
Learning to Cluster Faces via Confidence and Connectivity Estimation

Lei Yang1, Dapeng Chen2, Xiaohang Zhan1, Rui Zhao2, Chen Change Loy3, Dahua Lin1

1The Chinese University of Hong Kong
2SenseTime Group Limited, 3Nanyang Technological University

{yl016, zx017, dhlin}@ie.cuhk.edu.hk, {chendapeng, zhaorui}@sensetime.com, ccloy@ntu.edu.sg

Abstract

Face clustering is an essential tool for exploiting the un-

labeled face data, and has a wide range of applications in-

cluding face annotation and retrieval. Recent works show

that supervised clustering can result in noticeable perfor-

mance gain. However, they usually involve heuristic steps

and require numerous overlapped subgraphs, severely re-

stricting their accuracy and efficiency. In this paper, we

propose a fully learnable clustering framework without

requiring a large number of overlapped subgraphs. In-

stead, we transform the clustering problem into two sub-

problems. Specifically, two graph convolutional networks,

named GCN-V and GCN-E, are designed to estimate the

confidence of vertices and the connectivity of edges, respec-

tively. With the vertex confidence and edge connectivity, we

can naturally organize more relevant vertices on the affin-

ity graph and group them into clusters. Experiments on two

large-scale benchmarks show that our method significantly

improves clustering accuracy and thus performance of the

recognition models trained on top, yet it is an order of mag-

nitude more efficient than existing supervised methods.

1. Introduction

Thanks to the explosive growth of annotated face

datasets [19, 11, 17], face recognition has witnessed great

progress in recent years [31, 27, 33, 7, 40]. Along with this

trend, the ever-increasing demand for annotated data has re-

sulted in prohibitive annotation costs. To exploit massive

unlabeled face images, recent studies [14, 39, 35, 38] pro-

vide a promising clustering-based pipeline and demonstrate

its effectiveness in improving the face recognition model.

They first perform clustering to generate “pseudo labels”

for unlabeled images and then leverage them to train the

model in a supervised way. The key to the success of these

approaches lies in an effective face clustering algorithm.

Existing face clustering methods roughly fall into two

categories, namely, unsupervised methods and supervised

methods. Unsupervised approaches, such as K-means [22]

Confident

Unconfident

Affinity Graph

Strong Connectivity

Clusters

Figure 1: The core idea of our approach. Vertices with different

colors represent different classes. Previous methods group all ver-

tices in the box into a cluster as they are densely connected, while

our approach, learning to estimate the confidence of belonging to a

specific class, is able to detect unconfident vertices that lie among

multiple classes. With the estimated vertex confidence, we further

learn to predict the edge connectivity. By connecting each ver-

tex to a neighbor with higher confidence and strongest connection,

we partition the affinity graph into trees, each of which naturally

represents a cluster.

and DBSCAN [9], rely on specific assumptions and lack

the capability of coping with the complex cluster structures

in real-world datasets. To improve the adaptivity to dif-

ferent data, supervised clustering methods have been pro-

posed [35, 38] to learn the cluster patterns. Yet, both ac-

curacy and efficiency are far from satisfactory. In partic-

ular, to cluster with the large-scale face data, existing su-

pervised approaches organize the data with numerous small

subgraphs, leading to two main issues. First, processing

subgraphs involves heuristic steps based on simple assump-

tions. Both subgraph generation [38] and prediction aggre-

gation [35] depend on heuristic procedures, thus limiting

their performance upper bound. Furthermore, the subgraphs

required by these approaches are usually highly overlapped,

13369

incurring excessive redundant computational costs.

We therefore seek an algorithm that learns to cluster

more accurately and efficiently. For higher accuracy, we

desire to make all components of the framework learnable,

moving beyond the limitations of heuristic procedures. On

the other hand, to reduce the redundant computations, we

intend to reduce the number of required subgraphs. Previ-

ous works [39, 35, 38] have shown that clusters on an affin-

ity graph usually have some structural patterns. We observe

that such structural patterns are mainly originated from two

sources, namely vertices and edges. Intuitively, connect-

ing each vertex to a neighbor, which has higher confidence

of belonging to a specific class, can deduce a number of

trees from the affinity graph. The obtained trees naturally

form connected components as clusters. Based on this mo-

tivation, we design a fully learnable clustering approach,

without requiring numerous subgraphs, thus leading to high

accuracy and efficiency.

Particularly, we transform the clustering problem into

two sub-problems. One is to estimate the confidence of a

vertex, which measures the probability of a vertex belong-

ing to a specific class. The other is to estimate the edge

connectivity, which indicates the probability of two vertices

belonging to the same class. With the vertex confidence

and edge connectivity, we perform clustering in a natural

way, i.e., each vertex is connected to a vertex with higher

confidence and strongest connectivity. As Figure 1 illus-

trates, each vertex finds an edge connected to a vertex with

higher confidence, and the vertices that finally connected to

the same vertex belong to the same cluster.

Two learnable components, namely, a confidence estima-

tor and a connectivity estimator are proposed to estimate the

vertex confidence and edge connectivity, respectively. Both

components are based on a GCN to learn from the data, de-

noted by GCN-V (for vertex confidence) and GCN-E (for

edge connectivity). Specifically, GCN-V takes the entire

graph as input and simultaneously estimates confidence for

all vertices. GCN-E takes the graph constructed from a lo-

cal candidate set as input and evaluates the possibility of

two vertices belonging to the same class.

The experiments demonstrate that our approach not only

significantly accelerates the existing supervised methods by

an order of magnitude, but also outperforms the recent state

of the art [38] under two F-score metrics on 5M unlabeled

data. The main contributions lie in three aspects: (1) We

propose a novel framework that formulates clustering as an

estimation of confidence and connectivity, both based on

learnable components. (2) Our approach is an order of mag-

nitude faster than existing learning-based methods. (3) The

proposed method achieves state-of-the-art performance on

both large-scale face clustering and fashion clustering. The

discovered clusters boost the face recognition model to a

level that is comparable to its supervised counterparts.

2. Related Work

Unsupervised Face Clustering. With the emergence of

deep learning, recent works primarily adopt deep features

from a CNN-based model and focus on the design of simi-

larity metrics. Otto et al. [1] proposed an approximate rank-

order metric. Lin et al. [20] introduced minimal covering

spheres of neighborhoods as the similarity metric. Besides

methods designed specifically for face clustering, classical

clustering algorithms can also be applied to face clustering.

Density-based clustering is the most related approach. DB-

SCAN [9] computed empirical density and designated clus-

ters as dense regions in the data space. OPTICS [3] adopted

similar concepts and addresses the ordering of data points.

The proposed method shares common intuitions with the

density-based clustering, i.e., computing the “density” for

each sample [9] and focusing on the relative order between

samples [3]. Yet, our method differs substantially with all

the unsupervised methods above: all components in our

framework are learnable. This allows us to learn to cap-

ture the intrinsic structures in face clusters.

Supervised Face Clustering. Recent works have shown

that the introduced supervised information in face clus-

tering leads to considerable performance gains. Zhan et

al. [39] trained a MLP classifier to aggregate information

and thus discover more robust linkages. Wang et al. [35]

further improved the linkage prediction by leveraging GCN

to capture graph context. Both methods obtained clusters

by finding connected components with dynamic threshold.

Yang et al. [38] devised a partitioning algorithm to generate

multi-scale subgraphs and proposed a two-stage supervised

framework to pinpoint desired clusters therefrom.

Whereas the proposed method adopts the idea of su-

pervised clustering, it differs from two key aspects: (1)

Unlike previous supervised methods [39, 35, 38], it does

not rely on heuristic algorithms for pre-processing or post-

processing. Instead, all components of the proposed frame-

work are learnable and can potentially achieve higher ac-

curacy. (2) It is more efficient in design. Existing meth-

ods rely on a large number of subgraphs for pinpointing

clusters. [35] predicted all connections around each vertex,

where two nearby vertices are likely to have highly over-

lapped neighborhoods, and thus there are redundant com-

putational costs. [38] produced multi-scale subgraphs for

detection and segmentation, the number of which is usually

several times larger than the number of clusters. In contrast,

the proposed method adopts an efficient subgraph-free strat-

egy to estimate the vertex confidence and concentrates on a

small portion of neighborhoods for connectivity prediction.

Graph Convolutional Networks. Graph Convolutional

Networks (GCNs) [18] have been successfully applied to

various tasks [18, 12, 32, 37, 36]. Some recent efforts ex-

tend GCN to handle large-scale graphs. GraphSAGE [12]

13370

Graph

Convolution

Network

Construct subgraphs

based on confidence

Estimate Connectivity

for selected vertices

Estimated Confidence

for all verticesAffinity Graph

Selected vertices

Graph

Convolution

Network

…

GCN-V

High Low

GCN-E

Graph

Convolution

Network

Cluster 1

Cluster 2

Obtain clusters

via deducing trees

…

Figure 2: Overview of the proposed clustering framework.

sampled a fixed number of neighbors in each layer for ag-

gregation. FastGCN [4] further reduced computational cost

by sampling vertices rather than neighbors. In this paper, we

draw on the strong expressive power of graph convolutional

networks, to learn vertex confidence on the massive affinity

graph and edge connectivity on the local subgraphs.

3. Methodology

In large-scale face clustering, supervised approaches

demonstrate their effectiveness in handling complex cluster

patterns, but their accuracy is limited by some hand-crafted

components and their efficiency suffers from the require-

ment of numerous highly overlapped subgraphs. Therefore,

how to cluster accurately and efficiently remains a problem.

To address the challenge, we propose an efficient alternative

in which all components are learnable. Specifically, we for-

mulate clustering as a procedure of estimating vertex confi-

dence and edge connectivity on an affinity graph, and then

partition the graph into clusters by connecting each vertex

to neighbors with higher confidence and connectivity.

3.1. Framework Overview

Given a dataset, we extract the feature for each image

from a trained CNN, forming a feature set F = {fi}
N
i=1,

where fi ∈ R
D. N is the number of images and D denotes

the feature dimension. The affinity between sample i and

sample j is denoted as ai,j , which is the cosine similarity

between fi and fj . According to the affinities, we represent

the dataset with a KNN affinity graph G = (V, E), where

each image is a vertex belonging to V and is connected to

its K nearest neighbors, forming K edges belonging to E .

The constructed graph can be expressed as a vertex feature

matrix F ∈ R
N×D and a symmetric adjacency matrix A ∈

R
N×N , where ai,j = 0 if vi and vj are not connected.

To perform clustering by learning the structural patterns

from vertices and edges, we decompose the clustering into

two sub-problems. One is to predict the confidence of the

vertices. The confidence is to determine whether a vertex

belongs to a specific class. Intuitively, a vertex with high

confidence usually lies in the place where the vertices are

densely distributed and belong to the same class, while the

vertices with low confidence are likely to be on the bound-

ary among several clusters. The other is sub-problem to

predict the connectivity of the edges. The edge with high

connectivity indicates the two connected samples tend to

belong to the same class. With the vertex confidence and

the edge connectivity in the affinity graph, clustering can

be performed in a simple way by finding a directed path

from vertices with lower confidence to those with higher

confidence. This process naturally forms a number of trees

isolated from each other, thus readily partitioning the graph

into clusters. We refer to this process as tree-based parti-

tion.

The key challenge for the proposed method remains in

how to estimate vertex confidence and edge connectivity.

As shown in Figure 2, our framework consists of two learn-

able modules, namely Confidence Estimator and Connec-

tivity Estimator. The former estimates the vertex confi-

dence based on GCN-V, while the latter predicts the edge

connectivity based on GCN-E. Specifically, GCN-V takes

the entire affinity graph as input and simultaneously esti-

mates confidence for all vertices. GCN-E takes the graph

constructed from a candidate set as input and evaluates the

confidence of two vertices belonging to the same class. Ac-

cording to the output of these two modules, we perform our

tree-based partition to obtain clusters.

3.2. Confidence Estimator

Similar to anchor-free methods in object detection [41,

8], where they use heatmap to indicate the possibility that

an object appears in the corresponding area of an image,

the confidence estimator aims to estimate a value for each

vertex, thereby indicating whether there is a specific class

13371

on the corresponding area of an affinity graph.

As real-world datasets usually have large intra-class vari-

ations, each image may have different confidence values

even when they belong to the same class. For an image with

high confidence, its neighboring images tend to belong to

the same class while an image with low confidence is usu-

ally adjacent to the images from the other class. Based on

this observation, we can define the confidence ci for each

vertex based on the labeled images in the neighborhood:

ci =
1

|Ni|

∑

vj∈Ni

(1yj=yi
− 1yj 6=yi

) · ai,j , (1)

where Ni is the neighborhood of vi, yi is the ground-truth

label of vi, and ai,j is the affinity between vi and vj . The

confidence measures whether the neighbors are close and

from the same class. Intuitively, vertices with dense and

pure connections have high confidence, while vertices with

sparse connections or residing in the boundary among sev-

eral clusters have low confidence. We investigate some dif-

ferent designs of confidence in Sec. 4.3.1.

Design of Confidence Estimator. We assume that ver-

tices with similar confidence have similar structural pat-

terns. To capture such patterns, we learn a graph convolu-

tional network [18], named GCN-V, to estimate confidence

of vertices. Specifically, given the adjacency matrix A and

the vertex feature matrix F as input, the GCN predicts con-

fidence for each vertex. The GCN consists of L layers and

the computation of each layer can be formulated as:

Fl+1 = σ
(

g(Ã,Fl)Wl

)

, (2)

where Ã = D̃
−1(A + I) and D̃ii =

∑

j(A + I)j is a di-

agonal degree matrix. The feature embedding of the input

layer F0 is set with the feature matrix F, and Fl contains

the embeddings at l-th layer. Wl is a trainable matrix to

transform the embeddings into a new space. σ is a nonlin-

ear activations (ReLU in this work). To leverage both input

embeddings and embeddings after neighborhood aggrega-

tion to learn the transformation matrix, we define g(·, ·) as

the concatenation of them:

g(Ã,Fl) = [(Fl)
⊤, (ÃFl)

⊤]⊤. (3)

Such definition has been proven to be more effective than

simply taking weighted average of the embedded feature of

neighbors around each vertex [35]. Based on the output

embedding of the L-th layer, i.e., FL, we employ a fully-

connected layer to predict the confidence of the vertices.

c
′ = FLW + b, (4)

where W is trainable regressor and b is trainable bias. The

predicted confidence of vi can be taken from the corre-

sponding element in c
′, denoted by c′i.

Training and Inference. Given a training set with class

labels, we can obtain the ground-truth confidence following

Eq. 1 for each vertex. Then we train GCN-V, with the ob-

jective to minimize the mean square error(MSE) between

ground truth and predicted scores, which is defined by:

LV =
1

N

N
∑

i=1

|ci − c′i|
2 (5)

During inference, we use the trained GCN-V to predict the

confidence of each vertex. The obtained confidence is used

in two ways. First, they are used in the next module to

determine whether the connectivity of an edge needs to be

predicted, thus significantly reduces the computational cost.

Furthermore, they are used in the final clustering to provide

partial orders between vertices.

Complexity Analysis. The main computational cost lies

in the graph convolution (Eq. 2). Since the built graph is a

KNN graph with K ≪ N , the affinity matrix A is a highly

sparse matrix. Therefore, the graph convolution can be ef-

ficiently implemented as the sparse-dense matrix multipli-

cation, yielding a complexity O(|E|) [18]. As the number

of edges |E| of the sparse matrix is bounded by NK, the

inference complexity is linear in the number of vertices as

K ≪ N . This operation can be scaled to a very large setting

by sampling neighbors or sampling vertices [12, 4]. Empir-

ically, a 1-layer GCN takes 37G CPU Ram and 92s with 16
CPU on a graph with 5.2M vertices for inference.

3.3. Connectivity Estimator

For a vertex vi, neighbors with confidence larger than

ci indicate they are more confident to belong to a specific

class. To assign vi to a specific class, an intuitive idea is

to connect vi to neighbors from the same class with larger

confidence. However, neighbors with larger confidence do

not necessarily belong to the same class. We therefore intro-

duce the connectivity estimator, named GCN-E, to measure

the pairwise relationship based on the local graph structures.

Candidate set. Given the predicted vertex confidence, we

first construct a candidate set S for each vertex.

Si = {vj |c
′
j > c′i, vj ∈ Ni}. (6)

The idea of candidate set is to select edges connected to

neighbors more confident to belong to a cluster, and Si only

contains the vertices with higher confidence than the confi-

dence of vi.

Design of Connectivity Estimator. GCN-E shares simi-

lar GCN structures with GCN-V. The main difference lies

in: (1) Instead of operating on the entire graph G, the in-

put of GCN-E is a subgraph G(Si) containing all vertices in

13372

Si; (2) GCN-E outputs a value for each vertex on G(Si) to

indicate how likely it shares the same class with vi.
More specifically, the subgraph G(Ci) can be represented

by the affinity matrix A(Si) and the vertex feature matrix

F(Si). We subtract fi from each row of the feature matrix

F(Si) to encode the relationship between Si and vi, and the

obtained feature matrix is denoted by F̄(Si). The transfor-

mation in GCN-E can be therefore represented by:

F̄l+1 = σ
(

g(Ã(Ci), F̄l(Ci))W
′
l

)

, (7)

where σ, g(·) and Ã(Si) are defined similar to those in

Eq. 2. W
′
l is the parameter of GCN-E in the l-th layer.

Based on the output embedding of the L-th layer, we obtain

the connectivity for each vertex in Si by a fully-connected

layer. As the connectivity reflects the relationship between

two vertices, we use r′i,j to indicate the predicted connec-

tivity between vi and vj .

Training and Inference. Given a training set with class

labels, for a vertex vi, if a neighbor vj shares the same label

with the vi, the connectivity is set to 1, otherwise it is 0.

ri,j =

{

1, yi = yj

0, yi 6= yj
, vj ∈ Ci, (8)

We aim to predict the connectivity that reflects whether two

vertices belong to the same class. Similar to Eq. 5 in GCN-

V, we also use vertex-wise MSE loss to train GCN-E.

LE(Ci) =
∑

vj∈Ci

|ri,j − r′i,j |
2 (9)

To accelerate the training and inference procedures, we only

apply GCN-E to a small portion of vertices with large esti-

mated confidence, as they potentially influence more suc-

cessors than vertices with small confidence do. We denote

the portion of vertices using GCN-E as ρ. For other ver-

tices, they simply connect to their M nearest neighbors in

the candidate set, indicating they connect to neighbors with

top-M largest similarities and higher confidence. M = 1
leads to the tree-based partition strategy, while M > 1 pro-

duces directed acyclic graphs as clusters. Empirical results

indicate that M = 1, ρ = 10% can already bring consider-

able performance gain (see Sec. 4.3.2).

Complexity Analysis. The idea of connectivity estima-

tor shares similar spirits to [35], where they evaluated how

likely each vertex on a subgraph connects to the center ver-

tex. Although the complexity of [35] is linear with N , ap-

plying a GCN on the neighborhood of each vertex incurs ex-

cessive computational demands. The proposed GCN-E has

two key designs to be much more efficient: (1) We only pre-

dict linkages in the candidate set, an effort that potentially

involves fewer neighbors for each vertex and does not need

to manually select the number of hops and the number of

neighbors for each hop. (2) With the estimated vertex con-

fidence, we are able to focus on a small portion of vertices

with high confidence. With these two important designs, we

achieve a speedup over [35] by an order of magnitude.

4. Experiments

4.1. Experimental Settings

Face clustering. MS-Celeb-1M [11] is a large-scale face

recognition dataset consisting of 100K identities, and each

identity has about 100 facial images. We adopt the widely

used annotations from ArcFace [7], yielding a reliable sub-

set that contains 5.8M images from 86K classes. We ran-

domly split the cleaned dataset into 10 parts with an almost

equal number of identities. Each part contains 8.6K identi-

ties with around 580K images. We randomly select 1 part

as labeled data and the other 9 parts as unlabeled data.

Fashion clustering. We also evaluate the effectiveness of

our approach for datasets beyond the face images. We

test on a large subset of DeepFashion [21], namely In-shop

Clothes Retrieval, which is very long-tail. Particularly, we

mix the training features and testing features in the origi-

nal split, and randomly sample 25, 752 images from 3, 997
categories for training and the other 26, 960 images with

3, 984 categories for testing. Note that fashion clustering is

also regarded as an open set problem and there is no overlap

between training categories and testing categories.

Face recognition. We evaluate face recognition model on

MegaFace [17], which is the largest benchmark for face

recognition. It includes a probe set from FaceScrub [25]

with 3, 530 images and a gallery set containing 1M images.

Metrics. We assess the performance on both clustering and

face recognition. Face clustering is commonly evaluated

by two metrics [29, 35, 38], namely Pairwise F-score and

BCubed F-score [2]. The former emphasizes on large clus-

ters as the number of pairs grows quadratically with clus-

ter size, while the latter weights clusters according to their

cluster size. Both metrics are the harmonic mean of pre-

cision and recall, referred to as FP and FB , respectively.

Face recognition is evaluated with face identification bench-

mark in MegaFace. We adopt top-1 identification hit rate in

MegaFace, which is to rank the top-1 image from the 1M
gallery images and compute the top-1 hit rate.

Implementation Details. To construct the KNN affinity

graph, we set K = 80 for MS1M and K = 5 for Deep-

Fashion. Since GCN-V operates on a graph with millions

of vertices, we only use 1-layer GCN to reduce the com-

putational cost. For GCN-E, it operates on a neighborhood

with no more than K vertices, and thus we use 4-layer GCN

to increase its expressive power. For both datasets, momen-

tum SGD is used with a start learning rate 0.1 and weight

decay 1e−5. To avoid the situation where there is no correct

13373

Table 1: Comparison on face clustering with different numbers of unlabeled images. (MS-Celeb-1M)

#unlabeled 584K 1.74M 2.89M 4.05M 5.21M
Time

Method / Metrics FP FB FP FB FP FB FP FB FP FB

K-means [22, 28] 79.21 81.23 73.04 75.2 69.83 72.34 67.9 70.57 66.47 69.42 11.5h

HAC [30] 70.63 70.46 54.4 69.53 11.08 68.62 1.4 67.69 0.37 66.96 12.7h

DBSCAN [9] 67.93 67.17 63.41 66.53 52.5 66.26 45.24 44.87 44.94 44.74 1.9m

ARO [1] 13.6 17 8.78 12.42 7.3 10.96 6.86 10.5 6.35 10.01 27.5m

CDP [39] 75.02 78.7 70.75 75.82 69.51 74.58 68.62 73.62 68.06 72.92 2.3m

L-GCN [35] 78.68 84.37 75.83 81.61 74.29 80.11 73.7 79.33 72.99 78.6 86.8m

LTC [38] 85.66 85.52 82.41 83.01 80.32 81.1 78.98 79.84 77.87 78.86 62.2m

Ours (V) 87.14 85.82 83.49 82.63 81.51 81.05 79.97 79.92 78.77 79.09 4.5m

Ours (V + E) 87.55 85.94 83.73 82.7 81.83 81.1 80.22 79.93 79.04 79.08 11.5m

Table 2: Performance on DeepFashion clustering.

Methods #clusters FP FB Time

K-means [22] 3991 32.86 53.77 573s

HAC [30] 17410 22.54 48.77 112s

DBSCAN [9] 14350 25.07 53.23 2.2s

MeanShift [5] 8435 31.61 56.73 2.2h

Spectral [15] 2504 29.02 46.4 2.1h

ARO [1] 10504 26.03 53.01 6.7s

CDP [39] 6622 28.28 57.83 1.3s

L-GCN [35] 10137 28.85 58.91 23.3s

LTC [38] 9246 29.14 59.11 13.1s

Ours (V) 4998 33.07 57.26 2.5s

Ours (V + E) 6079 38.47 60.06 18.5s

neighbor for connection, we set a threshold τ to cut off the

edges with small similarities. τ is set to 0.8 for all settings.

4.2. Method Comparison

4.2.1 Face Clustering

We compare the proposed method with a series of clustering

baselines. These methods are briefly described below.

(1) K-means [22], the commonly used clustering algorithm.

For N ≥ 1.74M , we use mini-batch K-means, yielding a

comparable result but significantly shorted running time.

(2) HAC [30], the method hierarchically merges close clus-

ters based on some criteria in a bottom-up manner.

(3) DBSCAN [9] extracts clusters based on a designed den-

sity criterion and leaves the sparse background as noises.

(4) MeanShift [6] pinpoints clusters which contain a set of

points converging to the same local optimal.

(5) Spectral [24] partitions the data into connected compo-

nents based on spectrum of the similarity matrix.

(6) ARO [1] performs clustering with an approximate near-

est neighbor search and a modified distance measure.

(7) CDP [39], a graph-based clustering algorithm, which

exploits more robust pairwise relationship.

(8) L-GCN [35], a recent supervised method that adopts

GCNs to exploit graph context for pairwise prediction.

(9) LTC [38], another recent supervised method that formu-

lates clustering as a detection and segmentation pipeline.

(10) Ours (V), the proposed method that applies GCN-V

on the entire graph and obtains clusters through connecting

each vertex to its nearest neighbor in the candidate set.

(11) Ours (V + E), the proposed method that employs

GCN-E on top of GCN-V to estimate the connectivity and

obtain clusters by connecting each vertex to the most con-

nective neighbors in the candidate set.

Results For all methods, we tune the corresponding

hyper-parameters and report the best results. The results in

Table 1 and Table 2 show: (1) Given the ground-truth num-

ber of clusters, K-means achieves a high F-score. However,

the performance is influenced greatly by the number of clus-

ters, making it hard to employ when the number of clusters

is unknown. (2) HAC does not require the number of clus-

ters but the iterative merging process involves a large com-

putational budget. Even using a fast implementation [23], it

takes nearly 900 hours to yield results when N is 5.21M .

(3) Although DBSCAN is very efficient, it assumes that

density among different clusters is similar, which may be

the reason for severe performance drop when scaling to

large settings. (4) MeanShift yields a good result on fash-

ion clustering but takes a long time to converge. (5) Spec-

tral clustering also performs well but solving eigenvalue de-

composition incurs large computation and memory demand,

thus limiting its application. (6) The performance of ARO

depends on the number of neighbors. With a reasonable

time budget, the performance is inferior to other methods

in MS1M. (7) CDP is very efficient and achieves a high F-

score on different datasets with different scales. For a fair

comparison, we compare with the single model version of

CDP. (8) L-GCN surpasses CDP consistently but it is an or-

der of magnitude slower than CDP. (9) As a recent approach

to cluster face in a supervised manner, LTC shows its advan-

tage in large-scale clustering. However, relying on the itera-

13374

Figure 3: Pairwise F-score vs. the runtime of different methods.

Note that x-axis is in log-scale.

tive proposal strategy, the performance gain is accompanied

by a large computational cost. (10) The proposed GCN-V

outperforms previous methods consistently. Although the

training set of GCN-V only contains 580K images, it gen-

eralizes well to 5.21M unlabeled data, demonstrating its

effectivenesss in capturing important characteristics of ver-

tices. Besides, as GCN-V simultaneously predicts the con-

fidence for all vertices, it is an order of magnitude faster

than previous supervised approaches. (11) We apply GCN-

E to 20% vertices with top estimated confidence. It brings

further performance gain, especially when applied to Deep-

Fashion. This challenging dataset contains noisy neighbor-

hoods, and thus it is required to select connectivity more

carefully.

Runtime Analysis We measure the runtime of different

methods with ES-2640 v3 CPU and TitanXP. For MS-

Celeb-1M, we measure the runtime when N = 584K. All

the compared approaches, except K-means and HAC, rely

on the KNN graph. To focus on the runtime of algorithms

themselves, we use 1 GPU with 16 CPU to accelerate the

search of KNN [16], which reduces the time of finding 80
nearest neighbors from 34min to 101s. For all the super-

vised methods, we analyze their inference time. As shown

in Table 1, the proposed GCN-V is faster than L-GCN and

LTC by an order of magnitude. GCN-E takes more time

to predict the connectivity in the candidate sets, but it is

still several times more efficient than L-GCN and LTC. Fig-

ure 3 better illustrates the trade-off between accuracy and

efficiency. For LTC and Mini-batch K-means, we control

the number of proposals and batch size respectively, to yield

different runtime and accuracy. In real practice, we can

leverage the idea of super vertex in LTC to further acceler-

ate GCN-V, and parallelize GCN-E to estimate connectivity

for different vertices simultaneously.

4.2.2 Face Recognition

Following the pipeline of [39, 38], we apply the trained

clustering model to assign pseudo labels to unlabeled data,

and leverage them to enhance the face recognition model.

Figure 4: MegaFace top-1 Identification@1M.

As Sec. 4.1 introduces, we split the dataset into 10 splits

and randomly select 1 split to have the ground-truth labels,

denoted as SL. Particularly, the face recognition experi-

ments involve 4 steps: (1) use SL to train a face recognition

model Mr; (2) use Mr to extract face features on SL and

train the clustering model Mc with extracted features and

corresponding labels in SL; (3) use Mc to assign pseudo

labels to unlabeled images; (4) use SL and unlabeled data

with pseudo labels to train the final face recognition model

in a multi-task manner. Note that SL is used to train both

initial face recognition model and face clustering model.

Different from previous work [39, 38], where the unla-

beled data are assumed to be obtained sequentially and clus-

tering is performed 9 times on 9 splits separately, we di-

rectly perform clustering on 5.21M unlabeled data, which

is more practical and challenging. The upper bound is

trained by assuming all unlabeled data have ground-truth

labels. As Figure 4 indicates, all the three methods benefit

from an increase of the unlabeled data. Owing to the perfor-

mance gain in clustering, our approach outperforms previ-

ous methods consistently and improves the performance of

face recognition model on MegaFace from 58.21 to 77.88.

4.3. Ablation Study

To study some important design choices, we select MS-

Celeb-1M(584K) and DeepFashion for ablation study.

4.3.1 Confidence Estimator

Design of vertex confidence. We explore different de-

signs of confidence. As the confidence is related to the con-

cept of “density” described in Sec. 2, we first adopt two

widely used unsupervised density as the confidence [9, 3,

26]. Given a radius, the first one is defined as the number

of vertices and the second one is computed by the sum of

edge weights, denoted them as ur
num and ur

weight, respec-

tively as shown in Table 3. Note that for these unsupervised

definitions, the confidence is directly computed without the

learning process. On the other hand, we can define vari-

ous supervised confidence based on the ground-truth labels.

savg is defined as the average similarity to all vertices with

13375

Table 3: Design choice of vertex confidence. The confidence

metrics are defined in Sec. 4.3.1. FL denotes the output feature

embeddings of L-th GCN layer in Sec. 3.2.

Metric FL
MS1M-584K DeepFashion

FP FB FP FB

ur
num × 61.65 64.8 19.42 45.85

ur
weight × 81.78 80.47 29.31 52.81

savg × 82.37 83.32 30.11 56.62

scenter × 82.55 83.46 31.81 56.48

snbr × 82.76 83.61 32.24 57.11

sFnbr X 87.14 85.82 33.07 57.26

the same label. scenter is defined as the similarity to the

center, which is computed as the average feature of all ver-

tices with the same label. snbr is defined as Eq. 1. sFnbr
indicates using the top embedding FL to rebuild the graph.

To compare different confidence designs, we adopt the same

connectivity estimator by setting ρ = 0 and M = 1. In this

sense, the connectivity estimator directly selects the nearest

neighbors in the candidate set without learning.

As shown in Table 3, two unsupervised density defini-

tions achieve relatively lower performance. The assumption

that high data density indicates high probability of clusters

may not necessarily hold for all the situations. Besides, the

performance is sensitive to the selected radius for comput-

ing density. Table 3 shows that the supervised confidence

outperforms the unsupervised confidence without the need

to manually set a radius. Among these three definitions,

snbr achieves better performance than savg and scenter. As

snbr is defined on neighborhood, the learning of GCN may

be easier compared to savg and scenter which are defined

with respect to all samples in the same cluster. In real

practice, similar to saliency map fusion in saliency detec-

tion [10, 13], we can ensemble the outputs from different

confidences to achieve better performance.

Transformed embeddings. Comparison between snbr
and sFnbr indicates that using the transformed features to re-

build the affinity graph leads to performance gain in both

datasets. This idea shares common concepts to Dynamic

graph [34] where they rebuild the KNN graph after each

graph convolutional layer. However, on a massive graph

with millions of vertices, constructing KNN graph per layer

will incur prohibitive computational budget. The experi-

ments indicate that only using the top embedding to rebuild

the graph can product reasonably well results.

4.3.2 Connectivity Estimator
The Influence of ρ. We vary ρ from 0 to 1 with a step

0.1. As shown in Figure 5, focusing only on 10% of vertices

with high confidence can lead to considerable performance

gain while adding very little computational cost. As ρ in-

creases, more vertices benefit from the prediction of GCN-E

Figure 5: Influence of ρ on DeepFashion. The leftmost point

(ρ = 0) indicates the result without GCN-E, while the rightmost

point (ρ = 1) employs GCN-E to all vertices.

and thus FP increases. There is a slight drop when applying

GCN-E to all vertices, since connections between unconfi-

dent vertices are often very complex, and it may be hard to

find common patterns for learning.

The Influence of M . In Table below, M = −1 indicates

applying GCN-E without using the candidate set. It in-

cludes unconfident neighbors, thus increasing the difficulty

of learning and leading to performance drop.

M -1 1 2 3

FP 29.85 38.47 1.19 0.31

FB 56.12 60.06 56.43 52.46

When M = 1, each vertex connects to its most connective

neighbor in the candidate set. When M > 1, unconfident

vertices will possibly connect to two different clusters. Al-

though it increases the recall of obtained clusters, it may

severely impair the precision.

5. Conclusion

This paper has proposed a novel supervised face clus-

tering framework, eliminating the requirement of heuristic

steps and numerous subgraphs. The proposed method re-

markably improves accuracy and efficiency on large-scale

face clustering benchmarks. Besides, the experiments indi-

cate the proposed approach generalizes well to a testing set

10 times larger than the training set. Experiments on fash-

ion datasets demonstrate its potential application to datasets

beyond human faces. In the future, an end-to-end learnable

clustering framework is desired to fully release the power

of supervised clustering.

Acknowledgement This work is partially supported by

the SenseTime Collaborative Grant on Large-scale Multi-

modality Analysis (CUHK Agreement No. TS1610626

& No. TS1712093), the Early Career Scheme (ECS) of

Hong Kong (No. 24204215), the General Research Fund

(GRF) of Hong Kong (No. 14236516, No. 14203518

& No. 14241716), and Singapore MOE AcRF Tier 1

(M4012082.020).

13376

References

[1] Clustering millions of faces by identity. TPAMI, 40(2):289–

303, 2018. 2, 6

[2] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa

Verdejo. A comparison of extrinsic clustering evaluation

metrics based on formal constraints. Information retrieval,

12(4):461–486, 2009. 5

[3] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel,

and Jörg Sander. Optics: ordering points to identify the clus-

tering structure. In ACM Sigmod record, volume 28, pages

49–60. ACM, 1999. 2, 7

[4] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning

with graph convolutional networks via importance sampling.

arXiv preprint arXiv:1801.10247, 2018. 3, 4

[5] Yizong Cheng. Mean shift, mode seeking, and clustering.

IEEE transactions on pattern analysis and machine intelli-

gence, 17(8):790–799, 1995. 6

[6] Dorin Comaniciu and Peter Meer. Mean shift analysis and

applications. In Proceedings of the Seventh IEEE Inter-

national Conference on Computer Vision, volume 2, pages

1197–1203. IEEE, 1999. 6

[7] Jiankang Deng, Jia Guo, and Stefanos Zafeiriou. Arcface:

Additive angular margin loss for deep face recognition. arXiv

preprint arXiv:1801.07698, 2018. 1, 5

[8] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-

ming Huang, and Qi Tian. Centernet: Object detection with

keypoint triplets. arXiv preprint arXiv:1904.08189, 2019. 3

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,

et al. A density-based algorithm for discovering clusters in

large spatial databases with noise. In KDD, 1996. 1, 2, 6, 7

[10] Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal.

Context-aware saliency detection. IEEE transactions on pat-

tern analysis and machine intelligence, 34(10):1915–1926,

2011. 8

[11] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and

Jianfeng Gao. Ms-celeb-1m: A dataset and benchmark for

large-scale face recognition. In ECCV. Springer, 2016. 1, 5

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive

representation learning on large graphs. In NeurIPS, 2017.

2, 4

[13] Junwei Han, Hao Chen, Nian Liu, Chenggang Yan, and Xue-

long Li. Cnns-based rgb-d saliency detection via cross-view

transfer and multiview fusion. IEEE transactions on cyber-

netics, 48(11):3171–3183, 2017. 8

[14] Yue He, Kaidi Cao, Cheng Li, and Chen Change Loy. Merge

or not? learning to group faces via imitation learning. In

Thirty-Second AAAI Conference on Artificial Intelligence,

2018. 1

[15] Jeffrey Ho, Ming-Hsuan Yang, Jongwoo Lim, Kuang-Chih

Lee, and David Kriegman. Clustering appearances of objects

under varying illumination conditions. In CVPR, 2003. 6

[16] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-

scale similarity search with gpus. arXiv preprint

arXiv:1702.08734, 2017. 7

[17] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel

Miller, and Evan Brossard. The megaface benchmark: 1

million faces for recognition at scale. In CVPR, 2016. 1,

5

[18] Thomas N. Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In ICLR, 2017.

2, 4

[19] Brendan F Klare, Ben Klein, Emma Taborsky, Austin Blan-

ton, Jordan Cheney, Kristen Allen, Patrick Grother, Alan

Mah, and Anil K Jain. Pushing the frontiers of unconstrained

face detection and recognition: Iarpa janus benchmark a. In

CVPR, 2015. 1

[20] Wei-An Lin, Jun-Cheng Chen, Carlos D Castillo, and Rama

Chellappa. Deep density clustering of unconstrained faces.

In CVPR, 2018. 2

[21] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xi-

aoou Tang. Deepfashion: Powering robust clothes recog-

nition and retrieval with rich annotations. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2016. 5

[22] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-

actions on information theory, 28(2):129–137, 1982. 1, 6

[23] Daniel Müllner et al. fastcluster: Fast hierarchical, agglom-

erative clustering routines for r and python. Journal of Sta-

tistical Software, 53(9):1–18, 2013. 6

[24] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral

clustering: Analysis and an algorithm. In Advances in neural

information processing systems, pages 849–856, 2002. 6

[25] Hong-Wei Ng and Stefan Winkler. A data-driven approach

to cleaning large face datasets. In ICIP. IEEE, 2014. 5

[26] Alex Rodriguez and Alessandro Laio. Clustering by fast

search and find of density peaks. Science, 344(6191):1492–

1496, 2014. 7

[27] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, 2015. 1

[28] David Sculley. Web-scale k-means clustering. In Proceed-

ings of the 19th international conference on World wide web,

pages 1177–1178. ACM, 2010. 6

[29] Yichun Shi, Charles Otto, and Anil K Jain. Face cluster-

ing: representation and pairwise constraints. IEEE Trans-

actions on Information Forensics and Security, 13(7):1626–

1640, 2018. 5

[30] Robin Sibson. Slink: an optimally efficient algorithm for the

single-link cluster method. The computer journal, 16(1):30–

34, 1973. 6

[31] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang.

Deep learning face representation by joint identification-

verification. In NeurIPS, 2014. 1

[32] Rianne van den Berg, Thomas N Kipf, and Max Welling.

Graph convolutional matrix completion. stat, 1050:7, 2017.

2

[33] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Zhifeng Li,

Dihong Gong, Jingchao Zhou, and Wei Liu. Cosface: Large

margin cosine loss for deep face recognition. In CVPR, 2018.

1

[34] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics (TOG), 38(5):146, 2019. 8

13377

[35] Zhongdao Wang, Liang Zheng, Yali Li, and Shengjin Wang.

Linkage based face clustering via graph convolution net-

work. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1117–1125, 2019. 1,

2, 4, 5, 6

[36] Sijie Yan, Zhizhong Li, Yuanjun Xiong, Huahan Yan, and

Dahua Lin. Convolutional sequence generation for skeleton-

based action synthesis. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4394–4402,

2019. 2

[37] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In AAAI, 2018. 2

[38] Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan,

Chen Change Loy, and Dahua Lin. Learning to cluster faces

on an affinity graph. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2298–

2306, 2019. 1, 2, 5, 6, 7

[39] Xiaohang Zhan, Ziwei Liu, Junjie Yan, Dahua Lin, and

Chen Change Loy. Consensus-driven propagation in mas-

sive unlabeled data for face recognition. In ECCV, 2018. 1,

2, 6, 7

[40] Xingcheng Zhang, Lei Yang, Junjie Yan, and Dahua Lin.

Accelerated training for massive classification via dynamic

class selection. In Thirty-Second AAAI Conference on Artifi-

cial Intelligence, 2018. 1

[41] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-

jects as points. arXiv preprint arXiv:1904.07850, 2019. 3

13378

