
PFCNN: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames

Yuqi Yang∗1,3 Shilin Liu∗2,3 Hao Pan†3 Yang Liu3 Xin Tong3

1Tsinghua University 2University of Science and Technology of China 3Microsoft Research Asia
yangyq18@mails.tsinghua.edu.cn freelin@mail.ustc.edu.cn

{haopan,yangliu,xtong}@microsoft.com

Abstract

Surface meshes are widely used shape representations

and capture finer geometry data than point clouds or volu-

metric grids, but are challenging to apply CNNs directly due

to their non-Euclidean structure. We use parallel frames

on surface to define PFCNNs that enable effective feature

learning on surface meshes by mimicking standard convolu-

tions faithfully. In particular, the convolution of PFCNN not

only maps local surface patches onto flat tangent planes, but

also aligns the tangent planes such that they locally form

a flat Euclidean structure, thus enabling recovery of stan-

dard convolutions. The alignment is achieved by the tool of

locally flat connections borrowed from discrete differential

geometry, which can be efficiently encoded and computed

by parallel frame fields. In addition, the lack of canonical

axis on surface is handled by sampling with the frame di-

rections. Experiments show that for tasks including classi-

fication, segmentation and registration on deformable geo-

metric domains, as well as semantic scene segmentation on

rigid domains, PFCNNs achieve robust and superior per-

formances without using sophisticated input features than

state-of-the-art surface based CNNs.

1. Introduction

Applying CNNs to 3D geometric domains is critical for

deep learning beyond the 2D images. Unlike regular 2D

images, 3D geometric data can be represented in different

forms, posing challenges to standard CNNs. For example,

volumetric grids regularly sample R
3 on which CNNs can

be trivially deployed, but they are memory consuming and

inflexible for capturing fine geometric details. For repre-

sentation efficiency, 3D objects and scenes are frequently

encoded by their boundary surfaces discretized as trian-

gle meshes. However, the curved and irregularly sampled

meshes do not admit the standard CNNs designed for flat

image domains with regular pixel grids. While several sur-

face based CNNs have been proposed to tackle this prob-

lem, in this paper we use parallel frame fields that con-

∗Joint first author. Work done during internship at Microsoft.
†Corresponding author.

tain pointwise N -direction frames (Fig. 1) to define a novel

PFCNN framework whose convolution mimics standard im-

age convolutions more faithfully.

Similar to standard CNNs, the PFCNN convolution

works on a local surface patch each time and maps it onto

the flat tangent space where the convolution kernel is pa-

rameterized, as done by many previous surface based CNNs

[28, 3, 30, 32]. Different from the previous approaches,

however, we also align the tangent spaces of different sur-

face points such that they locally form a flat Euclidean struc-

ture, on which the surface-based feature maps and convolu-

tion kernels can be moved as in the standard image domain.

For images, such translation operations are formally cap-

tured by the translation equivariance property of convolu-

tion [4], which is a key factor contributing to the effective-

ness of CNNs by enabling shared trainable weights and thus

significantly reducing the amount of network parameters to

avoid overfitting and achieve generalization [23, 13]; our

surface based convolution is shown to reproduce the image-

domain translation equivariance locally.

We adopt the tool of locally flat connections from dis-

crete differential geometry [45] to align the tangent spaces.

The locally flat connection is encoded by the field of point-

wise tangential N -direction frames (Fig. 1) that is effi-

ciently computed to be parallel and aligned to salient geo-

metric features to better capture semantics. In addition, be-

cause there exists no canonical axis on a surface, we sample

the axes using the same N frame directions and organize the

resulting feature maps with an N -cover space of the domain

surface [9]; on each sheet of the cover space, the canoni-

cal axis is selected and the convolution is readily defined.

Furthermore, to handle the irregular mesh vertices, for each

patch we resample with a regular grid and apply standard

shaped convolution kernels on it.

The PFCNNs resemble standard CNNs so that efficient

network structures can be leveraged accordingly. Through

experiments of deformable shape classification, segmenta-

tion and matching as well as rigid scene segmentation, we

show that PFCNNs using only raw input signals achieve su-

perior performances than competing surface CNN frame-

works. In addition, we do extensive ablation studies to val-

idate the components of our framework.

113578

2. Related work

We briefly review 3D neural networks by classifying

them according to the forms of domain representation, and

focus on the most related works that use surface meshes.

3D neural networks for volumetric grids, point clouds

and multi-view representations. The earliest works for

3D deep learning directly extend CNNs to 3D volumet-

ric grids [47, 29], which are later improved for computa-

tional efficiency by using adaptive grids like octrees that use

high resolution only around the boundary surfaces [37, 46].

Point sets also conveniently encode 3D shapes, for which

the set-based PointNet [33] is proposed and later extended

by PointNet++ [35] to take advantage of the local surface

patch structure. Similarly, more works utilize the local

patch structures of 3D point clouds, by e.g. tangent plane

projection [42], localization with lattice structure [40], or

localized kernel functions [1, 43]. Multi-view representa-

tions encode 3D data with a set of 2D images [41, 34], on

which standard CNNs are applied to extract intermediate

features and aggregated for final output. The PFCNNs pre-

sented in this paper work on surface meshes, which have

been used pervasively for 3D representation due to their

high efficiency for capturing geometry to the fine details.

Patch-based surface CNNs. A series of works extend

standard CNNs to curved surface domains by applying con-

volution operations on localized geodesic patches; they dif-

fer mainly in the specific ways of convolution computa-

tion. Masci et al. [28] parameterize each geodesic patch

in polar coordinates, upon which the convolution opera-

tion is computed by rotating the kernel function for a set

of discrete angles and convolving it with input features; the

convolved features for different angles are further pooled

for output. With such an approach, it is hard to capture

anisotropic or directional signals. Later Boscaini et al. [3]

propose anisotropic CNNs that extend [28] by aligning the

convolution kernels to frames of principal curvature direc-

tions, thus removing angular pooling and ambiguity, and

show improved performances on various tasks. Xu et al.

[48] use a similar convolution on n-ring neighboring faces

with fixed cardinality for shape segmentation. MoNet [30]

extends the geodesic convolutions by modeling the convo-

lution kernel as a mixture of Gaussians whose bases and

coefficients are fully trainable rather than functions of fixed

parameterizations. TextureNet [16] imposes locally rectan-

gular grids define by 4-directional fields on the geodesic

patches, and extract the features for center or corner grid

points separately to handle the grid orientation ambiguity.

Multi-directional CNNs [32] make the further step of re-

solving the orientation alignment of geodesic patches by

using parallel transport to match the directional convolution

responses for different surface points, which enables effec-

tive propagation of directional signals. Different from these

TxM

TzM

TyM

(a) (b)

Figure 1. For patch-based surface CNNs, the key problem is how

to align the tangent spaces of different surface points. (a) the par-

allel transport is path-dependent and maps the vector in TxM
directly to the blue one in TzM but to the red dashed one by

going through TyM. (b) by building a flat connection encoded

by the parallel 4-direction frame field, our approach has path-

independent translation as in image domain.

manifold based works, SplineCNN [11] defines 3D spline

convolution kernels for extracting features on surface and is

inherently a volumetric approach focusing on handling the

irregular sampling of meshes.

Our PFCNN follows the geodesic convolution paradigm,

but differs from others in the convolution computation. In-

deed, our framework closely relates to the latest parallel

transport approach of [32], but we align the tangent spaces

with locally flat connections that not only approximate the

parallel transport but also induce a locally Euclidean struc-

ture suitable for defining convolutions as for images. In ad-

dition, the locally flat connections can be adapted to capture

salient geometric features like sharp creases, which further

improves performance. As a result, our PFCNNs show su-

perior performances than the previous patch-based surface

CNNs on diverse tasks (Sec. 6).

Surface CNNs using atlas maps. Another series of

works deal with a surface domain by mapping it to a 2D

atlas image, on which standard convolutions are applied.

Sinha et al. [39] use the geometry image to map a 3D sur-

face of sphere topology to the planar domain and feed the

map to CNNs for shape recognition. Maron et al. [27] note

the geometry images have gaps between charts of the atlas

map and propose to parameterize a surface of sphere topol-

ogy conformally to the flat image with a toric topology,

where standard convolutions with cross boundary cyclic

padding are applied. Such convolutions are shown to be

conformally translation equivariant but the conformal scal-

ing distortion is uneven for different surface regions. Li et

al. [25] handle the gaps of an atlas map by modulating the

convolution to jump across the gaps, while the mapping dis-

tortion is loosely constrained by subdividing the charts. In

comparison, our framework works with surfaces of general

topology and automatically preserves the original signals

with minimal distortion due to the local patch paradigm.

3. Overview

To represent the boundary of a 3D object, we consider

a surface mesh M = (V, F), with V = {vi} the vertices

with embedding vi ∈ R
3, and F = {fi = (vi0, vi1, vi2)}

the faces with corners indexing the vertices. Denote the unit

13579

normal vector at vertex vi as nvi ∈ R
3, and tangent plane

as Tvi
M on which we can project the local geodesic patch

and apply standard image-like convolutions. As reviewed

in Sec. 2, while most patch-based surface CNNs follow this

general approach, the key challenge is how to coordinate the

convolutions for tangent planes of different vertices (Fig. 1).

We resolve this challenge by building locally flat connec-

tions that align the tangent planes into locally flat Euclidean

domains, thus enabling effective weight sharing and trans-

lation equivariance that mimic behavior on 2D images.

In Sec. 4 we briefly review the standard Euclidean convo-

lutions with their translation equivariance property, the no-

tion of connections from differential geometry, locally flat

connections encoded by N -direction frame fields and N -

cover spaces for organizing convolution and feature maps.

In Sec. 5 we present the extended convolution on surfaces

using parallel frames that achieves local translation equiv-

ariance and handles irregular vertex sampling on meshes,

and the new layers that constitute a PFCNN model.

4. Background

4.1. Convolution on Euclidean domains

The convolution operation of a CNN exploits the trans-

lation equivariance of 2D images [22, 23, 4]. Let f, k :
Ω ⊂ R

2 → R be two functions defined on the image Ω,

and k is the convolution kernel usually with a local spatial

support. Define the convolution operator ⋆ as f ⋆ k(x) =
∫

y∈Ω
k(y − x)f(y)dy. A planar translation of the image-

based function by a vector v ∈ R
2 is τv(f(x)) = f(x− v).

Translation equivariance simply means that the planar trans-

lation commutes with convolution, i.e.

τv(f ⋆ k) = τv(f) ⋆ k. (1)

CNNs parameterize the convolution kernel with trainable

weights, which can be shared for different image regions

and therefore lead to less overfitting and more general-

ity. As will be discussed next, on curved surface domains

the notion of translation is only locally meaningful, which

poses difficulty for effective weight sharing of the convolu-

tion kernels.

4.2. Connections and locally flat connections

Connections generalize the notion of translation onto

curved manifolds with non-Euclidean metric [24]. Intu-

itively, a (linear) connection ∇ : TM × TM → TM
measures the linear differentiation of moving tangent plane

TxM along a vector v ∈ TxM infinitesimally. Therefore,

a geodesic curve γ : [0, 1] → M as the “straight line”

on a surface has ∇γ̇ γ̇ = 0, i.e. the curve tangent vec-

tor moves straightly along itself. Indeed, the patch-based

multi-directional geodesic CNN(MDGCNN) [32] connects

the convolutions for two surface patches by translating the

tangent planes along the geodesic curve connecting the two

patch centers, which provides a natural extension of trans-

lation on 2D images.

However, the problem with parallel transporting along

the geodesic curves is that the mapping is path dependent.

Consider three nearby points x, y, z ∈ M, and denote the

transport of tangent planes along the geodesic curve be-

tween x, y as τx,y : TxM → TyM. In general, we have

τy,z ◦ τx,y 6= τx,z , where ◦ is composition, with the differ-

ence caused by the curvature of the triangular surface patch

bounded by the geodesic curves (Fig. 1(a)).

In this paper, we propose to use a construction called lo-

cally flat (or trivial) connections [6, 36] to achieve the path-

independent tangent space mapping for all surface patches

except at a few singular points. The idea of locally flat con-

nections is to concentrate the surface curvature onto a sparse

set of singular points and leave the rest majority of surface

area with tangent space mappings as in a Euclidean domain,

which in turn paves the way for convolutions as on images.

4.3. N­direction frame fields and cover space

One way of encoding the locally flat connections for

meshes is through N -direction frame fields [36, 45]. An

N -direction field at x ∈ M gives a frame of N rotation-

ally symmetric directions ui
x ∈ TxM, i = 1, · · · , N ; thus

two consecutive vectors in the sequence differ by an angle
2π
N

. A transport (or matching) τx,y between two tangent

planes of x, y can thus be defined by identifying u
i
x with

u
j
y , which simply amounts to a change of bases. In partic-

ular, we use the principal matching which chooses j such

that ‖τ ′x,y(u
i
x) − u

j
y‖ is minimal, where τ ′x,y is the parallel

transport between x, y along geodesics.

In addition, a vertex x is singular if and only if it has

a loop of neighboring vertices [p1, · · · , pn] such that ui
p1

mapped by τpn,p1
◦τpn−1,pn

◦· · ·◦τp1,p2
does not return to it-

self (Fig. 2(c)). Therefore on a patch containing no singular

vertex, the transport τx,y remains the same regardless of the

path taken between x, y [6] (Fig. 1(b)). On the other hand,

the concentrated curvature at a singular vertex can only be

multiples of 2π
N

, which explains the usage of N symmetric

directions: larger N allows for more flexible singularities

and flat connections. We discuss the choice of N later.

By solving for smooth (or parallel) frame fields that

deviate minimally from the parallel transport and align

to salient geometric features of the underlying surface

[36, 6, 45] (see Appendix B for details), we obtain locally

flat connections that closely approximate the linear connec-

tion while also having consistency among deformed shapes,

therefore supporting improved feature learning by the ex-

tended surface convolutions.

While now we can translate tangent planes, another chal-

lenge unique to a surface domain rather than 2D images

is the lack of canonical axes for the tangent planes. By

13580

1

1

1

2

2

2
3

3

3
4

4

4

1

2

3

4

1

2

3

4

1

2

3

4

(a) (b) (c) (d)
Figure 2. 4-direction frame fields and the corresponding cover

spaces. (a)&(b): a field without singular vertex and the four sep-

arate sheets of the cover space. (c)&(d): a field with a singular

vertex on the cube-corner shaped surface and the four sheets of

cover space that are connected and coincide at the singular vertex.

randomly fixing an axis on one tangent plane, we risk sig-

nificantly biasing the feature learning. Instead, a more ro-

bust approach is to sample several directions on the tangent

planes as axes, and properly aggregate the learned features

for the final output. Fortunately, the N -direction frames

provide a uniform sampling of tangent directions, which

motivates introducing their associated N -cover space that

allows to organize the feature learning over multiple axes.

N -cover space. A frame field induces an N -cover space

over the domain surface [18, 9]. Intuitively, the cover space

consists of N copies Mi, i = 1, · · · , N of the base surface,

with each copy Mi having a unit vector field u
σx(i)
x , where

σx(i) indexes the vector of the N -direction frame at x for

the sheet Mi; in addition, u
σx(i)
x and u

σy(i)
y are connected

by τx,y the principal matching (Fig. 2). The unit vector field

is well-defined everywhere on the cover space, except at sin-

gular vertices where different sheets of the cover space co-

incide. In this paper, we use the vector field as the canonical

axes and compute surface convolution on the cover space;

around singular vertices, our framework degenerates to a

strategy similar to the parallel transport method [32].

5. Surface based PFCNN

5.1. Surface convolution via parallel frames

Given a surface mesh M equipped with a parallel N -

direction frame field u
i
x, the surface convolution for a vertex

vi with its feature vector Fj
vi

, j = 1, · · · , N on the σ−1
vi

(j)-
th cover sheet is computed by the following steps:

1. Choose u
j
vi

as the x-axis of the tangent plane Tvi
M.

Thus the local coordinate system is encoded by the 2×
3 matrix F j

vi
= (uj

vi
,nvi

× u
j
vi
)T .

2. For each vertex vk in the neighboring geodesic patch

Nvi , project it onto the tangent plane as v′
k under co-

ordinate system F j
vi

. Let ul
vk

= τvi,vk(u
j
vi
); the pro-

jected point has feature vector Fl
vk

. Resample the pro-

jected feature map into a regular grid, denoted F
j
Nvi

.

3. Convolve F
j
Nvi

with regular kernels K defined under

F j
vi

. The responses constitute the feature vector of vi
for the next network layer.

Before presenting details for step 2, we remark that transla-

tion equivariance in the form of (1) indeed holds locally:

τvi,vk(f ⋆ k) = τvi,vk(f) ⋆ k, (2)

where we assume f is a function defined on the tangent

plane Tvi
M, and k is the convolution kernel supported on

tangent planes. The equality holds because: on the left hand

side, f ⋆ k returns a function on TviM which is then trans-

ported by the flat connection τvi,vk to a function on Tvk
M,

while on the right hand side f is first transported onto

Tvk
M and then convolved with k on Tvk

M; since the trans-

port τvi,vk
only changes the underlying coordinate system

bases, the functions f, k when defined using local coordi-

nates do not change at all by the transport, which makes the

equality trivially true. In addition, on a patch without sin-

gular vertices, the transport and equation holds regardless

of the path taken between two vertices, which is different

from the path-dependent parallel transport [32]; for patches

with singular vertices, because the transport minimizes de-

viation from the parallel transport (Sec. 4.3), our convolu-

tion closely resembles the parallel transport approach.

Projection to tangent space and resampling. Previous

patch-based surface CNNs use various kinds of geodesic

curve tracing to impose a polar coordinate system onto the

neighborhood patch Nvi and map each neighboring point

onto the tangent plane [28, 3, 30, 32]. We follow a sim-

ilar approach adapted from [5] that is simpler to compute

and works even for point clouds, thus enabling easy exten-

sion of our framework to point clouds. In particular, we

modulate the geodesic coordinates computation using the

local axes F j
vi

, and re-triangulate the projected neighboring

points with Delaunay triangulation to avoid flipped trian-

gles, over which a regular grid in the shape of convolution

kernels is then resampled and feature vectors interpolated.

The operation is encoded by a sparse tensor S that is pre-

computed for a surface mesh and can be applied efficiently

with standard NN libraries. See Appendix C for details.

5.2. PFCNN structures

In this section we present the detailed structures of layers

specific to PFCNNs. These layers can be combined with

standard CNN layers and stacked into networks such as U-

Net [38] and ResNet [14].

Input layers. The PFConv takes as input a group of N
feature maps corresponding to the N cover sheets. These

features can be constructed by simply duplicating the orig-

inal input for N copies, i.e. |V |×Cin → |V |×N×Cin,

where Cin is the input per-vertex feature length, or can be

computed by further utilizing the local coordinate systems

for different cover sheets. Indeed, we find that for tasks

on deformable domains, e.g. non-rigid shape classification,

segmentation and registration, a simple but effective input

13581

feature that is invariant to global rigid transformations is

the normal vector and height from tangent plane in local

coordinates, i.e. Fl
vk
=
(

F j
vi
nvk ,n

T
vi
nvk

,nT
vi
(vk − vi)

)

for

each patch vertex vk ∈ Nvi
. In this case, the input layer

constructs an expanded |V |×N×H×W×Cin feature map

directly by sampling the local features with regular grids

(Sec. 5.1), where H×W is the spatial shape of the subse-

quent convolution kernel to be applied.

Output layers. For the final per-vertex output we need

to reduce the grouped feature maps to an aggregation, i.e.

|V |×N×C → |V |×C. The reduction operation can be in

different forms, e.g. taking the maximum or average among

N parallel channels, or being learned implicitly by a stan-

dard 1×1 convolution. The outputs can be further aggre-

gated over all vertices into a single output for the whole

shape, as in classification tasks.

Convolution layers. Given an input feature map Fin of

shape |V |×N×Cin, the convolution layer first vectorizes it

into vec(Fin), multiplies with the sparse matrix S of shape

(|V |×N×H×W, |V |×N) that does the feature map resam-

pling (Sec. 5.1), and reshapes the result vector into a ten-

sor of shape |V |×N×H×W×Cin; it then multiplies with

the convolution kernel of shape H×W×Cin×Cout to ob-

tain the output feature map |V |×N×Cout. In case the input

layer provides an expanded feature map with local features

as discussed above, the convolution is a simple multipli-

cation with the kernel. In addition, the special case of 1×1
convolution on each cover sheet through a Cin×Cout kernel

skips the feature resampling step and is directly multiplied

with Fin to obtain the output. Note the same convolution

kernel is shared for all N cover sheets of feature maps, as

the different cover sheets effectively sample the canonical

axes over the surface domain.

Pooling/Unpooling layers. Pooling and unpooling lay-

ers effectively change the spatial resolution of learned fea-

tures. For surface meshes the different domain resolutions

can be built through a hierarchy of simplified meshes Mi

with M1 = M and each coarse vertex v ∈ Vi+1 cor-

responding to a subset of dense vertices {v′k} ⊂ Vi, us-

ing e.g. [12, 15]. We adapt the simplification process so

that their N -direction frames are also mapped, i.e. F j
v cor-

responds to F l
v′

k
the closest axes by rotation. Pooling is

then defined as F
j
v = Pool({Fl

v′

k
}), where Pool(·) takes

channel-wise maximum or average; the layer has a signa-

ture of |Vi|×N×C → |Vi+1|×N×C in terms of feature

map shapes. Unpooling is the inverse operation of pooling.

Throughout the paper we assume batch size one, al-

though using larger batch size is trivial as long as each mesh

of a batch has the same number of vertices on every do-

main resolution. We have implemented the above layers

with Tensorflow; the code is publicly available1.

1Code and data are available at https://github.com/msraig/pfcnn.

Table 1. Results on SHREC’15 non-rigid shape classification.

PN+ is PointNet++[35]; “raw” means using spatial coordinates as

input, “en” means using an ensemble of intrinsic shape descrip-

tors. MDG is MDGCNN[32] using SHOT features as input.
PN+(raw) PN+(en) MDG Ours

Accu.(%) 60.18 96.09 99.5 99.5

Table 2. Results on human body segmentation. Our method out-

performs MDGCNN on both original data and the remeshed data.
Original Remeshed

Method MDGCNN Ours MDGCNN Ours

Accu.(%) 88.2 91.45 89.53 91.79

6. Experiments

We test the PFCNN framework and compare it mainly

with the state-of-the-art MDGCNN [32] on deformable do-

main tasks involving shape classification, segmentation and

registration where MDGCNN achieves uniformly superior

performances than other methods, and with the state-of-the-

art TextureNet [16] on the scene semantic segmentation task

which has a rigid underlying domain. We further do ab-

lation study on the impact of parallel frames, cover space

grouped feature maps and layer normalization, etc.

6.1. Deformable domain tasks

For fair comparison, we use 5×5 convolution kernel

for PFCNN and a larger 4(radial)×8(angular) kernel for

MDGCNN, and the same network structure for both meth-

ods in each task, except for registration where the same

number of convolution layers are adopted. Network and

training details are provided in Appendix D.

Classification. The SHREC’15 non-rigid shape classifi-

cation challenge [26] has 1200 shapes represented by sur-

face meshes that belong to 50 categories. We use a network

with three levels of resolution and the localized normal vec-

tors as input features (Sec. 5.2) for PFCNN. As shown in Ta-

ble. 1, our results outperform PointNet++ [35] even when it

uses an ensemble of sophisticated input features, e.g. WKS

and HKS, that are agnostic to non-rigid deformations. We

are on par with MDGCNN that uses as input the SHOT de-

scriptor [44] which is rotation invariant and more sophisti-

cated than our raw input.

Human body segmentation. The human body segmen-

tation dataset proposed by [27] contains labeled meshes of

diverse human identities and poses from various sources,

split by 381/18 for training and testing. The meshes have

very different scales which we normalize first. The mesh

resolutions are also very different, with the number of ver-

tices varying from 3k to 12k, yet our network works well on

the these data without remeshing. The network is a U-Net

like structure with three levels of domain resolutions.

To compare with MDGCNN, we test on both the orig-

inal meshes and the resampled meshes generated with its

open sourced code. Testing results are reported in Table 2

13582

(i)

(ii)

(iii)

Figure 3. Results of human body segmentation. (i) the ground-

truth labeling; (ii) the results of MDGCNN; (iii) our results.

and visualized in Fig. 3. Note that the ground truth label-

ing for different samples are not always consistent, which

hinders the possibility of achieving very high accuracy. For

example, in Fig. 3 the third column GT mistakenly labels

the shank to thigh. But our method correctly segments this

part and has better coverage than MDGCNN. Still for some

shapes which are dissimilar to the training data, e.g. the first

column in Fig. 3 which has exceptional hair, both methods

fail to segment the hair properly, although our method cap-

tures the face better.

Human body registration by vertex classification. We

test with the non-rigid human body registration task pro-

posed by the FAUST dataset [2]. In one scenario, the regis-

tration is achieved by classifying each input mesh vertex of

a body shape into its corresponding vertex on the template

mesh, as done in previous works [28, 3, 11]. We use a sim-

ple network consisting of a sequence of convolutions in the

same level-of-detail for PFCNN, and a two-level network

for MDGCNN, following their original setting.

The meshes in the FAUST dataset have the same topol-

ogy with the template, which may be exploited unfairly to

learn correspondences. Following MDGCNN, we remesh

them to 5k vertices and different topologies. Using the near-

est vertex as the correspondence between original meshes

and the remeshed ones, we can get the ground truth vertex

correspondence to the remeshed template, to supervise the

registration task by classifying each vertex to 5k classes.

We achieved 92.01% accuracy on the remeshed data, as

compared to 94.5% accuracy on the original meshes. To

fully compare with MDGCNN, we also test variations of

their networks with more radial bins and angular directions

and different normalizations (more discussions in Sec. 6.3).

The accuracies within bounded geodesic errors are plotted

in Fig. 4; our results have even better zero-error accuracy

than their best with 4×16 kernels and instance normaliza-

tion. The visual results are shown in Fig. 5; we can see that

our results have a smoother mapping to the template shape.

0.0 0.1 0.2 0.3 0.4 0.5
Geodesic Error

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Ours_IN
Ours_BN
MDGCNN_4bin8dir_BN
MDGCNN_4bin8dir_IN
MDGCNN_4bin16dir_IN

Figure 4. Accuracy within given geodesic error for the non-rigid

registration by vertex classification.

(i)

(ii)

(iii)

Figure 5. Visual comparison of our method and MDGCNN on

non-rigid registration. (i) the ground truth mapping; (ii) the best

results of MDGCNN with 4 bins, 16 directions; (iii) our result.

In Appendix E, we test with a more challenging scenario

of non-rigid registration by regression on noisy real scans

with diverse and high genus meshes, where our results are

again considerably better and more robust than MDGCNN.

To summarize, compared with the parallel transport

based convolution by MDGCNN, using parallel frames that

induce locally path-independent transport and the alignment

to salient geometric features enables more efficient feature

learning for our convolution; the difference is more obvious

for finer scale tasks like segmentation and registration.

6.2. Semantic scene segmentation

In this section, we evaluate on a widely used indoor

scene semantic segmentation task provided by the ScanNet

dataset [7]. While indoor scenes generally have rigid ge-

ometry dominated by flat walls and floors, PFCNN is still

shown to achieve good performances, improving over the

state-of-the-art TangentConv [42] and TextureNet [16] that

use tangential and local patch convolutions.

We use a network with U-Net structure and three levels

of domain resolutions. We follow [16] to prepare the train-

ing data by cropping small chunks from a whole scene and

13583

Table 3. Results on ScanNet segmentation task. mIoU is the class

mean intersection over union. mA is the class mean accuracy. oA

is the overall accuracy, which is significantly biased toward floors

and walls that are dominant in scenes. Ours* uses a network with

more convolution layers.
[42] [16] Ours Ours*

mIoU 0.49 0.58 0.632 0.662

mA(%) 61.4 74.4 75.7 77.92

oA(%) 77.9 80.38 85.01 86.26

(i) (ii) (iii)

Figure 6. Example indoor scenes of ScanNet segmented by com-

paring methods. (i) is the ground truth segmentation; (ii) is the

results of [16]; (iii) shows our results. Our results have more reg-

ular boundaries separating regions of larger consistency.

training on these chunks which are randomly rotated around

the upright direction for augmentation. For network input,

we follow [42] to include the height above ground, normal

vector, color and distance from the local tangent plane for

each mesh vertex of a surface patch, rather than the local-

ized normal vector as discussed in Sec. 5.2, while [16] uses

additional high resolution texture images as input. For fair

comparison, we have used a network with similar amount

of trainable parameters to [16]; we also explore the effect of

increasing the network size and report a better performance.

The result statistics of comparing methods and ours on

validation sets are shown in Table 3; our results have much

better mean IoU and mean accuracy than theirs, which

shows our network can better distinguish smaller objects

than just the dominant segments like floors and walls. Fig. 6

show some visual results. The black regions in (i) are unla-

beled data; our method predicts reasonable labels for these

regions. The boundaries separating different objects in our

results are cleaner than [16], like the boundary between

windows and the wall in the first row and the door and wall

in the third row; our segments are also more regular and

consistent. See Appendix E for more detailed data and vi-

sual results on both validation and test sets.

Considering that all three methods use tangent space

convolutions, the results demonstrate that our locally trans-

lation equivariant convolution as the key difference is more

effective in learning features.

Table 4. Testing accuracy of different convolution methods on the

non-rigid registration task by vertex classification. PCF means us-

ing the principle curvature directions as tangent plane axes. PCF

as FF means using the principal directions as the 4-direction frame

field for our PFCNN framework.
PCF PCF as FF Ours

Accu.(%) 83.29 89.80 92.01

Table 5. Accuracy and runtime cost of different frame field sym-

metry orders N , on the non-rigid registration task by vertex clas-

sification. The costs are measured on an RTX2080 GPU.
N 1 2 4 6 8

Accuracy(%) 83.11 91.81 92.01 92.45 93.35

Time(ms) 56.81 87.57 139.10 183.91 227.72

Memory(MB) 148.67 156.15 205.81 371.45 409.18

6.3. Ablation study

In this section, we evaluate how the core constructions

and hyper parameters of PFCNNs affect performance. We

also study the impact of normalization on deformable do-

main tasks, as well as the behavior around singular vertices.

Using frames and grouped features. We evaluate the

performances of different configurations that add compo-

nents of the PFCNN construction one-by-one onto a base-

line model. The evaluations are done on the task of human

body registration by vertex classification (Sec. 6.1).

• Baseline model. When using principal curvature

frames as coordinate frames of the tangent plane, we

have a baseline model similar to a bunch of recent pre-

vious works [3, 30, 48, 42]. Using the network struc-

ture similar to PFCNN but without aligning the tangent

planes by flat connections or feature map grouping by

cover sheets, the trainable convolution kernel param-

eters are actually 16 times of PFCNN. However, the

accuracy for this baseline configuration is 83.29% (Ta-

ble 4), much lower than PFCNN.

• Principle curvature frames as 4-direction field. As

a modification to the baseline model, we regard the

principal curvature frames as a 4-direction frame field

and apply the PFCNN network. The result accuracy is

89.8% (Table 4), much higher than the baseline model,

while using only 1/16 trainable parameters. The im-

provement demonstrates that even if the frame field

is not globally optimized to be smooth or aligned to

salient features, by using its encoded flat connections

that enable local translation equivariance and its in-

duced cover space feature maps that sample tangent di-

rections, the feature learning is significantly improved.

• Full PFCNN model. By additionally optimizing for a

parallel frame field that aligns to geometric features,

the PFCNN framework further improves to 92.01%
registration accuracy (Table 4).

Frame symmetry order. As discussed in Sec. 4.3, when

the rotational symmetry order N of the frame field gets

13584

Table 6. Classification accuracy with different normalization.
Ours MDGCNN

Normalization BN IN BN IN

Accuracy(%) 11 99.5 14.0 99.5

larger, the frame field has more flexibility to achieve both

smoothness and alignment to salient features. However, an

increased N also leads to larger computational cost, as the

size of feature maps to compute increases too.

We tested the different N values again with the registra-

tion by vertex classification task, but modified the network

structure to make sure each group of the feature map has

the same size (i.e. 64), so that for different N the amount of

trainable convolution kernel parameters remains the same.

The performances for different N are shown in Table 5. We

can see that the choice of N = 4 strikes a balance between

accuracy and computational overhead: for N < 4 the ac-

curacy is notably lower due to the limited field smoothness,

and for N > 4 the computational cost is higher, with the

extra runtime roughly in proportion to the number of axes

sampled. We have used N = 4 for all the other experiments

in this paper.

Normalization. It is well known that normalization can

speed up the training procedure and make it more stable.

Here we study the impact of different normalizations on

surface based CNNs more closely. For the registration by

classification task, we test our method and MDGCNN with

batch normalization (BN) and instance normalization (IN).

Note that since the batch size is one, the difference between

BN and IN is that, the channel wise statistics of moving

mean and average are used in testing stage for BN but not

IN. The result is shown in Fig. 4. We find that with IN both

our method and MDGCNN achieve better performances.

We repeat the experiments on the shape classification task

(Sec 6.1); the result is shown in Table 6. From all these

experiments, we can see that IN is better than BN for these

tasks on deformable domains. We argue that this is because

the diversely deformed shapes do not share common statis-

tics of channel-wise mean and variance, akin to the observa-

tion in image style transfer [31, 10, 17] that these statistics

encode styles rather than content.

Frame field singularity. As discussed in Sec. 5.1, near

singularities the translation equivariance is no longer path-

independent, but our scheme degenerates to being similar

to MDGCNN using parallel transport. To find the relation-

ship between the singularity of vertices and prediction error,

we compare the distribution of singular vertices and the er-

ror map of geodesic distance between predicted vertex and

the ground truth correspondence vertex. The distribution

is shown in Fig. 7; we can see that the singular vertices

mainly distribute on the nose, fingers or toes but the error

maps of different shapes do not reflect these similarity. We

also compare the accuracy of singular vertices and all ver-

(i)

(ii)

Figure 7. (i) shows the singular vertices in red and (ii) shows the

prediction error map. There is no clear correlation between the

singular vertices and the erroneous predictions.

tices in the registration by classification task. In particular,

on the original dataset and the remeshed dataset, the regis-

tration accuracy of singular vertices versus that of all ver-

tices are, 93.4%/94.5% and 90.2%/92.2%, indicating no

clear correlation of singular vertices and prediction errors.

Such robustness can be attributed to the degenerated con-

volution with path-dependent translation equivariance, the

consistency of singularities across shapes (see Appendix B)

and the capability of learned filters.

7. Conclusion

We have presented a surface mesh based PFCNN frame-

work that closely mimics the standard image based CNNs

and has local translation equivariance for convolutions. It

is enabled by using parallel N -direction frames that both

encode flat connections on the surface to define path-

independent translation, and sample tangent plane canoni-

cal axes to organize the convolutions by the N -cover spaces.

The PFCNNs are shown to be more effective at fine-scale

feature learning than previous surface based CNNs. In the

future, we would like to investigate how the PFCNN frame-

work can handle surface generation tasks, where the frame

field also needs to be generated rather than precomputed.

References

[1] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM

Trans. Graph., 37(4):71:1–71:12, July 2018. 2

[2] Federica Bogo, Javier Romero, Matthew Loper, and

Michael J. Black. FAUST: Dataset and evaluation for 3D

mesh registration. In CVPR, June 2014. 6

[3] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and

Michael Bronstein. Learning shape correspondence with

anisotropic convolutional neural networks. In NIPS, pages

3189–3197. 2016. 1, 2, 4, 6, 7

13585

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: Going beyond eu-

clidean data. IEEE Signal Processing Magazine, 34(4):18–

42, July 2017. 1, 3

[5] Max Budninskiy, Gloria Yin, Leman Feng, Yiying Tong,

and Mathieu Desbrun. Parallel transport unfolding: A

connection-based manifold learning approach. SIAM J. Appl.

Algebra Geom., 3:266–291, 2018. 4

[6] Keenan Crane, Mathieu Desbrun, and Peter Schröder. Triv-

ial connections on discrete surfaces. Computer Graphics Fo-

rum, 29(5):1525–1533, 2010. 3

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3D reconstructions of indoor scenes. In

CVPR, 2017. 6

[8] Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga

Sorkine-Hornung. Designing n-polyvector fields with com-

plex polynomials. Computer Graphics Forum, 33(5):1–11,

Aug. 2014. 11

[9] Boris A Dubrovin, Anatolij Timofeevič Fomenko, and Sergeı̆

Novikov. Modern geometry—methods and applications:

Part II: The geometry and topology of manifolds. 1, 4

[10] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-

lur. A learned representation for artistic style. ArXiv,

abs/1610.07629, 2016. 8

[11] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-

rich Müller. SplineCNN: Fast geometric deep learning with

continuous B-spline kernels. In CVPR, 2018. 2, 6

[12] Michael Garland and Paul S. Heckbert. Surface simplifica-

tion using quadric error metrics. In SIGGRAPH, pages 209–

216, 1997. 5

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4

[15] Hugues Hoppe. Progressive meshes. In SIGGRAPH, pages

99–108, 1996. 5

[16] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser,

Matthias Niessner, and Leonidas J. Guibas. Texturenet:

Consistent local parametrizations for learning from high-

resolution signals on meshes. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 2, 5, 6, 7, 13, 15

[17] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1501–1510, 2017. 8

[18] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quad-

cover - surface parameterization using branched coverings.

Computer Graphics Forum, 26(3):375–384, 2007. 4

[19] Vladimir Kim, Yaron Lipman, and Thomas Funkhouser.

Blended intrinsic maps. ACM Trans. Graph. (SIGGRAPH),

30(4), July 2011. 14

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2014. 12

[21] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter

Schröder. Globally optimal direction fields. ACM Trans.

Graph. (SIGGRAPH), 32(4):59:1–59:10, 2013. 11

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural Compu-

tation, 1(4):541–551, 1989. 3

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, Nov 1998. 1, 3

[24] John M. Lee. Connections. In Riemannian Manifolds, pages

47–64. Springer New York, 1997. 3

[25] Shiwei Li, Zixin Luo, Mingmin Zhen, Yao Yao, Tianwei

Shen, Tian Fang, and Long Quan. Cross-atlas convolution

for parameterization invariant learning on textured mesh sur-

face. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6143–6152, 2019. 2

[26] Z. Lian, J. Zhang, S. Choi, H. ElNaghy, J. El-Sana, T. Fu-

ruya, A. Giachetti, R. A. Guler, L. Lai, C. Li, H. Li, F. A.

Limberger, R. Martin, R. U. Nakanishi, A. P. Neto, L. G.

Nonato, R. Ohbuchi, K. Pevzner, D. Pickup, P. Rosin, A.

Sharf, L. Sun, X. Sun, S. Tari, G. Unal, and R. C. Wilson.

Non-rigid 3D Shape Retrieval. In Eurographics Workshop on

3D Object Retrieval. The Eurographics Association, 2015. 5

[27] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,

Nadav Dym, Ersin Yumer, Vladimir G. Kim, and Yaron

Lipman. Convolutional neural networks on surfaces via

seamless toric covers. ACM Trans. Graph. (SIGGRAPH),

36(4):71:1–71:10, July 2017. 2, 5

[28] J. Masci, D. Boscaini, M. M. Bronstein, and P. Van-

dergheynst. Geodesic convolutional neural networks on rie-

mannian manifolds. In ICCV, pages 832–840, Dec 2015. 1,

2, 4, 6

[29] Daniel Maturana and Sebastian Scherer. Voxnet: A 3D con-

volutional neural network for real-time object recognition.

In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 922–928. IEEE, 2015. 2

[30] Federico Monti, Davide Boscaini, Jonathan Masci,

Emanuele Rodolà, Jan Svoboda, and Michael M. Bronstein.

Geometric deep learning on graphs and manifolds using

mixture model cnns. In CVPR, 2017. 1, 2, 4, 7

[31] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reasoning with a

general conditioning layer. In Thirty-Second AAAI Confer-

ence on Artificial Intelligence, 2018. 8

[32] Adrien Poulenard and Maks Ovsjanikov. Multi-directional

geodesic neural networks via equivariant convolution. ACM

Trans. Graph. (SIGGRAPH ASIA), 37(6):236:1–236:14,

Dec. 2018. 1, 2, 3, 4, 5, 14

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3D classification

and segmentation. In CVPR, 2017. 2

[34] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric and

multi-view cnns for object classification on 3D data. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 5648–5656, 2016. 2

13586

[35] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. In NIPS, 2017. 2, 5

[36] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Lévy.

Geometry Aware Direction Field Processing. ACM Transac-

tions on Graphics, 29(1):Article 1, Dec. 2009. 3

[37] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3D representations at high resolu-

tions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3577–3586, 2017. 2

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 4

[39] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning

3D shape surfaces using geometry images. In ECCV, pages

223–240, 2016. 2

[40] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2530–2539, 2018. 2

[41] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neural

networks for 3D shape recognition. In ICCV, 2015. 2

[42] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3D.

In CVPR, 2018. 2, 6, 7, 15

[43] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J.

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. Proceedings of the IEEE International Confer-

ence on Computer Vision, 2019. 2

[44] Federico Tombari, Samuele Salti, and Luigi Di Stefano.

Unique signatures of histograms for local surface descrip-

tion. In European conference on computer vision, pages

356–369. Springer, 2010. 5

[45] Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele

Panozzo, David Bommes, Klaus Hildebrandt, and Mirela

Ben-Chen. Directional Field Synthesis, Design, and Process-

ing. Computer Graphics Forum, 2016. 1, 3, 11

[46] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neu-

ral networks for 3D shape analysis. ACM Transactions on

Graphics (TOG), 36(4):72, 2017. 2

[47] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912–1920, 2015. 2

[48] H. Xu, M. Dong, and Z. Zhong. Directionally convolutional

networks for 3D shape segmentation. In ICCV, pages 2717–

2726, Oct 2017. 2, 7

13587

