the SDP (25) is N ′
0 = 10K +10, which

is linear in K and much smaller than the size of the original

SDP (20) Nk =
(
K+11

2

)
8. Section 7 numerically shows that

the SDP after basis reduction gives the same (tight) solution

as the original SDP.

5.3. Shape⋆: Algorithm Summary

To summarize the derivation in this section, our solver

for the shape reconstruction problem (11), named Shape⋆,

works as follows. It first solves the SDP (25) and applies

the rounding described in Proposition 7 to compute an esti-

mate of the shape parameters ck and rotation R and possi-

bly certify its optimality. Then, Shape⋆ uses the closed-form

expression (15) to retrieve the translation estimate t.

6. Robust Outlier Rejection

Section 5 proposed a certifiably optimal solver for prob-

lem (11). However, the least squares formulation (11)

tends to be sensitive to outliers: the pixel measurements

Z in eq. (9) are typically produced by learning-based or

handcrafted detectors [49], which might produce largely in-

correct measurements (e.g. due to wrong data association

8For K = 5, 10, 20, N0 = 120, 210, 465, while N ′
0 = 60, 110, 210.

zi ↔ Bki), which in turn leads to poor shape reconstruc-

tion results. This section shows how to regain robustness by

iteratively solving the weighted least squares problem (11)

and adjusting the weights wi to reject outliers.

The key insight is to substitute the least square penalty

in (11) with a robust cost function, namely the truncated

least squares (TLS) cost [46, 45, 19, 47]. Hence, we propose

the following TLS shape reconstruction formulation:

min
ck≥0,

k=1,...,K
t∈R

2,R∈SO(3)

N∑

i=1

ρc̄ (ri(ck,R, t)) + α

K∑

k=1

ck (27)

where ri(ck,R, t) :=
∥
∥
∥zi−ΠR

(
∑K

k=1 ckBki

)

−t

∥
∥
∥

(introduced for notational convenience), and ρc̄(r) =
min(r2, c̄2) implements a truncated least squares cost,

which is quadratic for small residuals and saturates to a con-

stant value for residuals larger than a maximum error c̄.
Our second insight is that ρc̄(r) can be written as

ρc̄(r) = minw∈{0,1} wr
2+(1−w)c̄2, by introducing extra

slack binary variables w ∈ {0, 1}. Therefore, we can write

problem (27) equivalently as:

min
ck≥0,k=1,...,K,

wi∈{0,1},i=1,...,N

t∈R
2,R∈SO(3)

N∑

i=1

wi (ri(ck,R, t))+(1−wi)c̄
2+α

K∑

k=1

ck (28)

The final insight is that now we can minimize (28) by

iteratively minimizing (i) over ck,R, t (with fixed weights

wi), and (ii) over the weights wi (with fixed ck,R, t). The

rationale for this approach is that step (i) can be imple-

mented using Shape⋆ (since in this case the weights are

fixed), and step (ii) can be implemented in closed-form. To

improve convergence of this iterative algorithm, we adopt

graduated non-convexity [3, 44], which starts with a convex

approximation of problem (28) and uses a control parame-

ter µ to gradually increase the amount of non-convexity, till

(for large µ) one solves (28). The resulting algorithm named

Shape# is given in Algorithm 1. We refer the reader to the

Supplementary Material and [44] for a complete derivation

of Algorithm 1 and for the closed-form expression of the

weight update in line 6 of the algorithm.

Shape# is deterministic and does not require an initial

guess. We remark that the graduated non-convexity scheme

in Shape# (contrarily to Shape⋆) is not guaranteed to con-

verge to an optimal solution of (28), but we show in the

next section that it is empirically robust to 70% outliers.

7. Experiments

Implementation details. Both Shape⋆ and Shape# are

implemented in Matlab, with both SOS relaxations (20)

and (25) implemented using YALMIP [26] and the result-

ing SDPs solved using MOSEK [1].
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Algorithm 1: Robust Shape Reconstruction.

input : measurements zi, i = 1, . . . , N ,

basis shapes Bk, k = 1, . . . ,M
maximum error c̄, regularization constant α

output: shape reconstruction: c⋆
k
,R⋆, t⋆

/* Initialization */

1 w
(0)
i = 1, i = 1, . . . , N

2 µ(0) = 10−4

/* Iterations */

3 for τ = 1 : maxIter do

/* Variable update */

4 c
(τ)
k

,R(τ), t(τ) = Shape⋆(zi,Bk, α, w
(τ−1)
i , µ(τ−1))

/* Compute residual errors */

5 r
(τ)
i = ‖zi −ΠR(τ)

(

∑K
k=1 c

(τ)
k

Bki

)

− t(τ)‖

/* Weight update */

6 w
(τ)
i = weightUpdate(r

(τ)
i , c̄, µ(τ−1))

/* Compute objective function */

7 f (τ) = computeObjective(r
(τ)
i , w

(τ)
i , µ(τ−1), α, c̄)

/* Check convergence (τ > 1) */

8 if |f (τ) − f (τ−1)| < 10−10 then

9 break

/* Update control parameter µ */

10 µ(τ) = 2 · µ(τ−1)

11 return c
(τ)
k

,R(τ), t(τ).

7.1. Efficiency Improvement by Basis Reduction

We first evaluate the efficiency improvement due to ba-

sis reduction in simulation. We fix the number of corre-

spondences N = 100, and increase the number of basis

shapes K = 5, 10, 20. At each K, we first randomly gen-

erate K basis shapes B1, . . . ,BK ∈ R
3×N , with entries

sampled independently from a Normal distribution N (0, 1).
Then K linear coefficients c = [c1, . . . , cK ]T are uniformly

sampled from the interval [0, 1], and a rotation matrix R is

randomly chosen. The 2D measurements Z are computed

from the generative model (9) with t = 0, sx = sy = 1 for

Π, and additive noise ǫi ∼ N (0, 0.012). For shape recon-

struction, we feed the noisy Z and bases Bk to (i) the SOS

relaxation (20) without basis reduction, and (ii) the SOS re-

laxation (25) with basis reduction, both at relaxation order

β = 2 and with no Lasso regularization (α = 0).

To evaluate the effects of introducing basis reduction, we

compute the following statistics for each choice of K: (i)

solution time for the SDP; (ii) tightness of the SOS relax-

ation, including corank(S2⋆
0 ) and relative duality gap η2;

(iii) accuracy of reconstruction, including the coefficients

estimation error (ℓ2 norm of the difference between esti-

mated and ground-truth coefficients) and the rotation esti-

mation error (the geodesic distance between estimated and

ground-truth rotation). Table 1 shows the resulting statis-

tics. We see that the SOS relaxation without basis reduction

quickly becomes intractable at K = 20 (mean solution time

is 2440 seconds), while the relaxation with basis reduction

can still be solved in a reasonable amount of time (107 sec-

# of Bases K K = 5 K = 10 K = 20

SDP Time [s]
3.52
0.550

47.0
5.28

2440
107

corank(S2⋆
0 )

1
1

1
1

1
1

Duality Gap η2
5e−6
1e−5

7e−6
2e−5

4e−5
1e−5

c Error
1.3e−3
1.3e−3

2.3e−3
2.3e−3

3.2e−3
3.2e−3

R Error [deg]
0.0690
0.0690

0.0487
0.0487

0.0298
0.0298

Table 1. Efficiency improvement by basis reduction. Bold text

represent mean values computed by solving the SOS relaxation

with basis reduction (25), while normal text represent mean val-

ues computed by solving the SOS relaxation without basis reduc-

tion (20). Statistics are computed over 20 Monte Carlo runs.

onds)9. In addition, from the co-rank of (S2⋆
0 ) and the rel-

ative duality gap η2, we see basis reduction has no negative

impact on the quality of the relaxation, which remains tight

at order β = 2. This observation is further validated by the

identical accuracy of c and R estimation before and after

basis reduction (last two rows of Table 1).

7.2. Shape⋆ for Outlier­Free Reconstruction

In this section, we compare the performance of Shape⋆

against state-of-art optimization techniques for shape recon-

struction. We follow the same protocol as in Section 7.1,

but only generate 2D measurements from a sparse set of

p = 2 basis shapes. This is done by only sampling p out of

K nonzero shape coefficients, i.e., cp+1, . . . , cK = 0. We

then compare the performance of Shape⋆, setting α = 0.01
to encourage sparseness, against three state-of-the-art op-

timization techniques: (i) the projective matching pursuit

method [35] (label: PMP), which uses principal component

analysis to first obtain a set of orthogonal bases from {Bk}
and then locally optimizes the shape parameters and cam-

era pose using the mean shape as an initial guess; (ii) the

alternative optimization method [48] (label: Altern), which

locally optimizes problem (11) by alternatively updating

c and R, initialized at the mean shape; and (iii) the con-

vex relaxation with refinement proposed in [49] (label: con-

vex+refine), which uses a convex relaxation and then refines

the solution to obtain c and R. Fig. 1 shows the boxplots

of the 3D shape estimation error (mean ℓ2 distance between

the reconstructed shape and the ground-truth shape) and the

rotation estimation error for K = 5, 10, 20 basis shapes and

20 Monte Carlo runs. We observe that Shape⋆ has the high-

est accuracy in estimating the 3D shape and camera pose,

though the other three methods also perform quite well. In

all the Monte Carlo runs, Shape⋆ achieves corank(S2⋆
0 ) = 1

and mean relative duality gap η2 = 6.3e−5, indicating that

Shape⋆ was able to obtain an optimal solution.

9Our basis reduction can potentially be combined with other scalability

improvement techniques reviewed in [28], such as low-rank SDP solvers.
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Figure 1. 3D shape estimation error (left) and rotation estimation

error (right) by Shape⋆ compared with PMP [35], Altern [48] and

convex+refine [49], for increasing basis shapes K = 5, 10, 20.

7.3. Shape# for Robust Reconstruction

This section shows that Shape# achieves state-of-the-art

performance on the FG3DCar [25] dataset. The FG3DCar

dataset contains 300 car images with ground-truth 2D land-

marks Z ∈ R
2×N , N = 256. It also contains K = 15

3D mesh models of different cars {Bk}Kk=1. To generate

outliers, we randomly change 10%−70% of the N ground-

truth 2D landmarks Z to be arbitrary positions inside the

image. We then evaluate the robustness of Shape# com-

pared with two other robust methods based on the assump-

tion of sparse outliers in [49]: (i) robustified alternative

optimization (label: Altern+Robust) and (ii) robustified con-

vex optimization (label: Convex+Robust). Fig. 2 boxplots the

shape estimation and rotation estimation error10 under in-

creasing outlier rates computed over 40 randomly chosen

images in the FG3DCar dataset. We can see that Shape#

is insensitive to 70% outliers, while the accuracy of both

Altern+Robust and Convex+Robust decreases with respect to

higher outlier rates and they fail at 60% outliers. Fig. 3

shows two examples of qualitative results, where we see

Shape# gives high-quality model fitting at 70% outliers,

while the quality of Altern+Robust and Convex+Robust starts

decreasing at 40% outliers. More qualitative results are

given in the Supplementary Material.

8. Conclusions

We presented Shape⋆, the first certifiably optimal solver

for 3D shape reconstruction from 2D landmarks in a sin-

gle image. Shape⋆ is developed by applying Lasserre’s hi-

erarchy of SOS relaxations combined with basis reduction

to improve efficiency. Experimental results show that the

SOS relaxation of order 2 always achieves global optimal-

ity. To handle outlying measurements, we also proposed

Shape#, which solves a truncated least squares robust esti-

mation problem by iteratively running Shape⋆ without the

need for an initial guess. We show that Shape# achieves

robustness against 70% outliers on the FG3DCar dataset and

outperforms state-of-the-art solvers.

10Although there is no ground-truth reconstruction for each image, the

original paper [25] uses local optimization (with full perspective camera

model) to reconstruct high-quality 3D shapes for all images, and we use

their reconstructions as ground-truth.
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Figure 2. 3D shape estimation error (top) and rotation estimation

error (bottom) by Shape# compared with Altern+Robust [49] and

Convex+Robust [49] under increasing outlier rates.

Altern+Robust Convex+Robust Shape#

(a) Chevrolet Colorado LS 40% outliers.

(b) Chevrolet Colorado LS 70% outliers.

(c) BMW 5-Series 40% outliers.

(d) BMW 5-Series 70% outliers.
Figure 3. Selected qualitative results on the FG3DCar dataset [25]

under 40% and 70% outlier rates using Altern+Robust [49], Con-

vex+Robust [49], and Shape#. (a)-(b): results on the Chevrolet

Colorado LS; (c)-(d): results on the BMW 5-Series. Green: in-

liers. Red: outliers. Circle: 3D landmark. Square: 2D landmark.

[Best viewed electronically.]
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