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Abstract

Composing and recognizing new concepts from known

sub-concepts has been a fundamental and challenging vi-

sion task, mainly due to 1) the diversity of sub-concepts

and 2) the intricate contextuality between sub-concepts and

their corresponding visual features. However, most of the

current methods simply treat the contextuality as rigid se-

mantic relationships and fail to capture fine-grained con-

textual correlations. We propose to learn unseen concepts

in a hierarchical decomposition-and-composition manner.

Considering the diversity of sub-concepts, our method de-

composes each seen image into visual elements according

to its labels, and learns corresponding sub-concepts in their

individual subspaces. To model intricate contextuality be-

tween sub-concepts and their visual features, compositions

are generated from these subspaces in three hierarchical

forms, and the composed concepts are learned in a unified

composition space. To further refine the captured contextual

relationships, adaptively semi-positive concepts are defined

and then learned with pseudo supervision exploited from

the generated compositions. We validate the proposed ap-

proach on two challenging benchmarks, and demonstrate

its superiority over state-of-the-art approaches.

1. Introduction

A character of human intelligence is the composing abil-

ity towards individual concepts [1]. Imagining big, it is

common for us to come up with compositional concepts

such as big building and big cat. The term big here is no

more an independent single concept, but is a sub-concept

that can be combined into new concepts with other sub-

concepts, reflecting the ability of compositional general-

ization. However, compositional generalization remains an
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Figure 1. An example of unseen compositional concept recogni-

tion. Training with young tiger and old cat, it is expected to learn

the sub-concepts of young, tiger, old, and cat that can be used to

compose and recognize unseen young cat and old tiger.

insurmountable obstacle to machines. In this paper, we

explore compositional generalization under the zero-shot

learning (ZSL) setting, where a model needs to recognize

unseen images composed from seen sub-concepts.

As shown in Figure 1, one main challenge is the diver-

sity of sub-concepts, e.g., young tiger, where young is a

semantic description while tiger is a physical entity. Sub-

concepts can be visually and semantically distinct, resulting

in recognition difficulties when facing many possible com-

positions. Another challenge is the contextuality of sub-

concepts, e.g., the old in old tiger should be totally dif-

ferent from the old in old car. The semantic meanings of

sub-concepts tend to highly depend on each other. Con-

textuality is also associated with specific images [22], e.g.,

how old appears in two different old tiger images depends

on the images themselves, which requires capturing fine-
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grained contextual relationships between sub-concepts and

their corresponding visual features. However, most of the

recent approaches [17, 18, 27] degrade the contextuality to

rigid semantic relationships in a common embedding space,

in which images and corresponding word vectors are em-

bedded. They fail to capture richer fine-grained contextual

relationships and suffer from intricate contextuality under

challenging ZSL setting.

In this paper, we propose to learn unseen compositional

concepts in a hierarchical decomposition-and-composition

(HiDC) manner. Specifically, to address the challenge of

diversity, HiDC decomposes each seen image into visual

elements according to its compositional labels, and learns

the decomposed sub-concepts in their individual subspaces.

For contextuality, various compositions are generated from

these two concept subspaces, and the composed concepts

are learned in a unified composition space. To further ex-

plore intricate contextuality between sub-concepts and their

corresponding visual features, we propose to generate com-

positions in three hierarchical forms, i.e., visual, word, and

hybrid compositions. Visual compositions serve as visual

prototypes for concept learning; word compositions emu-

late concept learning by mapping word concepts to visual

features; hybrid compositions bridge visual and word con-

cepts by transmitting visual features to word concepts and

vice versa. These three hierarchical compositions are able

to model intricate contextuality, and allow capturing fine-

grained contextual relationships. Moreover, to refine the

contextuality captured by the compositions, we discover

and compose adaptively semi-positive concepts. To this

end, underlying knowledge of the generated compositions is

exploited as adaptive pseudo supervision to learn the semi-

positive concepts more accurately. Our proposed HiDC is

validated on two popular benchmark datasets. Experiments

demonstrate that HiDC consistently outperforms the state of

the arts. Also, the ablation study verifies the effectiveness

of each proposed module.

To sum up, the main contributions of this paper are:

• An end-to-end decomposition-and-composition ap-

proach with three hierarchical composition forms to

model intricate contextuality between compositional

sub-concepts and their corresponding visual features;

• A novel exploration of adaptively semi-positive con-

cepts that depict fine-grained contextual relationships;

also, an exploitation of adaptive pseudo supervision

from the generated compositions to learn such semi-

positive concepts accurately;

• Extensive ablation studies and experiments, which val-

idate the effectiveness of our proposed approach and

demonstrate its superiority over the state of the arts.

2. Related Work

Zero-Shot Learning (ZSL). The aim of ZSL [20, 14,

15] is transferring knowledge from seen concepts to un-

seen ones, such that a model is able to recognize new

concepts which never appear in training. Basically, main-

stream ZSL methods can be divided into two categories: 1)

embedding-based methods and 2) generating-based meth-

ods. Embedding-based methods [23, 2, 3, 28, 33] aim to

find a discriminative common embedding space for both vi-

sual features and attribute semantic features. Generating-

based methods [13, 26, 10, 19, 31] utilize generative models

to synthesize unseen concepts. ZSL can be further extended

to a more practical setting, i.e., generalized ZSL (GZSL),

where the models are required to identify an unseen con-

cept with a seen/unseen label. By contrast, conventional

ZSL only requires to identify an unseen concept with an

unseen label. In this paper, we propose an embedding-

based GZSL method where hierarchical embedding spaces

are constructed to learn compositional concepts.

Unseen Compositional Concept Recognition. This

task is a specialized ZSL problem where images are labeled

with compositional concepts, e.g., young tiger. Early meth-

ods [4, 17, 25] often train independent classifiers for each

sub-concept, and combine the trained classifiers to recog-

nize unseen concepts. Methods most relevant to ours are

AttrAsOperator [18] and AdvFineGrained [27]. AttrAsOp-

erator regards the compositional concepts in the datasets as

attribute-object pairs. By treating attributes (e.g., young) as

operators, AttrAsOperator composes attribute-conditioned

transformations in a common embedding space to learn un-

seen attribute-object concepts with triplet loss regulariza-

tion [9, 5, 8, 29, 30]. In contrast, rather than treating com-

positional concepts as attribute-object pairs, we decompose

and compose these concepts in a unified framework without

explicitly modeling each sub-concept. This enables gener-

alizability in real-world applications when compositions are

not biased to attribute-object pairs. On the other hand, Ad-

vFineGrained proposes to regulate the common embedding

space with a quintuplet loss, where semi-negative samples

are defined. We argue that this definition is too rigid to

learn accurate compositional concepts (see Word Compo-

sitions in Section 3.2 for detailed discussion). On the con-

trary, we regard them as adaptively semi-positive samples

to learn more accurate concepts. Additionally, AdvFine-

Grained employs multi-scale features and adversarial train-

ing for better performance; while we do not involve any of

the problem-unrelated tricks and still achieve superior per-

formance.

3. Approach

We consider the setting where each image Ia,o is con-

sisted of an attribute ya and an object yo, and its label y is
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Figure 2. Pipeline of the proposed HiDC, which mainly includes decomposing visual features into attribute and object subspaces, and

generating hierarchical compositions from these subspaces. Best viewed in color.

denoted as y = (ya, yo). Note that we only formulate the

compositional concepts as attribute-object pairs for brevity,

but do not explicitly model each sub-concept as in AttrA-

sOperator [18]. As a typical ZSL task, given an unseen im-

age I, the goal is to predict its corresponding label (ya, yo).
To this end, the dataset is divided into two parts, i.e., seen

part Ds = {(Ia,o, y) | Ia,o ∈ X s, y ∈ Ys} for training,

and unseen part Du = {(I, y) | I ∈ X u, y ∈ Yu} for test,

where Y = Ys∪Yu = Ya×Yo = {(ya, yo) | ya ∈ Ya, yo ∈
Yo}. The training and test labels are non-overlapping:

Ys ∩ Yu = ∅. Under this setting, all attributes and ob-

jects can be seen during training: Yu
a ⊆ Ys

a,Y
u
o ⊆ Ys

o

where ya ∈ Ya and yo ∈ Yo. In other words, all the at-

tribute/object sub-concepts are available for training, but the

composed attribute-object concepts are non-overlapping for

training and test. For GZSL, we expect to learn a prediction

X u 7→ Yu ∪ Ys by training on {X s,Ys}.

In the following subsections, we will introduce the com-

ponents of our proposed HiDC, followed by the description

of training and test procedures.

3.1. Concept Decomposition

Decomposing Visual Features. Given an image Ia,o

labeled with (ya, yo), we first input it to a pre-trained

ResNet-18 [7] to extract high-level visual features as va,o =
fa,o(Ia,o). As illustrated in Figure 2, the extracted fea-

tures va,o are directly fed into two individual MLPs as

va = fa(va,o) and vo = fo(va,o), each followed by a sep-

arate classifier. The classifiers are used to predict attribute

label ya and object label yo of va and vo respectively. The

classification loss is written as

Lcls(va,vo) = ha(va, ya) + ho(vo, yo) , (1)

where ha(·) and ho(·) denote two fully-connected layers,

each containing a cross-entropy loss trained to classify at-

tributes and objects respectively.

Constructing Concept Subspaces. The two output vec-

tors va and vo are projected into two embedding subspaces,

i.e., attribute and object subspaces, as xa = pva(va) and

xo = pvo(vo). Meanwhile, the corresponding attribute

and object are embedded as word vectors wa = ea(ya)
and wo = eo(yo). We also randomly embed an attribute

word as wā and an object word as wō different from wa

and wo, where “ ¯ ” is a negative index. Then the at-

tribute and object word vectors wa, wā, wo and wō are

projected into the attribute and object subspaces as positive

samples x̂a = pwa (wa), x̂o = pwo (wo) and negative samples

x̂ā = pwa (wō), x̂ō = pwo (wō). Together with the anchors

xa and xo, we can construct two triplets in these two con-

cept subspaces, which are regularized by two triplet losses.

The triplet loss pulls positive samples close to the anchor,

and pushes the negative ones away from the anchor. The

triplet losses on the two concept subspaces are defined as

La
triplet(xa, x̂a, x̂ā)=max

(
0, d(xa, x̂a)−d(xa, x̂ā)+m

)
,

Lo
triplet(xo, x̂o, x̂ō)=max

(
0, d(xo, x̂o)−d(xo, x̂ō)+m

)
,

where d(·, ·) denotes Euclidean distance, and m is the triplet

margin value, the same as below. The overall loss on the two

concept subspaces are added by the two triplet losses:

Lconc = La
triplet + Lo

triplet . (2)

3.2. Hierarchical Concept Composition

With the two constructed concept subspaces, we can

flexibly create and adjust attribute-object compositions. We

implement the composition by concatenating attribute and
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Figure 3. Toy illustration of the three hierarchical forms of com-

positions, where an attribute element and an object one are taken

from each of the concept subspaces for composing.

object elements from the two concept subspaces, and send-

ing them to a fully-connected layer. As shown in Figure 3,

the compositions are divided into three hierarchical forms,

i.e., Visual, Word, and Hybrid Compositions.

Visual Composition. Visual embeddings xa and xo in

the two concept subspaces are directly combined to obtain

a visual composition as xa+o = g(xa,xo). Naturally, the

visual composition should resemble the original image. As

shown in Figure 2, the output vector va,o of the pre-trained

feature extractor is embedded into the composition space

as a universal anchor xa,o = pa,o(va,o) for all generated

compositions. The visual composition xa+o is regularized

to reconstruct the image embedding xa,o:

Lrec(xa+o,xa,o) = d(xa+o,xa,o) . (3)

Word Compositions. There are four word composi-

tions, i.e., x̂a+o = g(x̂a, x̂o), x̂ā+o = g(x̂ā, x̂o), x̂a+ō =
g(x̂a, x̂ō), and x̂ā+ō = g(x̂ā, x̂ō). Covering all the unseen

compositional concepts, word compositions are the main

concerns to unseen concept learning.

A recent study [27] proposes to treat the compositions

like x̂ā+o and x̂a+ō as semi-negative samples, supplemen-

tary to the conventional positive and negative compositions

x̂a+o, x̂ā+ō. The problem is “semi-negative” itself—rigidly

treating x̂ā+o and x̂a+ō as somewhat negative is disadvan-

tageous to compositional concepts learning. In contrast, we

treat them as adaptively semi-positive samples with variable

triplet margins, and formulate the composition loss as

Lcomp(xa,o, x̂a+o, x̂ā+o, x̂a+ō, x̂ā+ō) =

max
(
0, d(xa,o, x̂a+o)− d(xa,o, x̂ā+ō) +m

)

+max
(
0, d(xa,o, x̂ā+o)− d(xa,o, x̂ā+ō) + αm

)

+max
(
0, d(xa,o, x̂a+ō)− d(xa,o, x̂ā+ō) + βm

)
, (4)

where we introduce α, β ∈ (0, 1) as margin adjusting pa-

rameters. The motivation is from a simple observation: if

given young tiger as an anchor, young cat should be closer

to the anchor than young horse does, where both young cat

and young horse are adaptively regarded as semi-positive

samples. In Eq. (4), a smaller triplet margin pulls semi-

positive samples x̂ā+o, x̂a+ō close to the negative one x̂ā+ō,

and meanwhile pushes them away from the anchor xa,o.

Thus we fix the triplet margin of the positive sample

x̂a+o and assign each semi-positive sample x̂ā+o, x̂a+ō an

adaptive margin that can be controlled by α and β respec-

tively. The margin adjusting parameters are determined

by the underlying knowledge of hybrid compositions intro-

duced below.

Hybrid Compositions. Each composition in this form is

generated from a visual embedding and a word one. Hence

hybrid compositions are restricted to either positive samples

x̃
vw
a+o = g(xa, x̂o), x̃

wv
a+o = g(x̂a,xo) or semi-positive ones

x̃
vw
a+ō = g(xa, x̂ō), x̃

wv
ā+o = g(x̂ā,xo), where “vw” denotes

visual-word compositions while “wv” word-visual ones.

Let us consider a practical example with an anchor

concept as young tiger and semi-positive concepts as

young cat and young horse. As shown in Figure 4, the

corresponding positive word/hybrid compositions are de-

noted as x̂young+tiger, x̃
vw
young+tiger, and the semi-positive

word/hybrid compositions as x̂young+cat, x̃
vw
young+cat and

x̂young+horse, x̃
vw
young+horse. Since the visual element young

is decomposed from the image Iyoung,tiger, hybrid compo-

sitions x̃
vw
young+tiger, x̃

vw
young+cat, and x̃

vw
young+horse should

all contain a tiger-style young as shown in Figure 4. The

inconsistency between the visual tiger-style young and the

negative word cat/horse actually reflects how much the neg-

ative word sub-concept cat/horse violates the positive visual

sub-concept young which is biased towards tiger. We pro-

pose to measure the inconsistency by calculating the dis-

tance between the hybrid composition and its correspond-

ing word composition, and further employ it as adaptive

pseudo supervision for margin adjusting, i.e., as illustrated

in Figure 4, d1 = d(x̃vw
young+cat, x̂young+cat), and d2 =

d(x̃vw
young+horse, x̂young+horse). We can expect a larger d2

than d1 since a horse-style young lies farther from a tiger-

style young than a cat-style young does.

Now we consider the margin adjusting parameter prob-

lem. Following the above example, we calculate d0 =
d(x̃vw

young+tiger, x̂young+tiger) as a benchmark distance to d1
and d2. When choosing x̂young+cat as the semi-positive

sample, the margin adjusting parameter is given by β1 =
σ(d0 − d1), where σ(·) denotes a sigmoid function. As to

x̂young+horse, we have β2 = σ(d0 − d2). When d1 < d2,

we can derive β1 > β2. As illustrated in Figure 4, the larger

β1 pulls x̂young+cat closer to the anchor xyoung,tiger and

pushes it away from the negative composition (x̂old+cat, in

this example). In general, the margin adjusting parameters
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Figure 4. Upper: illustration of margin adjusting strategy, where

triplets corresponding to different negative samples are put in the

same coordinate for brevity. Lower: conceptual illustration of

pseudo supervision exploitation from hybrid compositions, where

young is artificially separated from tiger/cat/horse for clearer il-

lustration.

α and β in Eq. (4) are calculated as

α = σ
(
λ
(
d(x̃wv

a+o, x̂a+o)−d(x̃wv
ā+o, x̂ā+o)

))
, (5)

β = σ
(
λ
(
d(x̃vw

a+o, x̂a+o)−d(x̃vw
a+ō, x̂a+ō)

))
, (6)

where σ(·) denotes a sigmoid function and λ scales its input

to adjust the sensitive region of the sigmoid function.

3.3. Training and Test

Training. The training procedure is summarized in Al-

gorithm 1, in which image feature decomposition is guided

by Lcls in Eq. (1), the two concept subspaces are con-

strained by Lconc in Eq. (2), and the compositions are regu-

larized by Lrec and Lcomp in Eqs. (3) (4), where α and β in

Lcomp are given by Eqs. (5) (6).

Test. The trained model is tested on the unseen set

Du. Given an unseen image I for test, we first extract

and map its visual features to the composition space as

x = pa,o
(
fa,o(I)

)
, and then generate word compositions

x̂a+o = g
(
pwa

(
ea(ya)

)
, pwo

(
eo(yo)

))
from all n candidate

attribute-object pairs {(ya, yo)}
n
i=1. We compute and store

the distances between x and each x̂a+o, and select the label

y = (ya, yo) of x̂a+o corresponding to the shortest distance

Algorithm 1: Training procedure of hierarchical

decomposition and composition (HiDC) model for

unseen concept recognition.

Data: Training data Ds, scale parameter λ

Result: Optimal ea, eo, pwa , pwo , pa,o, g

1 Initialize: fa, fo, ha, ho, ea, eo, pva, pvo , pwa , pwo , pa,o, g;

2 while not converged do

3 Sample a batch from Ds as {Ia,o}
n
i=1 with labels

{(ya, yo)}
n
i=1; sample corresponding negative

labels {(yā, yō)}
n
i=1 randomly;

4 for samples in the batch do

5 Decompose image features:

va = fa
(

fa,o(Ia,o)
)

, vo = fo
(

fa,o(Ia,o)
)

;

6 Construct concept subspaces:

xa = pva(va), xo = pvo(vo),
x̂a = pwa

(

ea(ya)
)

, x̂o = pwo
(

eo(yo)
)

,

x̂ā = pwa
(

ea(yā)
)

, x̂ō = pwo
(

eo(yō)
)

;

7 Generate compositions from concept subspaces:

xa,o = pa,o
(

fa,o(Ia,o)
)

, xa+o = g(xa,xo),
x̂a+o = g(x̂a, x̂o), x̂ā+o = g(x̂ā, x̂o),
x̂a+ō = g(x̂a, x̂ō), x̂ā+ō = g(x̂ā, x̂ō),
x̃
vw
a+o = g(xa, x̂o), x̃

wv
a+o = g(x̂a,xo),

x̃
vw
a+ō = g(xa, x̂ō), x̃

wv
ā+o = g(x̂ā,xo);

8 Calculate α, β,Lcls, Lconc, Lrec, Lcomp by

Eqs. (5) (6) (1) (2) (3) (4), respectively;

9 end

10 Ltrain = Lcls + Lconc + Lrec + Lcomp;

11 Update network parameters using ∇Ltrain;

12 end

as the prediction of I:

P (I) = argmin
y∈Ỹ

d(x, x̂a+o) , (7)

where Ỹ = Yu for conventional ZSL, and Ỹ = Yu ∪ Ys

for GZSL.

4. Experiments

In this section, we present ablation studies and parameter

analysis to validate the effectiveness of the proposed HiDC,

and compare HiDC with several state of the arts to verify its

superiority over current methods.

4.1. Experimental Setup

Datasets. Our proposed HiDC and baselines are eval-

uated on two popular benchmark datasets, i.e., MIT-

States [11] and UT-Zappos [32].

MIT-States contains 53,753 everyday images with a wide

range of attributes (115 classes) and objects (245 classes).

Each image is annotated with an attribute-object concept

such as “young tiger”, and there are 1962 pairs in total. We

use the compositional split [17], i.e., 1262 pairs in Ys for

training and 700 pairs in Yu for test.
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Dataset Attribute Classes Object Classes Seen Pairs (Images) Unseen Pairs (Images)

MIT-States [11] 115 245 1262 (34,562) 700 (19,191)

UT-Zappos [32] 16 12 83 (24,898) 33 (4,228)

Table 1. Dataset descriptions with the numbers of attribute/object classes and seen/unseen pairs (images).

Modules MIT-States UT-Zappos

# Lcls Lconc Lcomp Lrec α, β Closed Open H-Mean Closed Open H-Mean

1 X 12.6 2.3 3.9 39.0 4.8 8.6

2 X X 13.3 2.5 4.2 42.1 5.3 9.5

3 X X X 15.0 12.3 13.5 50.6 47.2 48.8

4 X X X X 14.7 13.0 13.8 52.3 47.3 49.7

5 X X X X 15.2 14.3 14.7 52.4 51.5 52.0

6 X X X X X 15.4 14.6 15.0 53.4 51.5 52.4

Table 2. Ablation study on the five proposed modules. Results are reported in unseen pair recognition accuracy (%) under three evaluation

metrics on the two datasets. Note that Xunder α, β denotes that the margin adjusting strategy is enabled.

UT-Zappos contains 50,025 images of shoes, where each

image is annotated with an attribute-object concept such as

“canvas slippers”. There are 16 attribute classes and 12 ob-

ject classes. Following the same setting in [18, 27], we

use the subset of 29,126 images in the experiments, i.e., 83

attribute-object pairs in Ys for training and 33 pairs in Yu

for test. Table 1 summaries the details of the two datasets.

Evaluation Metrics. We follow the same evaluation

standard in [18, 27]. The top-1 accuracy of unseen attribute-

object concept recognition is reported under three metrics:

1) Closed, where the test candidate attribute-object pairs

are from Yu. Closed metric evaluates the recognition ability

on unseen concepts. This metric restricts the test candidates

into unseen pairs, in most cases yields higher accuracy due

to reduced number of test candidates.

2) Open, where the test candidate attribute-object pairs

are from Yu ∪ Ys, corresponding to GZSL setting. Open

metric evaluates the general recognition ability on both seen

and unseen concepts. This metric often yields a relatively

lower accuracy since all seen and unseen attribute-object

pairs are included into the test candidates, and thus is more

practical for real-world applications.

3) H-Mean, namely harmonic mean, which consolidates

both Closed and Open metrics. H-Mean is defined as

AH = 2×
AClosed ×AOpen

AClosed +AOpen

, (8)

where AH, AClosed, and AOpen are the accuracy measured

under H-Mean, Closed, and Open metrics respectively. H-

Mean penalizes large performance discrepancy between

Closed and Open metrics, which has been widely adopted

in GZSL for evaluating the overall generalizability.

Implementation Details. Visual feature extractor

fa,o(·) is implemented as ResNet-18 [7] pre-trained on Ima-

geNet [24], without fine-tuning for fair comparison with all

the baselines. Projections p(·) are implemented as fully-

connected layers, and the same with g(·). Also, word

embeddings e(·) are fully-connected layers trained from

scratch without extra knowledge. The triplet margin m is

set to 2. Our model is implemented in PyTorch (version

1.1.0) with ADAM [12] optimizer. The code will be made

public available.

4.2. Ablation Study and Analysis

Loss Functions. We ablate our model to evaluate the

effectiveness of the proposed modules:

1) Base model, which is only composed of the MLPs and

the followed classifiers. The training is guided by Lcls, and

we test it by directly predicting attribute/object labels of test

set images with the classifiers.

2) Adding Lconc, which further incorporates the at-

tribute/object subspace constraints. The training is guided

by Lcls + Lconc, and we test it the same way as above.

3) Adding Lcomp (without margin adjusting). The train-

ing is guided by Lcls + Lconc + Lcomp. Margin adjusting

parameters α and β in Lcomp are both fixed to 0.5. We test

it as described in Section 3.3, the same as below.

4) Adding Lrec. The training is guided by Lcls+Lconc+
Lcomp + Lrec, where α and β still remain 0.5.

5) Adding α and β (without Lrec). The training is guided

by Lcls +Lconc +Lcomp, where α and β are now variables

given by Eqs. (5) (6).

6) Full model.

As shown in Table 2, each of the proposed modules con-

tributes to the overall performance. Compared with Closed

metric, our base model performs considerably worse under

Open metric, for its lacking of the capability to learn con-

textual relationships between compositional sub-concepts,

and thus fails to transfer knowledge from seen concepts

to unseen ones. In contrast, our proposed Lcomp models

contextual relationships by regularizing compositions gen-

erated from sub-concepts, where Lconc ensures robust con-

cept subspaces and Lrec benefits the composing ability. To-

gether with the adaptive learning ability offered by α and β,
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MIT-States UT-Zappos

Method Closed Open H-Mean Attribute Object Closed Open H-Mean Attribute Object

HiDC (with Lquin) 14.6 12.2 13.3 20.4 25.8 52.7 47.1 49.7 51.1 77.4

HiDC (with Lcomp) 15.4 14.6 15.0 22.6 26.9 53.4 51.5 52.4 55.8 77.6

Table 3. Comparison between the proposed Lcomp in Eq. (4) and Lquin in [27]. Results are reported in unseen pair recognition accuracy (%)

under three evaluation metrics on the two datasets. Also the attribute/object recognition accuracy (%) is reported as complementary.
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Figure 5. Analysis of scale parameter λ. Results are reported in

unseen pair recognition accuracy (%) with changing λ.

our full model achieves favorable performance under both

Closed and Open metrics. Arguably, adding trade-off pa-

rameters to each loss may benefit the accuracy, but we do

not involve any trade-offs for generality and practicality of

the proposed HiDC.

Effect of Margin Adjusting. To further verify our adap-

tive learning ability, we compare the proposed Lcomp with

the quintuplet loss Lquin in current state of the art [27],

where we implement our proposed HiDC with Lquin in re-

place of Lcomp. As shown in Table 3, our proposed Lcomp

is comprehensively superior to Lquin as Lcomp improves the

overall recognition performance, especially under the chal-

lenging Open metric. Moreover, benefiting from the adap-

tive learning ability, Lcomp is able to capture fine-grained

attribute concepts more accurately than Lquin.

Effect of Scale Parameter λ. The scale parameter λ

is employed to control the input scale of the sigmoid func-

tion for calculating α and β in Eqs. (5) (6), which can be

of help when using different datasets. Roughly, the sensi-

tive region of a sigmoid function is [−5, 5], and the order of

magnitude of its input in our experiments is around −1. We

select λ in {0.1, 0.2, 0.5, 1, 2, 5, 10} and report the recog-

nition accuracy in Figure 5. Optimal performances can be

observed when λ is set to around 2. A suitable λ is able to

decrease the performance discrepancy between Closed and

Open metrics, contributing to the generalizability from seen

concepts to unseen ones.

4.3. Comparisons with State of the Arts

Baseline Methods. We compare our proposed HiDC

against seven baselines:

1) VisProd [16] trains two independent linear SVMs to

predict attributes and objects.

2) AnalogousAttr [4] trains a linear SVM for each seen

pair and generates classifier weights for unseen pairs with

Bayesian Probabilistic Tensor Factorization (BPTF).

3) RedWine [17] trains linear SVMs for attribute/object

sub-concepts and transforms the SVM weights with a neural

network for unseen pairs.

4) LabelEmbed [6] uses pre-trained GloVe [21] word

embeddings rather than classifier weights to compose word

vector representations, compared with RedWine.

5) LabelEmbed+ [18] improves LabelEmbed by incor-

porating image features and training input representations.

6) AttrAsOperator [18] treats attributes as operators and

conducts attribute-conditioned transformations to learn un-

seen attribute-object pairs.

7) AdvFineGrained [27] defines semi-negative samples

and regulates them with a quintuplet loss. For fair compari-

son, we report its results without using multi-scale features

to keep consistency with the other methods.

Quantitative Results. As demonstrated in Table 4, our

proposed HiDC consistently outperforms all seven base-

lines under all evaluation metrics. Except AttrAsOperator

and AdvFineGrained, all other baselines perform exceed-

ingly worse under Open metric than Closed, which actu-

ally suggests over-fitting to a subset of concepts. In con-

trast, HiDC exhibits the least performance discrepancy be-

tween Closed and Open metrics, verifying its superior gen-

eralizability from seen concepts to unseen ones. As we

discussed in Section 2, AttrAsOperator unequally models

each compositional sub-concept, and thus cannot generalize

well on UT-Zappos and performs considerably worse than

AdvFineGrained and HiDC that equally treat sub-concepts.

Benefiting from our adaptive learning strategy, HiDC is able

to capture more accurate fine-grained compositional rela-

tionships and outperforms state-of-the-art AdvFineGrained

under all metrics. Compared to UT-Zappos, the overall

worse performance on MIT-States is due to a larger num-

ber of unseen pairs with fewer number of training images

for each pair, and also the images are more complicated.

Qualitative Results. Our trained model can be directly

employed to retrieve relevant images with text queries given

as unseen attribute-object pairs (ya, yo). We embed a query

(ya, yo) and all image candidates I into the composition

space as x̂a+o and x, and store the distances between x̂a+o

and each x. Corresponding nearest images are selected as

results. Figure 6 gives retrieval results of similar concepts

that only differ in attributes. Our method outperforms peer
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MIT-States UT-Zappos

Method Closed Open H-Mean Closed Open H-Mean

VisProd [16] 11.1 2.4 3.9 46.8 4.1 7.5

AnalogousAttr [4] 1.4 0.2 0.4 18.3 3.5 5.9

RedWine [17] 12.5 3.1 5.0 40.3 2.1 4.0

LabelEmbed [6] 13.4 3.3 5.3 25.8 5.2 8.7

LabelEmbed+ [18] 14.8 5.7 8.2 37.4 9.4 15.0

AttrAsOperator [18] 12.0 11.4 11.7 33.2 23.4 27.5

AdvFineGrained [27] 13.9 12.3 13.1 52.1 48.4 50.2

HiDC (Ours) 15.4 14.6 15.0 53.4 51.5 52.4

Table 4. Comparison between our proposed HiDC and seven baselines. Results are reported in unseen pair recognition accuracy (%) under

three evaluation metrics on the two datasets.

Adv

Attr

Young Tiger

Old Tiger

Ours

Attr

Adv

Ours

Sheepskin Ankle-boots

Leather Ankle-boots 

Figure 6. Qualitative results of retrieving young tiger, old tiger in MIT-States, and sheepskin ankle-boots, leather ankle-boots in UT-Zappos.

The top-6 results of AttrAsOperator [18], AdvFineGrained [27], and our proposed HiDC are reported. Correct and incorrect results are

respectively marked in green and red borders.

methods [18, 27] and is better at distinguishing similar con-

cepts. Still, attributes such as old are poorly learned due to

ambiguous visual features and few training images.

5. Conclusions

In this paper, we present a hierarchical decomposition-

and-composition (HiDC) model for unseen compositional

concept recognition. We propose to decompose each seen

image as visual elements and learn the corresponding sub-

concepts in independent subspaces. We generate compo-

sitions from these subspaces in three hierarchical forms,

and learn the composed concepts in a unified composition

space. We define semi-positive concepts to depict fine-

grained contextual relationships between sub-concepts, and

learn accurate compositional concepts with adaptive pseudo

supervision exploited from the generated compositions. Ex-

tensive ablation studies and experiments validate the effec-

tiveness of our proposed HiDC, and demonstrate its superi-

ority over state-of-the-art approaches. Still, HiDC is limited

to compositions with two seen sub-concepts. Extensions to

compositions with more sub-concepts (or even unseen ones

during training) will be our future work.
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