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Abstract

Synthetic images rendered by graphics engines are a
promising source for training deep networks. However, it is
challenging to ensure that they can help train a network to
perform well on real images, because a graphics-based gen-
eration pipeline requires numerous design decisions such as
the selection of 3D shapes and the placement of the cam-
era. In this work, we propose a new method that optimizes
the generation of 3D training data based on what we call
“hybrid gradient”. We parametrize the design decisions as
a real vector, and combine the approximate gradient and
the analytical gradient to obtain the hybrid gradient of the
network performance with respect to this vector. We evalu-
ate our approach on the task of estimating surface normal,
depth or intrinsic decomposition from a single image. Ex-
periments on standard benchmarks show that our approach
can outperform the prior state of the art on optimizing the
generation of 3D training data, particularly in terms of
computational efficiency.

1. Introduction

Synthetic images rendered by graphics engines have
emerged as a promising source of training data for deep net-
works, especially for vision and robotics tasks that involve
perceiving 3D structures from RGB pixels [7, 66, 59, 49, 39,

, 8,29,55,47,46, 67, 33]. A major appeal of generating
training images from computer graphics is that they have a
virtually unlimited supply and come with high-quality 3D
ground truth for free.

Despite its great promise, however, using synthetic train-
ing images from graphics poses its own challenges. One of
them is ensuring that the synthetic training images are use-
ful for real-world tasks, in the sense that they help train a
network to perform well on real images. Ensuring this is
challenging because a graphics-based generation pipeline
requires numerous design decisions, including the selection
of 3D shapes, the composition of scene layout, the applica-
tion of texture, the configuration of lighting, and the place-
ment of the camera. These design decisions can profoundly

Jia Deng?
2Princeton University

jiadeng@cs.princeton.edu

impact the usefulness of the generated training data, but
have largely been made manually by researchers in prior
work, potentially leading to suboptimal results.

In this paper, we address the problem of automatically
optimizing a generation pipeline of synthetic 3D training
data, with the explicit objective of improving the general-
ization performance of a trained deep network on real im-
ages.

One idea is black-box optimization: we try a particular
configuration of the pipeline, use the pipeline to generate
training images, train a deep network on these images, and
evaluate the network on a validation set of real images. We
can treat the performance of the trained network as a black-
box function of the configuration of the generation pipeline,
and apply black-box optimization techniques. Recent works
[65, 50] have explored this exact direction. Yang and Deng
[65] use genetic algorithms to optimize the 3D shapes used
in the generation pipeline. In particular, they start with
a collection of simple primitive shapes such as cubes and
spheres, and evolve them through mutation and combina-
tion into complex shapes, whose fitness is determined by
the generalization performance of a trained network. They
show that the 3D shapes evolved from scratch can provide
more useful training data than manually created 3D CAD
models. Meanwhile, Ruiz et al. [50] use black box rein-
forcement learning algorithms to optimize the parameters
of a simulator, and shows that their approaches converge to
the optimal solution in controlled experiments and can in-
deed discover good sets of parameters.

The advantage of black-box optimization is that it as-
sumes nothing about the function being optimized as long
as it can be evaluated. As a result, it can be applied to any
existing function, including advanced photorealistic render-
ers. On the other hand, black-box optimization is compu-
tationally expensive—knowing nothing else about the func-
tion, it needs many trials to find a reasonable update to the
current solution. In contrast, gradient-based optimization
can be much more efficient by assuming the availability of
the analytical gradient, which can be efficiently computed
and directly correspond to good updates to the current so-
lution, but the downside is that the analytical gradient is
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Figure 1. Our hybrid gradient method. We parametrize the design decisions as a real vector S and optimize the function of performance
L with respect to 8. From  to the generated training images and ground truth, we compute the approximate gradient by averaging finite
difference approximations. From training samples X to L, we compute the analytical gradient through backpropagation with unrolled

training steps.

often unavailable, especially for many advanced photoreal-
istic renderers.

In this work, we propose a new method that optimizes
the generation of 3D training data based on what we call
“hybrid gradient”. The basic idea is to make use of the ana-
lytical gradient where they are available, and combine them
with black-box optimization for the rest of the function. We
hypothesize that hybrid gradient will lead to more efficient
optimization than black-box methods because it makes use
of the partially available analytical gradient.

Concretely, if we parametrize the design decisions as a
real vector (3, the function mapping 3 to the network perfor-
mance L can decompose into two parts: (1) from the design
parameters (3 to the generated training images X, and (2)
from the training images X to the network performance L.
The first part often does not have analytical gradient, due
to the use of advanced photorealistic renderers. We instead
compute the approximate gradient by averaging finite dif-
ference approximations along random directions [36]. For
the second part, we compute the analytical gradient through
backpropagation—with SGD training unrolled, the perfor-
mance of the network is a differentiable function of the
training images. Then we combine the approximate gradi-
ent and the analytical gradient to obtain the hybrid gradient
of the network performance L with respect to the parame-
ters (3, as illustrated in Fig. 1.

A key ingredient of our approach is representing design
decisions as real vectors of fixed dimensions, including the
selection and composition of shapes. Yang and Deng [65]
represent 3D shapes as a finite set of graphs, one for each
shape. This representation is suitable for a genetic algo-
rithm but is incompatible with our method. Instead, we pro-
pose to represent 3D shapes as random samples generated
by a Probabilistic Context-Free Grammar (PCFG) [21]. To
sample a 3D shape, we start with an initial shape, and re-
peatedly sample a production rule in the grammar to mod-
ify it. The (conditional) probabilities of applying the pro-
duction rules are parametrized as a real vector of a fixed
dimension.

Our approach is novel in multiple aspects. First, to the
best of our knowledge, we are the first to propose the idea
of hybrid gradient, i.e. combining approximate gradient and
analytical gradient, especially in the context of optimizing
the generation of 3D training data. Second, we propose a
novel integration of PCFG-based shape generation and our
hybrid gradient approach.

We evaluate our approach on the task of estimating sur-
face normal, depth and intrinsic components from a single
image. Experiments on standard benchmarks and controlled
settings show that our approach can outperform the prior
state of the art on optimizing the generation of 3D training
data, particularly in terms of computational efficiency.

2. Related Work

Generating 3D training data Synthetic images generated
by computer graphics have been extensively used for train-
ing deep networks for numerous tasks, including single im-
age 3D reconstruction [54, 22, 39, 23, 65, 9], optical flow
estimation [38, 7, 19], human pose estimation [59, 1 1], ac-
tion recognition [48], visual question answering [25], and
many others [45, 37, 63, 58, 46, 47, 62]. The success of
these works has demonstrated the effectiveness of synthetic
images.

To ensure the relevance of the generated training data to
real-world tasks, a large amount of manual effort has been
necessary, particularly in acquiring 3D assets such as shapes
and scenes [9, 23, 13, 64, 22, 39, 55]. To reduce manual
labor, some heuristics have been proposed to generate 3D
configurations automatically. For example, Zhang et al. [67]
design an approach to use the entropy of object masks and
color distribution of the rendered images to select sampled
camera poses. McCormac et al. [39] simulate gravity for
physically plausible object configurations inside a room.

Apart from simple heuristics, prior work has also per-
formed automatic optimization of 3D configurations to-
wards an explicit objective. For example, Yeh et al.
[66] synthesize layouts with the target of satisfying con-
straints such as non-overlapping and occupation. Jiang
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et al. [24] learn a probabilistic grammar model for indoor
scene generation, with parameters learned using maximum
likelihood estimation on the existing 3D configurations in
SUNCG [55]. Similarly, Veeravasarapu et al. [60] tune the
parameters for stochastic scene generation using generative
adversarial networks, targeting at making synthetic images
indistinguishable from real images. Qi et al. [44] synthesize
3D room layouts based on human-centric relations among
furniture, to achieve visual realism, functionality and natu-
ralness of the scenes. However, these optimization objec-
tives are different from ours, which is the generalization
performance of a trained network on real images.

In terms of generating 3D training data, the closest prior
works to ours are those of [65, 26, 50]. Specifically, Yang
and Deng [65] use a genetic algorithm to optimize the 3D
shapes used for rendering synthetic training images. Their
optimization objective is the same as ours except that their
optimization method is different: they leverage evolution-
based approach as apposed to using gradient information.
Similarly, Meta-Sim [26] also tries to optimize 3D param-
eters with REINFORCE towards better task generalization
performance, and Ruiz et al. [50] learn a policy for simu-
lator parameters also using REINFORCE. However, they
do not backpropagate analytical gradient from the meta-
objective, so their algorithms can be considered as black-
box estimation by multiple trials, with an improved ef-
ficient sampling strategy (REINFORCE). In our experi-
ments, we compared to an algorithm that has been shown
competitive to REINFORCE in training deep policy net-
works [36, 51, 56].

Unrolling and backpropagating through network train-
ing One component of our approach is unrolling and back-
propagating through the training iterations of a deep net-
work. This is a technique that has often been used by ex-
isting work in other contexts, including hyperparameter op-
timization [35], meta-learning [!, 20, 40, 31, 16] and oth-
ers [68, 12]. Our work is different in that we apply this
technique in a novel context: it is used to optimize the gen-
eration of 3D training data, and the gradient with respect to
the input images is integrated with approximate gradient to
form hybrid gradient.

Hyperparameter optimization Our method is connected
to hyperparameter optimization in the sense that we can
treat the design decisions of the 3D generation pipeline as
hyperparameters of the training procedure.

Hyperparameter optimization of deep networks is typ-
ically approached as black-box optimization [5, 4, 30, 6].
While Klatzer and Pock [28] propose a bi-level gradient-
based approach for continuous hyperparameter optimiza-
tion of Support Vector Machines, but it has not been applied
to deep networks and 3D generation. Since black-box op-
timization does not make assumption of the function being

optimized, it requires repeated evaluation of the function,
which is expensive in this case because it contains the pro-
cess of training and evaluating a deep network. In contrast,
we combine the analytical gradient from backpropagation
and the approximate gradient from generalized finite differ-
ence for more efficient optimization.

Domain Adaptation Researchers have also applied domain
adaptation techniques to transfer the knowledge learned
from synthetic data to real data. Like domain adaptation,
our method involves data from two domains: synthetic and
real. However, our setting is different: in domain adapta-
tion, the distribution of training data is fixed; in our setting,
we are concerned about generating and changing the distri-
bution of training data in the source domain.

Differentiable Rendering Researchers have also explored
differentiable rendering engines to obtain the gradient with
respect to the input 3D content such as mesh vertices, light-
ing intensity efc. [34, 27, 61, 32, 10]. Generally, they ob-
tain the gradient through backpropagation [27, 34] or sam-
pling [61, 32, 10]. The differentiable renderers often as-
sume simple surface reflectance and illumination model,
and they are typically developed for a specific 3D input for-
mat (such as triangle meshes and directional lighting) or a
specific rendering algorithm (such as path tracing). In fact,
we are not aware of any photorealistic differentiable ren-
derer that is differentiable over a shape parametrization that
allows not only continuous deformation but also topology
change. In our method, we assume nothing about the ren-
dering engine and obtain the gradient with respect to the de-
cision vector by approximation, bypassing the surface and
illumination model or any rendering algorithms. So our
method is flexible and not limited by choices of graphics
engines of any kind.

3. Problem Setup

Suppose we have a probabilistic generative pipeline. We
use a deterministic function, f(/3,r) to represent the sam-
pling operation. This function f takes the real vector 5 and
the random seed 7 as input. An image and its 3D ground
truth are computed by evaluating the function f(3,7). By
choosing n different random seeds r, we obtain a dataset of
size n for training:

X:(f(ﬁ,r(l)),f(ﬂ,r@)), ,f(ﬂ,’f’(n))) (D

Then, a deep neural network with initialized weights
wy is trained on the training data X, with the function
train(wg, X) representing the optimization process and
generating the weights of the trained network.

The network is then evaluated on real data X with a val-
idation 10ss ley,) to obtain a generalization performance L:

L = loya (train(wg, X), X) 2)
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Combining the above two functions, L is a function of 3,
and the task is to optimize this value L with respect to the
parameters (3.

As we mentioned in the previous section, black-box al-
gorithms typically need repetitive evaluations of this func-
tion, which is expensive.

4. Approach

4.1. Generative Modeling of Synthetic Training
Data

We decompose the function f(8,r) into two parts: 3D
composition and rendering.

3D composition Context-free grammars have been used in
scene generation [24, 44] and in the parsing of the Con-
structive Solid Geometry (CSG) shapes [52] because they
can represent shapes and scenes in a flexible and compos-
able manner. Here, we design a probabilistic context-free
grammar (PCFG) [21] to control the random generation of
unlimited shapes [18].

In a PCFG, a tree is randomly sampled given a set of
probabilities. Starting from a root node, the nodes are ex-
panded by randomly sampling probabilistic rules repeatedly
until all the leaf nodes cannot expand. Since multiple rules
may apply, the parameters in a PCFG define the probability
distribution of applying different rules.

In our PCFG, a shape is constructed by composing two
other shapes through union and difference; this construction
is recursively applied until all leaf nodes are a predefined set
of concrete primitive shapes (terminals). The parameters
include the parameters of primitive shapes as well as the
probability of either expanding the node or replacing it with
a terminal.

Given our PCFG model with the probability parameters
Bs, a 3D shape S can be composed by computing a deter-
ministic function fs given S and a random string g as the
input:

S = fs(Bs,rs) 3)

Rendering training images we use a graphics renderer R
to render the composed shape S. The rendering configura-
tions P (e.g. camera poses), are also sampled from a distri-
bution controlled by a set of parameters Sr (with a random
string rg):

P = fr(Br:Tr) )

Now that we have Eq. 3 and 4, The full function for train-
ing data generation can be represented as follows:

f(B,r) = R(S, P) = R(fs(Bs,7s), fr(Br,TR))  (5)

where 5 = (Br,Bs) and r = (rg,7s).
By sampling different random strings r, we obtain a set
of training images and their 3D ground truth X.

4.2. Hybrid Gradient

After training deep network on synthetic training data X,
the network is evaluated on a set of validation images X to
obtain the generalization loss L.

Recall that to compute the hybrid gradient % to opti-
mize [, we multiply two types of gradient: the gradient of
network training % and the gradient of image generation
%—)ﬂ(, as is shown in Fig. 2.

Analytical gradient from backpropagation We assume
the network is trained on a set of previously generated train-
ing images XM X®@ ... X Without loss of gen-
erality, we assume mini-batch stochastic gradient descent
(SGD) with a batch size of 1 is used for weight update. Let
function g denote the SGD step and let li;,i, denote the
training loss:

altrain(w(k)7 X(k>)
uw® ©)
= g(w(k>7 X(k>§ ltrain, 1)

w* D — ) _

Note that the SGD step g is differentiable with respect to
the network weights w(*) as well as the training batch X (*),
if our training 1oss li,in 1S twice (sub-)differentiable. This
requirement is satisfied in most practical cases. To sim-
plify the equation, we assume the training loss li;,;, and
the learning rate 7 do not change during one update step of
B, so the variables can be safely discarded in the equation.

Therefore, the gradient from the generalization loss L to
each sample X (®) can be computed through backpropaga-
tion. Given Eq. 6:

oL _ oL . 3w(k+1) _ oL . /(w(k) X(k))
IX®E — gwk+D  ax® . gpt+n 92 ’
oL oL owt) 9L

] x ()
)

—_— . —_— . !
Jw®  dwlD  gu® Jwk+D) gr(w

with the initial value % computed from the validation
1088 loyal:
oL N
S = e (@, X) ®
Approximate gradient from finite difference For the for-
mulation in Eq. 5, the graphics renderer can be a gen-
eral black box and non-differentiable. We can approxi-
mate the gradient of each rendered image with ground truth
XM X ... with respect to the generation parameters (3
using generalized finite difference. We adopt the form of
[36] because this gradient approximation algorithm in Ran-
dom Search has been shown effective for training deep pol-
icy networks [36, 51, 56]. Concretely, we sample a set of
noise from an uncorrelated multivariate Gaussian distribu-
tion:

61u627"'76mNN(0701) (9)
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Figure 2. The details of using “hybrid gradient” to incrementally update 3 and train the network. The analytical gradient is computed by
backpropagating through unrolled training steps (colored in orange). The numerical gradient is computed using finite difference approxi-
mation by sampling in a neighborhood of 3: (colored in cyan). Then j; is updated using hybrid gradient, and the trained network weights

are retained for the next timestamp ¢ + 1.

Next, we approximate the Jacobian for each sample (& de-
notes cross product):

& 7Zf'D +5jari)7fD(675j,Ti) §j
2[16;l 16,]]
(10)

Incremental training Following Yang and Deng [65], we
incrementally train the network w along with the update of
(3, instead of initializing w(!) from scratch each time. At
timestamp ¢, we update [3; with the hybrid gradient; for net-
work weights, we keep the trained network in timestamp ¢
for initialization in the next timestamp ¢ + 1:

n

NP Bprc

ox”
0B

OL;

Besr = Bi— X

76[3

wmH)

(11)
1
w§+)1 =

5. Experiments

Datasets We evaluate our algorithm on four different
datasets, and three standard prediction tasks for single-
image 3D. The input is an RGB image and the output is
pixel-wise surface normal, depth, or albedo shading map.

Specifically, we experiment on the task of surface nor-
mal estimation on two real datasets: MIT-Berkeley Intrinsic
Images Dataset (MBII) [3], which focuses on images of sin-
gle objects and NYU Depth [53], which focuses on indoor
scenes. For the other two datasets, we illustrate that our
method can easily extend to other 3D setups. We experi-
ment on the task of depth estimation on the renderings of the
scanned human faces in the Basel Face Model dataset [43],
and on the task of intrinsic image decomposition and evalu-
ate on the renderings of ShapeNet [9] shapes.

Baselines For comparison, we implemented a black-box
optimization method. Random search [2] has been exten-
sively explored [17, 41, 36] as a derivative-free optimiza-
tion method, and Mania et al. [36] have shown that their
simple version, Basic Random Search, has comparable per-
formance compared to typical reinforcement learning algo-
rithms. Therefore, we re-implemented their Basic Random
Search such that this baseline has the same setting as in our
method, while the only difference is that the gradient from
the validation loss is obtained through sampling instead of
hybrid gradient. We also compare against baselines with a
random [ baseline in the following experiments. In these
baselines, the networks are trained on a dataset generated
using multiple random but fixed /3, and the weight snapshots
with the best validation performance are used to evaluate on
the test set.

These two baselines, along with our hybrid gradient
method, all use information from the validation set but in a
different way: hybrid gradient backpropagates the gradient
of the validation performance to update [; random search
samples [ to get the gradient from the validation perfor-
mance; the random [ baseline fixes the dataset and uses the
validation performance to select the best network snapshot.

In all of our experiments, the network weights are up-
dated using only synthetic images in the training iterations,
and the generalization loss is computed only on the vali-
dation split of the datasets mentioned above. The decision
vector 3 is updated using RMSprop [57] for hybrid gradi-
ent.

For MBII, we use pure synthetic shapes [65] to render
training images. We first compare our method with abla-
tion baselines, then show that our algorithm is better than
the previous state of the art on MBIIL. For NYU Depth, we
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base our generative model on SUNCG [55] and augment the
original 3D configurations in Zhang et al. [67]. For Basel
Face Model, we sample synthetic faces from a morphable
model and evaluate on the renderings of scanned faces. For
the intrinsic image decomposition task, we sample textures
from a simple procedural pipeline and attach the synthetic
textures to SUNCG shapes [55], and evaluate on renderings
of ShapeNet shapes [9].

5.1. Normal Estimation on MIT-Berkeley Intrinsic
Images

Following the work of Yang and Deng [65], we recover
the surface normals of an object from a single image.

Synthetic shape generation In Yang and Deng [65], a pop-
ulation of primitive shapes such as cylinders, spheres and
cubes are evolved and rendered to train deep networks. The
evolution operators include transformations of individual
shapes and the boolean operations of shapes in Construc-
tive Solid Geometry (CSG) [18]. In our algorithm, we also
use the CSG grammar for our PCFG:

S => E

E => C(E, T(E)) | P

C => union | subtract

P => sphere | cube | truncated_cone | tetrahedron

T => attach * rand_transl % rand_rotate x rand_scale

In this PCFG, the final shape S is generated by recur-
sively composing (C) other shapes E with transformations
T, until primitives P are sampled at all E nodes. The pa-
rameter vector 3 consists of three parts: (1) The probability
of the different rules; (2) The means and variations of log-
normal distributions controlling shape primitives (P), such
as the radius of the sphere; (3) The means and variations of
log-normal distributions controlling transformation param-
eters (T), such as scale values. Examples of sampled shapes
are shown in Fig. 3. For the generalization loss L, we com-
pute the mean angle error of predictions on the training set
of the MIT-Berkeley dataset.

Training setup For network training and evaluation, we fol-
low Yang and Deng [65] and train the Stacked Hourglass
Network [42] on the images, and use the standard split of
the MBII dataset for the optimization of 5 and testing.

We report the performance of surface normal directions
with the metrics commonly used in previous works, includ-
ing mean angle error (MAE), median angle error, mean
squared error (MSE), and the proportion of pixels that nor-
mals fall in an error range (< N°). See supplementary ma-
terial for detailed definitions.

4d 04de VY9 ) ¢

Figure 3. Sampled shapes from our probabilistic context-free
grammar, with parameters optimized using hybrid gradient.
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Figure 4. Mean angle error on the test images vs. computation
time, compared to two black-box optimization baselines.

Ablation study We first sample 10 random values of 5 and
fix those values in advance. Then, for each 3, we sample
3D shapes and render images to train a network, with the
same training and evaluation configurations as in our hybrid
gradient, except that we do not update 3. We then report the
best, median and worst performance of those 10 networks,
and label the corresponding 3 as Opest, Bmedian aNd Byorst -
In hybrid gradient, we then initialize 3y from these three
values, run our algorithm, and report the performance on
test images also in Table 1.

From the table we can observe that training with a fixed 3
can hardly match the performance of our method, even with
multiple trials. Instead, our hybrid gradient approach can
optimize (3 to a reasonable performance regardless of dif-
ferent initialization (Bpest /median/worst)- This simple diag-
nostic experiment demonstrates that our algorithm is work-
ing correctly: the optimization of 3 is necessary in order to
generate useful synthetic images for training networks.

Comparison with the state of the art In addition to Basic
Random Search as mentioned earlier, in this experiment we
also compare with Yang and Deng [65], a state-of-the-art
method on MIT-Berkeley Intrinsic Images.

In Shape Evolution [65], a population of shapes are
evolved, and fitness scores for individual shapes are com-
puted using a network trained on an incremental dataset and
evaluated on the validation set. We compose our shapes
in mesh representations, slightly different from the im-
plicit functions in Yang and Deng [65]. Therefore, we re-
implemented their algorithm with mesh representations for
a fair comparison. We follow Yang and Deng [65] for the
initialization of /3, and train the networks and update /3 for
the same number of steps. We then report the test perfor-
mance of the network that has the best validation perfor-
mance. The results are shown in Table 2.

We also run the experiments on the same set of CPUs and
GPUs, sum the computation time, and plot the mean angle
error (on the test set) with respect to the CPU time and GPU
time Fig. 4). We see that our algorithm is more efficient than
the above baselines. This is natural, because when comput-
ing OL/03" in black-box algorithms, for each sample of
I} ®) 46 7, one needs to train one network to evaluate the per-
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Table 1. Ablation Study: the diagnostic experiment to com-

Summary Stats 7 Errors § pare with random but fixed 3. We sample 10 values of 3 in
= 11‘?50 = 22'?0 $30° MAE Median MSE advance, and then train the networks with the same setting
Fixed 8 gi/;b‘:j‘d" ;g% gggé ggg’gj gig: ;;‘;’: 8:;22? as in h}/brid gradient. The b_est, median and worst perfpr—
B = Buorst 17.9%  46.7%  64.6% 25.6° 23.8° 0.2553  mance is reported on the test images, and the corresponding
B0 — Boon 27%  585% T3.9% 22.5° 19.3° 02065 values of 3 are used to initialize Bo for hybrid gradient for
Hybrid gradient 8y = Bmedian  24.0% 60.1% 75.7% 21.8° 18.8° 0.1938  comparison. The results show that our approach is consis-
Bo=Pworst  260%  58.6% 73.9% 22.0° 19.1° 0.1998  tently better than the baselines with fixed /3.
Summary Stats 1 Errors |
<11.25° <225° <30° MAE Median MSE Table 2. Our approach compared to previous work, on the
SIRFS [3] 20.4%  53.3%  70.9%  26.2° — 0.2964 test set of MIT-Berkeley images [3]. The results show that
Ezg:;‘ggﬁ % iggﬁf‘;ﬁdﬁ) g;gf{f E;;;ZO ;‘;ng gg‘;o 188 8;32‘2‘ our approach is better than the state of the art as reported in
Basic Random Search [36] 21.9% 59.6% 74.0% 22.8° 19.2° 0.2106 [651.
Hybrid gradient 24.5% 59.3%  74.3% 22.0° 18.9° 0.1984
formance L, while in hybrid gradient, only a forward train- Summary Stats 1 Errors |
ing pass and a backpropagation pass for a single network <11.25° <225° <30° Mean Median
are required to compute OL/9JX . Shapes sampled from our Original [67] 24.1%  49.7%  61.5% 28.8°  22.7°
optimized PCFG are shown in Fig. 3. Random 3 + [67] 23.0% 48.8%  61.3% 29.2°  23.2°
Hybrid gradient + [67]  27.3% 52.5% 63.8% 281° 21.1°

5.2. Normal Estimation on NYU Depth

Scene perturbation We design our scene generation gram-
mar as an augmentation of collected SUNCG scenes [54]
with the cameras from Zhang et al. [67]:

S => E,P

E => T_shapes » R_shapes » EO

P => T_camera * R_camera = PO
T_shapes => translate(x, y, 2z)
R_shapes => rotate(yaw, pitch, roll)

For each 3D scene S, we perturb the positions and poses
of the original cameras (P0) and shapes (E0) using random
translations and rotations. The position perturbations follow
a mixture of uncorrelated Gaussians, and the perturbations
for pose angles (yaw, pitch & roll) follow a mixture of von
Mises, i.e. wrapped Gaussians. The vector 3 consists of the
parameters of the above distributions.

Training setup Our networks are trained on synthetic im-
ages only, and evaluated on NYU Depth V2 [53] with the
same setup as in Zhang et al. [67]. For real images in our
optimization pipeline, we sample a subset of images from
the standard validation images in NYU Depth V2. We ini-
tialize our network from the synthetically trained model in
Zhang et al. [67] and initialize 3y using a small value. To
compare with random 3, we construct a dataset of 40k im-
ages with a small random ( for each image. We then load
the same pre-trained network and train for the same number
of iterations as in hybrid gradient. We then evaluate the net-
works on the test set of NYU Depth V2 [53], following the
same protocol. The results are reported in Table 3. Note that
none of these networks has been trained on real images ex-
cept for validation, and the validation subset of real images
is only used to update the decision vector.

The numbers indicate that our parametrized generation
of SUNCG augmentation exceeds the original baseline per-

Table 3. The performance of the finetuned networks on the test set
of NYU Depth V2 [53], compared to the original network in [67].
The networks are trained only on the synthetic images. Without
optimizing the parameters (random (3), the augmentation hurts the
generalization performance. With proper search of S using hy-
brid gradient, we are able to achieve better performance than the
original model.

formance. Note that the network trained with random [
is worse than original performance. This means without
proper optimization of perturbation parameters, such ran-
dom augmentation may hurt generalization, demonstrating
that good choices of these parameters are crucial for gener-
alization to real images.

5.3. Depth Estimation on Basel Face Model

Synthetic face generation We exploit an off-the-shelf
3DMM morphable face and expression model [14, 70, 69]
to generating human 3D models, with face and pose pa-
rameters randomly sampled from mixtures of Gaussians or
von Mises. Since the parameters for 3DMM are PCA co-
efficients, we only include the first 10 principal dimensions
each for geometry, texture and expression parameters in the
decision vector 3, and uniformly sample for the remaining
dimensions to save disk usage.

Training setup We train a stacked hourglass network [42]
from scratch with a single-channel output after a ReLU
layer to predict the raw depth, and supervise using mean
squared error. The learning rate for the network is 0.1 and
the batch size is 8.

Evaluation We evaluate on the renderings of the scanned
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human faces [43]. We split the 10 identities into two dis-
joint sets for validation and test, then use the rendering pa-
rameters provided in the dataset to recreate the renderings
as well as depth images. For each scan, there are 3 lighting
directions and 9 pose angles, creating 135 validation images
and 135 test images. Example images are shown in Fig. 5.
For depth evaluation, we use the standard metrics including
the relative difference (absolute and squared) and root mean
squared error (linear, log and scale-invariant log). The defi-
nitions are listed in Eigen et al. [15] and also detailed in the
supplementary material.

Synthetic faces generated from the PCFG

Re-renderings of real scans

Figure 5. Training images generated using PCFG with 3DMM face
model, and example test images.

Relative Difference RMSE
abs sqr linear log scale inv.
Random f3 0.03718  9.701 x 107®  0.1395  0.1014  0.09717
Basic Random _3
Search [36] 0.02330  1.728 x 10 0.0581  0.0299  0.02700

Hybrid gradient 0.02256 1.649 x 10~ 0.0570 0.0293 0.02603

Table 4. The results on the scanned faces of the Basel Face Model.
Our method is able to search for the synthetic face parameters such
that the trained network can generalize better.

The results in 4 show that our algorithm is able to search
for better 3 so that the network trained on the synthetic faces
and generalize better on the scanned faces.

5.4. Intrinsic Image Decomposition on ShapeNet

Texture generation and rendering We design a painter’s
algorithm as PCFG for generating the textures. To gener-
ate one texture image, we paint Perlin-noise-perturbed poly-
gons sequentially onto a canvas, and then repeat the canvas
as the final texture image. The number of repetitions and the
number of polygons follow zero-truncated Poisson distribu-
tions, the vertex coordinates follow independent truncated
Gaussian mixtures, and the number of edges in a polygon
are also controlled by sampling probabilities. All the dis-
tribution parameters are concatenated to form the decision
vector 3. Example textures are shown in Fig. 6.

The texture is then mapped onto the SUNCG
shapes [55]. We choose SUNCG shapes because they are
well parametrized for texture mapping and we can easily
apply our synthetic textures. We then render the textured
shapes using random directional lights as training data. For

Figure 6. Example textures generated using our procedural
pipeline with parameters controlled by 3.

validation and testing, we randomly render ShapeNet [9]
shapes with their original textures, and randomly choose 50
as validation and 50 for test. The shapes used in validation
or test are mutually exclusive.

Training We use the Stacked Hourglass Network [42] with
a 4-channel output (3 for albedo, 1 for shading), and train
with a learning rate of 10~* and a batch size of 8. For su-
pervision, we sum the mean squared error for both albedo
and shading outputs as the loss.

Evaluation We also compare with our Basic Random
Search implementation and with the random [ baseline. We
evaluate the performance using mean absolute error (abs),
root mean squared error (rmse) and scale-invariant rmse for
albedo and shading. We also evaluate the reconstruction er-
ror of the rendered image, even though we do not have any
supervision for the reconstruction error of the image. The
results are shown in Table 5.

abs rmse rmse (scale inv.)

Albedo 0.157 0.198 0.175

Random Shading 0.118 0.132 0.095
Reconstruction 0.139  0.169 -

Basic Albedo 0.152  0.193 0.177

Random Shading 0.104 0.116 0.085
Search [30]  Reconstruction 0.134  0.166 -

Hybrid Albedo 0.147 0.189 0.168

. Shading 0.104 0.119 0.088

gradient

Reconstruction 0.118  0.150

Table 5. The results of intrinsic image decomposition on the
ShapeNet renderings.

6. Conclusion

In this paper, we have proposed hybrid gradient, a novel
approach to the problem of automatically optimizing a gen-
eration pipeline of synthetic 3D training data. We evalu-
ate our approach on the task of estimating surface normal,
depth and intrinsic decomposition from a single image. Our
experiments show that our algorithm can outperform the
prior state of the art on optimizing the generation of 3D
training data, particularly in terms of computational effi-
ciency.
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