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Abstract

We study on image super-resolution (SR), which aims to

recover realistic textures from a low-resolution (LR) image.

Recent progress has been made by taking high-resolution

images as references (Ref), so that relevant textures can

be transferred to LR images. However, existing SR ap-

proaches neglect to use attention mechanisms to transfer

high-resolution (HR) textures from Ref images, which lim-

its these approaches in challenging cases. In this paper,

we propose a novel Texture Transformer Network for Im-

age Super-Resolution (TTSR), in which the LR and Ref im-

ages are formulated as queries and keys in a transformer,

respectively. TTSR consists of four closely-related modules

optimized for image generation tasks, including a learnable

texture extractor by DNN, a relevance embedding module,

a hard-attention module for texture transfer, and a soft-

attention module for texture synthesis. Such a design en-

courages joint feature learning across LR and Ref images,

in which deep feature correspondences can be discovered by

attention, and thus accurate texture features can be trans-

ferred. The proposed texture transformer can be further

stacked in a cross-scale way, which enables texture recov-

ery from different levels (e.g., from 1× to 4× magnifica-

tion). Extensive experiments show that TTSR achieves sig-

nificant improvements over state-of-the-art approaches on

both quantitative and qualitative evaluations.

1. Introduction

Image super-resolution aims to recover natural and real-

istic textures for a high-resolution image from its degraded

low-resolution counterpart [12]. The recent success of im-

age SR can greatly enhance the quality of media content

for a better user experiences. For example, the digital zoom
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Figure 1. A comparison of 4× SR results between the proposed

TTSR and a state-of-the-art RefSR approach [43]. TTSR (ours)

learns to search on relevant textures from the Ref image (indi-

cated by green) for a target LR region (indicated by yellow), which

avoids incorrect texture transfer (indicated by red).

algorithm for mobile cameras and image enhancement tech-

nology for digital televisions. Besides, this fundamental

technology can benefit a broad range of computer vision

tasks, like medical imaging [21] and satellite imaging [35].

The research on image SR is usually conducted on two

paradigms, including single image super-resolution (SISR),

and reference-based image super-resolution (RefSR). Tradi-

tional SISR often results in blurry effects, because the high-

resolution (HR) textures have been excessively destructed

in the degrading process which are unrecoverable. Al-

though generative adversarial networks (GANs) [7] based

image SR approaches are proposed to relieve the above

problems, the resultant hallucinations and artifacts caused

by GANs further pose grand challenges to image SR tasks.
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Recent progress has been made by reference-based im-

age super-resolution (RefSR), which transfers HR textures

from a given Ref image to produce visually pleasing re-

sults [5, 6, 26, 29, 36]. However, state-of-the-art (SOTA)

approaches usually adopt a straightforward way to trans-

fer textures which may result in unsatisfied SR images (as

shown in Figure. 1). For example, Zheng et al. [43] adopts

a flow-based approach which usually searches and trans-

fers inaccurate textures (indicate by red) when facing large

viewpoint changes between the LR and Ref image. Zhang

et al. [41] adopts a feature space defined by a pre-trained

classification model to search and transfer textures between

the LR and Ref image. Nevertheless, such high-level se-

mantic features can not effectively represent HR textures

which remain to generate implausible results.

To address these problems, we propose a novel Texture

Transformer Network for Image Super-Resolution (TTSR).

Specifically, four closely-related modules optimized for im-

age generation tasks are proposed. First, we propose a

learnable texture extractor, in which parameters will be up-

dated during end-to-end training. Such a design enables

a joint feature embedding of LR and Ref images which

creates a solid foundation for applying attention mecha-

nism [19, 34, 31] in SR tasks. Second, we propose a rele-

vance embedding module to compute the relevance between

the LR and Ref image. More specifically, we formulate the

extracted features from the LR and Ref image as the query

and key in a transformer [31] to obtain a hard-attention

map and a soft-attention map. Finally, we propose a hard-

attention module and a soft-attention module to transfer and

fuse HR features from the Ref image into LR features ex-

tracted from backbone through the attention maps. The de-

sign of TTSR encourages a more accurate way to search and

transfer relevant textures from Ref to LR images.

Furthermore, we propose a cross-scale feature integra-

tion module to stack the texture transformer, in which the

features are learnt across different scales (e.g, from 1× to

4×) to achieve a more powerful feature representation. As

shown in Figure 1, the overall design enables our TTSR

to search and transfer relevant textures from the Ref image

(indicated by green) which achieves a better visual result

compared with SOTA approaches. The main contributions

of this paper are:

• To the best of our knowledge, we are one of the first to

introduce the transformer architecture into image gen-

eration tasks. More specifically, we propose a texture

transformer with four closely-related modules for im-

age SR which achieves significant improvements over

SOTA approaches.

• We propose a novel cross-scale feature integration

module for image generation tasks which enables our

approach to learn a more powerful feature representa-

tion by stacking multiple texture transformers.

2. Related Work

In this section, we review previous works of single image

super-resolution (SISR) and reference-based image super-

resolution (RefSR) which are the most relevant to our work.

2.1. Single Image Super­Resolution

In recent years, deep learning based SISR methods have

achieved significant improvements over traditional non-

learning based methods. Deep learning based methods in

SISR treat this problem as a dense image regression task

which learns an end-to-end image mapping function repre-

sented by a CNN between LR and HR images.

Dong et al. [3] proposed SRCNN that firstly adopted

deep learning into SISR by using a three-layer CNN to rep-

resent the mapping function. Dong et al. [4] further sped up

the SR process by replacing the interpolated LR image with

the original LR image and using deconvolution at the very

last layer to enlarge the feature map. Soon afterwards, Kim

et al. proposed VDSR [14] and DRCN [15] with deeper net-

works on residual learning. Shi et al. [23] replaced decon-

volution with the subpixel convolution layer to reduce the

checkerboard artifact. Residual block [9] was introduced

into SISR in SRResNet [16] and improved in EDSR [17].

With the help of residual block, a lot of works focused on

designing deeper or wider networks [2, 27, 28]. Zhang et

al. [40] and Tong et al. [30] adopted dense blocks [10] to

combine features from different levels. Zhang et al. [39]

improved residual block by adding channel attention. Liu

et al. [18] proposed a non-local recurrent network for image

restoration. Dai et al. [2] introduced second-order statistics

for more discriminative feature representations.

The above methods use mean square error (MSE) or

mean absolute error (MAE) as their objective function

which ignores human perceptions. In recent years, more

and more works aim to improve perceptual quality. John-

son et al. [13] introduced perceptual loss into SR tasks,

while SRGAN [16] adopted generative adversarial net-

works (GANs) [7] and showed visually satisfying results.

Sajjadi et al. [22] used Gram matrix based texture matching

loss to enforce local similar textures, while ESRGAN [32]

enhanced SRGAN by introducing RRDB with relativistic

adversarial loss. Recent proposed RSRGAN [38] trained a

ranker and used rank-content loss to optimize the perceptual

quality, which achieved state-of-the-art visual results.

2.2. Reference­based Image Super­Resolution

Different from SISR, RefSR can harvest more accurate

details from the Ref image. This could be done by several

approaches like image aligning or patch matching. Some

existing RefSR approaches [33, 36, 43] choose to align the

LR and Ref image. Landmark [36] aligned the Ref image

to the LR image through a global registration to solve an
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energy minimization problem. Wang et al. [33] enhanced

the Ref image by recurrently applying non-uniform warp-

ing before feature synthesis. CrossNet [43] adopted optical

flow to align the LR and Ref image at different scales and

concatenated them into the corresponding layers of the de-

coder. However, the performance of these methods depends

largely on the aligning quality between the LR and Ref im-

age. Besides, the aligning approaches such as optical flow

are time-consuming, which is adverse to real applications.

Other RefSR approaches [1, 41, 42] adopt “patch

match” method to search proper reference information.

Boominathan et al. [1] matched the patches between gra-

dient features of the LR and down-sampled Ref image.

Zheng. et al. [42] replaced the simple gradient features

with features in convolution neural networks to apply se-

mantic matching and used a SISR method for feature syn-

thesis. Recent work SRNTT [41] applied patch matching

between VGG [24] features of the LR and Ref image to

swap similar texture features. However, SRNTT ignores the

relevance between original and swapped features and feeds

all the swapped features equally into the main network.

To address these problems, we propose a texture trans-

former network which enables our approach to search and

transfer relevant textures from Ref to LR images. Moreover,

the performance of our approach can be further improved

by stacking multiple texture transformers with a proposed

cross-scale feature integration module.

3. Approach

In this section, we introduce the proposed Texture

Transformer Network for Image Super-Resolution (TTSR).

On top of the texture transformer, we propose a cross-scale

feature integration module (CSFI) to further enhance model

performances. The texture transformer and CSFI will be

discussed in Section 3.1 and Section 3.2, respectively. A

group of loss functions for optimizing the proposed network

will be explained in Section 3.3.

3.1. Texture Transformer

The structure of the texture transformer is shown in Fig-

ure 2. LR, LR↑ and Ref represent the input image, the 4×
bicubic-upsampled input image and the reference image, re-

spectively. We sequentially apply bicubic down-sampling

and up-sampling with the same factor 4× on Ref to ob-

tain Ref↓↑ which is domain-consistent with LR↑. The tex-

ture transformer takes Ref, Ref↓↑, LR↑ and the LR features

produced by the backbone as input, and outputs a synthe-

sized feature map, which will be further used to generate

the HR prediction. There are four parts in the texture trans-

former: the learnable texture extractor (LTE), the relevance

embedding module (RE), the hard-attention module for fea-

ture transfer (HA) and the soft-attention module for feature

synthesis (SA). Details will be discussed below.

F
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Hard Attention

𝑇
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𝐹

Soft Attention

Output Texture Transformer
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... 0.9 ...

𝐻
𝑆

LR Ref Ref↓↑ LR↑
Figure 2. The proposed texture transformer. Q, K and V are the

texture features extracted from an up-sampled LR image, a se-

quentially down/up-sampled Ref image, and an original Ref im-

age, respectively. H and S indicate the hard/soft attention map,

calculated from relevance embedding. F is the LR features ex-

tracted from a DNN backbone, and is further fused with the trans-

ferred texture features T for generating the SR output.

Learnable Texture Extractor. In RefSR tasks, texture ex-

traction for reference images is essential because accurate

and proper texture information will assist the generation of

SR images. Instead of using semantic features extracted by

a pre-trained classification model like VGG [24], we design

a learnable texture extractor whose parameters will be up-

dated during end-to-end training. Such a design encourages

a joint feature learning across the LR and Ref image, in

which more accurate texture features can be captured. The

process of texture extraction can be expressed as:

Q = LTE(LR ↑), (1)

K = LTE(Ref ↓↑), (2)

V = LTE(Ref), (3)

where LTE(·) denotes the output of our learnable texture

extractor. The extracted texture features, Q (query), K
(key), and V (value) indicate three basic elements of the at-

tention mechanism inside a transformer and will be further

used in our relevance embedding module.

Relevance Embedding. Relevance embedding aims to em-

bed the relevance between the LR and Ref image by esti-

mating the similarity between Q and K. We unfold both Q

and K into patches, denoted as qi (i ∈ [1, HLR×WLR]) and

kj (j ∈ [1, HRef × WRef ]). Then for each patch qi in Q
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and kj in K, we calculate the relevance ri,j between these

two patches by normalized inner product:

ri,j =

〈

qi
‖qi‖

,
kj
‖kj‖

〉

. (4)

The relevance is further used to obtain the hard-attention

map and the soft-attention map.

Hard-Attention. We propose a hard-attention module to

transfer the HR texture features V from the Ref image. Tra-

ditional attention mechanism takes a weighted sum of V
for each query qi. However, such an operation may cause

blur effect which lacks the ability of transferring HR texture

features. Therefore, in our hard-attention module, we only

transfer features from the most relevant position in V for

each query qi.

More specifically, we first calculate a hard-attention map

H in which the i-th element hi (i ∈ [1, HLR × WLR]) is

calculated from the relevance ri,j :

hi = argmax
j

ri,j . (5)

The value of hi can be regarded as a hard index, which rep-

resents the most relevant position in the Ref image to the

i-th position in the LR image. To obtain the transferred HR

texture features T from the Ref image, we apply an index

selection operation to the unfolded patches of V using the

hard-attention map as the index:

ti = vhi
, (6)

where ti denotes the value of T in the i-th position, which

is selected from the hi-th position of V .

As a result, we obtain a HR feature representation T
for the LR image which will be further used in our soft-

attention module.

Soft-Attention. We propose a soft-attention module to syn-

thesize features from the transferred HR texture features T
and the LR features F of the LR image from a DNN back-

bone. During the synthesis process, relevant texture transfer

should be enhanced while the less relevant ones should be

relived. To achieve that, a soft-attention map S is computed

from ri,j to represent the confidence of the transferred tex-

ture features for each position in T :

si = max
j

ri,j , (7)

where si denotes the i-th position of the soft-attention map

S. Instead of directly applying the attention map S to T ,

we first fuse the HR texture features T with the LR fea-

tures F to leverage more information from the LR image.

Such fused features are further element-wisely multiplied

by the soft-attention map S and added back to F to get the
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Figure 3. Architecture of stacking multiple texture transformers in

a cross-scale way with the proposed cross-scale feature integration

module (CSFI). RBs indicates a group of residual blocks.

final output of the texture transformer. This operation can

be represented as:

Fout = F + Conv(Concat(F, T ))⊙ S, (8)

where Fout indicates the synthesized output features. Conv
and Concat represent a covolutional layer and Concate-

nation operation, respectively. The operator ⊙ denotes

element-wise multiplication between feature maps.

In summary, the texture transformer can effectively

transfer relevant HR texture features from the Ref image

into the LR features, which boosts a more accurate process

of texture generation.

3.2. Cross­Scale Feature Integration

Our texture transformer can be further stacked in a cross-

scale way with a cross-scale feature integration module.

The architecture is shown in Figure 3. Stacked texture

transformers output the synthesized features for three res-

olution scales (1×, 2× and 4×), such that the texture fea-

tures of different scales can be fused into the LR image.

To learn a better representation across different scales, in-

spired by [25, 37], we propose a cross-scale feature inte-

gration module (CSFI) to exchange information among the

features of different scales. A CSFI module is applied each

time the LR feature is up-sampled to the next scale. For

the each scale inside the CSFI module, it receives the ex-

changed features from other scales by up/down-sampling,

followed by a concatenation operation in the channel di-

mension. Then a convolutional layer will map the features

into the original number of channels. In such a design, the

texture features transferred from the stacked texture trans-

formers are exchanged across each scale, which achieves a

more powerful feature representation. This cross-scale fea-

ture integration module further improves the performance

of our approach.

3.3. Loss Function

There are 3 loss functions in our approach. The overall

loss can be interpreted as:

Loverall = λrecLrec + λadvLadv + λperLper. (9)
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Reconstruction loss. The first loss is the reconstruction

loss:

Lrec =
1

CHW

∥

∥IHR − ISR
∥

∥

1
, (10)

where (C,H,W ) is the size of the HR. We utilize L1 loss

which has been demonstrated to be sharper for performance

and easier for convergence compared to L2 loss.

Adversarial loss. Generative adversarial networks [7] are

proved effective in generating clear and visually favorable

images. Here we adopt WGAN-GP [8], which proposes a

penalization of gradient norm to replace weight clipping, re-

sulting in more stable training and better performance. This

loss can be interpreted as:

LD = E
x̃∼Pg

[

D(x̃)
]

− E
x∼Pr

[

D(x)
]

+

λ E
x̂∼Px̂

[

(‖∇x̂D(x̂)‖
2
− 1)2

]

, (11)

LG = − E
x̃∼Pg

[

D(x̃)
]

. (12)

Perceptual loss. Perceptual loss has been demonstrated

useful to improve visual quality and has already been used

in [13, 16, 22, 41]. The key idea of perceptual loss is to

enhance the similarity in feature space between the predic-

tion image and the target image. Here our perceptual loss

contains two parts:

Lper =
1

CiHiWi

∥

∥φvgg
i (ISR)− φvgg

i (IHR)
∥

∥

2

2
+

1

CjHjWj

∥

∥φlte
j (ISR)− T

∥

∥

2

2
, (13)

where the first part is a traditional perceptual loss, in which

φvgg
i (·) denotes the i-th layer’s feature map of VGG19, and

(Ci, Hi,Wi) represents the shape of the feature map at that

layer. ISR is the predicted SR image. The second part in

our perceptual loss is a transferal perceptual loss, in which

φlte
j (·) denotes the texture feature map extracted from the j-

th layer of the proposed LTE, and (Cj , Hj ,Wj) represents

that layer’s shape. T is the transferred HR texture features

in Figure 2. This transferal perceptual loss constraints the

predicted SR image to have similar texture features to the

transferred texture features T , which makes our approach

to transfer the Ref textures more effectively.

3.4. Implementation Details

The learnable texture extractor contains 5 convolutional

layers and 2 pooling layers which outputs texture features

in three different scales. To reduce the consumption of both

time and GPU memory, the relevance embedding is only

applied to the smallest scale and further propagated to other

scales. For the discriminator, we adopt the same network

used in SRNTT [41] and remove all BN layers. During

training, we augment the training images by randomly hor-

izontally and vertically flipping followed by randomly ro-

tating 90◦, 180◦ and 270◦. Each mini-batch contains 9 LR

patches with size 40× 40 along with 9 HR and Ref patches

with size 160×160. The weight coefficients for Lrec, Ladv

and Lper are 1, 1e-3 and 1e-2, respectively. Adam opti-

mizer with β1 = 0.9, β2 = 0.999, and ǫ =1e-8 is used with

learning rate of 1e-4. We first warm up the network for 2

epochs where only Lrec is applied. After that, all losses are

involved to train another 50 epochs.

4. Experiments

4.1. Datasets and Metrics

To evaluate our method, we train and test our model on

the recently proposed RefSR dataset, CUFED5 [41]. The

training set in CUFED5 contains 11,871 pairs, each pair

consisting of an input image and a reference image. There

are 126 testing images in CUFED5 testing set, each accom-

panied by 4 reference images with different similarity lev-

els. In order to evaluate the generalization performance of

TTSR trained on CUFED5, we additionally test TTSR on

Sun80 [26], Urban100 [11], and Manga109 [20]. Sun80

contains 80 natural images, each paired with several ref-

erence images. For Urban100, we use the same setting

as [41] to regard its LR images as the reference images.

Such a design enables an explicit process of self-similar

searching and transferring since Urban100 are all building

images with strong self-similarity. For Manga109 which

also lacks the reference images, we randomly sample HR

images in this dataset as the reference images. Since this

dataset is constructed with lines, curves and flat colored

regions which are all common patterns. Even with a ran-

domly picked HR Ref image, our method can still utilize

these common patterns and achieve good results. The SR

results are evaluated on PSNR and SSIM on Y channel of

YCbCr space.

4.2. Evaluation

To evaluate the effectiveness of TTSR, we compare our

model with other state-of-the-art SISR and RefSR meth-

ods. The SISR methods include SRCNN [3], MDSR [17],

RDN [40], RCAN [39], SRGAN [16], ENet [22], ES-

RGAN [32], RSRGAN [38], among which RCAN has

achieved state-of-the-art performance on both PSNR and

SSIM in recent years. RSRGAN is considered to achieve

the state-of-the-art visual quality. As for RefSR meth-

ods, CrossNet [43] and SRNTT [41] are two state-of-the-art

methods recently, which significantly outperform previous

RefSR methods. All experiments are performed with a scal-

ing factor of 4× between LR and HR images.

Quantitative Evaluation. For fair comparison, we fol-

low the setting in SRNTT [41] to train all the methods
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Table 1. PSNR/SSIM comparison among different SR methods on

four different datasets. Methods are grouped by SISR methods

(top) and RefSR methods (down). Red numbers denote the highest

scores while blue numbers denote the second highest scores.
Method CUFED5 Sun80 Urban100 Manga109

SRCNN [3] 25.33 / .745 28.26 / .781 24.41 / .738 27.12 / .850

MDSR [17] 25.93 / .777 28.52 / .792 25.51 / .783 28.93 / .891

RDN [40] 25.95 / .769 29.63 / .806 25.38 / .768 29.24 / .894

RCAN [39] 26.06 / .769 29.86 / .810 25.42 / .768 29.38 / .895

SRGAN [16] 24.40 / .702 26.76 / .725 24.07 / .729 25.12 / .802

ENet [22] 24.24 / .695 26.24 / .702 23.63 / .711 25.25 / .802

ESRGAN [32] 21.90 / .633 24.18 / .651 20.91 / .620 23.53 / .797

RSRGAN [38] 22.31 / .635 25.60 / .667 21.47 / .624 25.04 / .803

CrossNet [43] 25.48 / .764 28.52 / .793 25.11 / .764 23.36 / .741

SRNTT-rec [41] 26.24 / .784 28.54 / .793 25.50 / .783 28.95 / .885

SRNTT [41] 25.61 / .764 27.59 / .756 25.09 / .774 27.54 / .862

TTSR-rec 27.09 / .804 30.02 / .814 25.87 / .784 30.09 / .907

TTSR 25.53 / .765 28.59 / .774 24.62 / .747 28.70 / .886

on CUFED5 training set, and test on CUFED5 testing set,

Sun80, Urban100 and Manga109 datasets. For SR meth-

ods, there is a fact that training with adversarial loss usu-

ally achieves better visual quality but shrinks the number

of PSNR and SSIM. Therefore, we train another version of

our model which is optimized only on reconstruction loss

named TTSR-rec for fair comparison on PSNR and SSIM.

Table 1 shows the quantitative evaluation results. Red

numbers denote the highest scores while blue numbers de-

note the second highest scores. As shown in the com-

parison results, TTSR-rec significantly outperforms both

state-of-the-art SISR methods and state-of-the-art RefSR

methods on all four testing datasets. Among the meth-

ods which aim to achieve better visual quality with ad-

versarial loss, our model still has the best performance on

Sun80 and Manga109 datasets. On the other two datasets,

CUFED5 and Urban100, our model achieves comparable

performance with the state-of-the-art models. The quanti-

tative comparison results demonstrate the superiority of our

proposed TTSR over state-of-the-art SR approaches.

Qualitative Evaluation. Our model also achieves the best

performance on visual quality as shown in Figure 5. TTSR

can transfer more accurate HR textures from the reference

image to generate favorable results, as shown in the first

three examples in Figure 5. Even if the reference image

is not that globally relevant to the input image, our TTSR

can still extract finer textures from local regions and transfer

effective textures into the predicted SR result, as shown in

the last three examples in Figure 5.

To further verify the superior visual quality of our ap-

proach, we conduct a user study where TTSR is compared

with four SOTA approaches, including RCAN [39], RSR-

GAN [38], CrossNet [43] and SRNTT [41]. There are 10

subjects involved in this user study and 2,520 votes are col-

lected on the CUFED5 testing set. For each comparison

process, we provide the users with two images which in-

clude one TTSR image. Users are asked to select the one

with higher visual quality. Figure 4 shows the results of our

RCAN RSRGAN CrossNet SRNTT
86%

88%

90%

92%

94%

96%

Pe
rc
en
ta
ge

i=0
xi

93.6±0.9%

90.8±0.5%

92.6±1.1%

90.7±0.6%

Figure 4. User study results. Values on Y-axis indicate the percent-

age of users that prefer TTSR over other approaches.

Table 2. Ablation study on texture transformer.

Method HA SA LTE PSNR/SSIM

Base 26.34 / .780

Base+HA X 26.59 / .786

Base+HA+SA X X 26.81 / .795

Base+HA+SA+LTE X X X 26.92 / .797

Table 3. Ablation study on CSFI.

Method CSFI numC param. PSNR/SSIM

Base+TT 64 4.42M 26.92 / .797

Base+TT+CSFI X 64 6.42M 27.09 / .804

Base+TT(C80) 80 6.53M 26.93 / .797

Base+TT(C96) 96 9.10M 26.98 / .799

user study, where the values on Y-axis represent the percent-

age of users that prefer TTSR over other approaches. As we

can see, the proposed TTSR significantly outperforms other

approaches with over 90% of users voting for ours, which

verifies the favorable visual quality of TTSR.

4.3. Ablation Study

In this section, we verify the effectiveness of different

modules in our approach, including the texture transformer,

the cross-scale feature integration, the adversarial loss and

the transferal perceptual loss. In addition, we also discuss

the influence of different reference similarity on TTSR.

Texture transformer. Our texture transformer contains

mainly four parts: the learnable texture extractor (LTE),

the relevance embedding module, the hard-attention mod-

ule for feature transfer (HA) and the soft-attention module

for feature synthesis (SA). Ablation results are shown in Ta-

ble 2. We re-implement SRNTT [41] as our “Base” model

by only removing all BN layers and Ref part. On top of the

baseline model, we progressively add HA, SA, and LTE.

Models without LTE use the VGG19 features to do rele-

vance embedding. As we can see, when HA is added, the

PSNR performance can be improved from 26.34 to 26.59,

which verifies the effectiveness of the hard-attention mod-

ule for feature transfer. When SA is involved, relevant tex-

ture features will be enhanced while the less relevant ones

will be relieved during the feature synthesizing. This fur-
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Ground-truth RDN [40] RCAN [39] RSRGAN [38]

Reference CrossNet [43] SRNTT [41] TTSR (Ours)

Figure 5. Visual comparison among different SR methods on CUFED5 testing set (top three examples), Sun80 [26] (the forth example),

Urban100 [11] (the fifth example), and Manga109 [20] (the last example).

ther boosts the performance to 26.81. When replacing VGG

with the proposed LTE, the PSNR is finally increased to

26.92, which proves the superiority of joint feature embed-

ding in LTE.

To further verify the effectiveness of our LTE, we use the

hard attention map to transfer the original image. It is ex-

pected that a better feature representation can transfer more

accurate textures from the original images. Figure 6 shows

the transferred original image by VGG19 in SRNTT and

LTE in TTSR. In this figure, TTSR can transfer more ac-

curate reference textures and generate a globally favorable

result, which further proves the effectiveness of our LTE.

Cross-scale feature integration. On top of the texture

transformer, CSFI can further enable texture recovery from

different resolution scales (1×, 2× and 4×). We conduct

an ablation study in Table 3. The first row shows the per-

formance of our model with only TT, while the second

row proves the effectiveness of CSFI, which brings 0.17
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GT GT SRNTT TTSR(ours)

Figure 6. Comparison of the transferred original images between

SRNTT and TTSR.

Reference

Base-rec Base TTSR-rec TTSR GT

GT

Figure 7. Qualitative comparison on “Base(-rec)” and TTSR(-rec)

(TTSR can be interpreted as “Base+TT(HA+SA+LTE)+CSFI”).

increase on PSNR metric. In order to verify that the per-

formance improvement is not brought by the increase of pa-

rameter size, we increase the channel number of “Base+TT”

model to 80 and 96. As we can see, there is almost no

growth of “Base+TT(C80)” which has almost the same pa-

rameter number as “Base+TT+CSFI”. Even if we increase

the parameter number to 9.10M to obtain “Base+TT(C96)”

model, there is still a performance gap. This demonstrates

that CSFI can efficiently utilize the reference texture infor-

mation with a relatively smaller parameter size.

Adversarial loss. To make sure that the improvement of

perceptual quality benefits from model design rather than

the adversarial loss. We conduct an ablation among “Base-

rec”, “Base”, TTSR-rec and TTSR, where TTSR can be in-

terpreted as “Base+TT+CSFI” and “-rec” indicates training

with only reconstruction loss. Figure 7 shows that even if

without the perceptual and adversarial loss, TTSR-rec can

still utilize the Ref image and recover more details than

“Base-rec”. With all losses enabled, TTSR achieves the best

visual result.

Transferal perceptual loss. The transferal perceptual loss

constraints the LTE’s features between the predicted SR im-

age and the transferred image T to be similar. As shown

in Figure 8, using this loss is able to transfer textures in a

more effective way which achieves visually pleasing results.

In addition, this loss also improves the quantitative metrics

PSNR and SSIM of TTSR from 25.20/.757 to 25.53/.765.

Influence of different reference similarity. To study how

relevance between LR and Ref images influences the re-

sults of TTSR, we conduct experiments on CUFED5 test-

ing set, which has reference images of different relevance

Figure 8. Comparison between TTSR trained without (top) and

with (bottom) transferal perceptual loss.

Table 4. Ablation study on reference images of different similarity.

Level CrossNet SRNTT-rec TTSR-rec

L1 25.48 / .764 26.15 / .781 26.99 / .800

L2 25.48 / .764 26.04 / .776 26.74 / .791

L3 25.47 / .763 25.98 / .775 26.64 / .788

L4 25.46 / .763 25.95 / .774 26.58 / .787

LR 25.46 / .763 25.91 / .776 26.43 / .782

levels. Table 4 shows the results of five relevance levels,

in which “L1” to “L4” represent the reference images pro-

vided by CUFED5 testing set where L1 is the most relevant

level while L4 is the least relevant one. “LR” means using

the input image itself as the reference image. As shown in

Table 4, TTSR using L1 as the reference image achieves

the best performance. When using LR as the reference im-

age, TTSR still performs better than previous state-of-the-

art RefSR approaches.

5. Conclusion

In this paper, we propose a novel Texture Transformer

Network for Image Super-Resolution (TTSR) which trans-

fers HR textures from the Ref to LR image. The proposed

texture transformer consists of a learnable texture extractor

which learns a jointly feature embedding for further atten-

tion computation and two attention based modules which

transfer HR textures from the Ref image. Furthermore, the

proposed texture transformer can be stacked in a cross-scale

way with the proposed CSFI module to learn a more pow-

erful feature representation. Extensive experiments demon-

strate the superior performance of our TTSR over state-of-

the-art approaches on both quantitative and qualitative eval-

uations. In the future, we will further extend the proposed

texture transformer to general image generation tasks.
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