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Abstract

Adaptive inference is an effective mechanism to achieve

a dynamic tradeoff between accuracy and computational

cost in deep networks. Existing works mainly exploit ar-

chitecture redundancy in network depth or width. In this

paper, we focus on spatial redundancy of input samples

and propose a novel Resolution Adaptive Network (RANet),

which is inspired by the intuition that low-resolution repre-

sentations are sufficient for classifying “easy” inputs con-

taining large objects with prototypical features, while only

some “hard” samples need spatially detailed information.

In RANet, the input images are first routed to a lightweight

sub-network that efficiently extracts low-resolution repre-

sentations, and those samples with high prediction confi-

dence will exit early from the network without being fur-

ther processed. Meanwhile, high-resolution paths in the

network maintain the capability to recognize the “hard”

samples. Therefore, RANet can effectively reduce the spa-

tial redundancy involved in inferring high-resolution input-

s. Empirically, we demonstrate the effectiveness of the pro-

posed RANet on the CIFAR-10, CIFAR-100 and ImageNet

datasets in both the anytime prediction setting and the bud-

geted batch classification setting.

1. Introduction

Although advances in computer hardware have enabled

the training of very deep convolutional neural networks (C-

NNs), such as ResNet [7] and DenseNet [13], the high com-

putational cost of deep CNNs is still unaffordable in many

applications. Many efforts have been made to speed up the

inference of deep models, e.g., lightweight network archi-

tecture design [9, 30, 41, 12], network pruning [19, 21, 25]
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Figure 1. Classifying images of owls. In (a), the canonical sample

can be recognized by the Sub-network 1 with the lowest resolu-

tion, and thus the following sub-networks will be unused. For the

“hard” image in (b), the Sub-network 1 fails to provide a reliable

prediction. Therefore, classifying this sample requires computa-

tionally more expensive sub-networks with finer features.

and weight quantization [14, 28, 16]. Among them, the

adaptive inference scheme [23, 36, 11, 35], which aims to

reduce the computational redundancy on “easy” samples by

dynamically adjusting the network structure or parameters

conditioned on each input, has been shown to yield promis-

ing performance.

Most existing works on adaptive inference focus on re-

ducing the network depth or width for images with easily
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recognizable features. It has been shown that the intrinsic

classification difficulty for different samples varies drasti-

cally: some of them can be correctly classified by smaller

models with fewer layers or channels, while some may need

larger networks [23, 36, 11, 35]. By exploiting this fac-

t, many works have been proposed recently. For example,

the model in [23] executes runtime pruning of convolution-

al kernels with a policy learned by reinforcement learning

strategies. The network in [36] inserts a linear layer be-

fore each convolutional layer to generate a binary decision

on whether executing the following convolutional operation

dynamically. Multi-Scale Dense Network (MSDNet) [11]

allows some samples to exit at some auxiliary classifiers

conditioned on their prediction confidence.

In this paper, we consider adaptive inference from a nov-

el perspective. In contrast to existing works focusing on

the computational redundancy in the network structure, we

aim to exploit the information redundancy in the data sam-

ples. Our motivation is that low-resolution feature represen-

tations are sufficient to classify “easy” samples (as shown

in the top row in Figure 1), while applying high-resolution

feature maps to probe the details is necessary for accurately

recognizing some “hard” samples (as shown in the bottom

row in Figure 1). This further agrees with the “coarse to fine

processing” efficient algorithm design in [17]. From a sig-

nal frequency viewpoint [4], “easy” samples could be cor-

rectly classified with low-frequency information contained

in low-resolution features. High-frequency information is

only utilized as complementary for recognizing “hard” sam-

ples when we fail to precisely predict the samples with low-

resolution features.

Based on the above intuition, we propose a Resolution

Adaptive Network (RANet) that implements the idea of per-

forming resolution adaptive learning in deep CNNs. Fig-

ure 1 illustrates the basic idea of RANet. It is composed of

sub-networks with different input resolutions. The “easy”

samples are classified by the sub-network with the feature

maps in the lowest spatial resolution. The sub-networks

with higher resolution will be applied when the previous

sub-network fails to achieve a given criterion1. Meanwhile,

the coarse features from the previous sub-network will be

reused and fused into the current sub-network. The adap-

tation mechanism of RANet reduces computational budget

by avoiding performing unnecessary convolutions on high-

resolution features when samples can be accurately predict-

ed with low-resolution representations, leading to improved

computational efficiency.

We evaluate the RANet on three image classification

datasets (CIFAR-10, CIFAR-100, and ImageNet) under the

anytime classification setting and the budgeted batch clas-

sification setting, which are introduced in [11]. The exper-

1In this paper, we use the prediction confidence from the softmax prob-

ability.

iments show the effectiveness of the proposed method in

adaptive inference tasks.

2. Related work

Efficient inference for deep networks. Many previ-

ous works explore variants of deep networks to speed up

the network inference. One direct solution is designing

lightweight models, e.g., MobileNet [9, 30], ShuffleNet

[41, 26] and CondenseNet [12]. Other lines of research fo-

cus on pruning redundant network connections [19, 21, 25],

or quantizing network weights [14, 28, 16]. Moreover,

knowledge distilling [8] is proposed to train a small (studen-

t) network which mimics outputs of a deeper and/or wider

(teacher) network.

The aforementioned approaches can be seen as static

model acceleration techniques, which infer all input sam-

ples with a whole network consistently. In contrast, adap-

tive networks can strategically allocate appropriate compu-

tational resources for classifying input images based on in-

put complexity. This research direction is gaining increas-

ing attention in recent years due to its advantages. The most

intuitive implementation is ensembling multiple models and

selectively executing a subset of the models in a cascading

[2] or mixing way [31, 29]. Recent works also propose to

adaptively skip layers or blocks [6, 36, 38, 39], or dynami-

cally select channels [23, 3, 1] during inference time. Aux-

iliary predictors can also be attached at different locations

of a deep network to allow early exiting “easy” examples

[34, 11, 10, 22]. Furthermore, dynamically activating parts

of network branches with multi-branch structure [35] also

provide an alternate way for adaptive inference.

However, most of these prior works focus on designing

adaptive networks by exploiting architecture redundancy of

networks. As spatial redundancy of input images has been

certificated in recent work [4], this paper proposes a nov-

el adaptive learning model which exploits both structural

redundancy of a neural network and spatial redundancy of

input samples.

Multi-scale feature maps and spatial redundancy. As

the downsampling operation in networks with a single scale

[7, 13] may restrict the networks’ ability to recognize an

object in an arbitrary scale, recent studies propose to adopt

multi-scale feature maps in a network to simultaneously u-

tilize both coarse and fine features, which significantly im-

proves the network performance in many vision tasks, in-

cluding image classification[17], object detection [24], se-

mantic segmentation [42] and pose estimation [32]. More-

over, the multi-scale structure shows a promising ability in

adaptive inference [11] and memory-efficient network [37].

While keeping high-resolution feature maps through a

deep neural network is found to be necessary for recog-

nizing some atypical “hard” samples or some specific tasks

such as pose estimation [32], frequently operating convolu-
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tions on high-resolution features usually results in resource-

hungry models. It has been observed that lightweight net-

works can yield a decent error rate for all samples with

low-resolution inputs [9]. The spatial redundancy in these

convolutional neural networks has also been studied in [4],

where the octave convolution in the network processing fea-

ture maps with small scales improves the computational ef-

ficiency and the classification performance simultaneously.

However, none of these existing works considers design-

ing an adaptive model by exploiting spatial redundancy in

images. In this paper, we propose our RANet for resource-

efficient image classification, motivated by the intuition that

a smaller scale can be capable of handling most of input

samples. Our work achieves resolution adaptation by clas-

sifying some of inputs on small scales and allowing larger

scales to be processed only when inputs can not be recog-

nized with coarse representations. The resolution adapta-

tion in RANet significantly improves its computational effi-

ciency without sacrificing accuracy.

3. Method

In this section, we first introduce the idea of adaptive

inference, then we demonstrate the overall architecture and

the network details of our proposed RANet.

3.1. Adaptive Inference Setting

We set up an adaptive inference model as a network with

K classifiers, where these intermediate classifiers are at-

tached at varying depths of the model. Given an input im-

age x, the output of the k-th classifier (k = 1, · · · ,K) can

be represented by

p
k = fk(x; θk) = [pk

1
, · · · , pkC ]

T ∈ R
C , (1)

where θk denotes the parameters of the partial network cor-

responding to the k-th classifier, and each element pkc ∈
[0, 1] is the prediction confidence for the c-th class. Note

that θk’s have shared parameters here.

The adaptive model infers a sample by dynamically al-

locating appropriate computational resources depending on

the complexity of this sample. A sample will exit the net-

work at the first classifier whose output satisfies a certain

criterion. In this paper, we use the highest confidence of

the softmax output as our decision basis, which means that

the final output will be the prediction of the first classifier

whose largest softmax output is greater than a given thresh-

old ǫ. This can be represented by

k∗ = min
{

k|max
c

pkc ≥ ǫ
}

, (2)

ŷ ∈ argmax
c

pk
∗

c . (3)

The threshold ǫ controls the trade-off between classification

accuracy and computational cost at test time.

3.2. Overall Architecture

Figure 2 illustrates the overall architecture of the pro-

posed RANet. It contains an Initial Layer and H sub-

networks corresponding to different resolutions. Each sub-

network has multiple classifiers at the last few blocks. Simi-

lar to MSDNet [11], we adopt a multi-scale architecture and

dense connection in our approach. Although RANet and

MSDNet have a similar multi-scale structure, their detailed

architecture designs and computation graphs differ signifi-

cantly. The most prominent difference is that RANet needs

to extract low-resolution features first, which does not fol-

low the traditional design routine in classical deep CNNs

(including MSDNet, ResNet, DenseNet, etc.) that all ex-

tract high-resolution features first. More details of the d-

ifferences between MSDNet and our RANet will be dis-

cussed in Section 3.4.

The basic idea of RANet is that the network will first pre-

dict a sample with the first sub-network, using feature maps

of the lowest spatial resolution to avoid the high compu-

tational cost induced by performing convolutions on large

scale features. If the first sub-network makes an unreliable

prediction of the sample, the small scale intermediate fea-

tures will be fused into the next sub-network with a higher

resolution. The classification task is then conducted by the

next sub-network with larger scale features. This procedure

is repeated until one sub-network yields a confident predic-

tion, or the last sub-network is utilized.

The adaptive inference procedure of RANet is further

illustrated in Figure 2: with H sub-networks (H = 3 in

the illustration) and an input sample x, the network will

first generate H base feature maps in S scales (For in-

stance, there are 3 scales in the illustration, and s = 1
represents the lowest resolution). The base features in s-

cale s corresponding to Sub-network h can be denoted as

x
s,h
0

, s=1, 2, ...S, h=1, 2, ...H . Then the classification task

is first conducted by Sub-network 1 using features x
1,1
0

at

the bottom. If Sub-network 1 fails to achieve the classifi-

cation result with a high confidence, Sub-network 2, which

processes larger scale features (x
2,2
0

), will be utilized for

further classifying the sample. The intermediate features in

Sub-network 1 are successively fused into Sub-network 2.

We repeat this procedure for Sub-network 3 if Sub-network

2 fails to make a confident prediction.

It is worth noting that even RANet processes inputs from

coarse to fine in general, each sub-network in RANet stil-

l downsamples features during forward propagation until

reaching the lowest resolution (s=1), and all the classifiers

are only attached at the last few blocks with s=1 in each

sub-network.

The aforementioned inference procedure meets our in-

tuition for image recognition. An “easy” sample with rep-

resentative characteristics can be correctly classified some-

times with high confidence even only low-resolution rep-
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Figure 2. The illustration of an RANet with three scales. Classifiers only operate on feature maps at the lowest resolution.

resentations are provided. A “hard” sample with atypical

features can only be correctly recognized based on global

information accompanied with fine details, which are ex-

tracted from high-resolution feature maps.

3.3. Network Details

This subsection provides more detailed introductions

about each component in RANet.

3.3.1 Initial Layer

An Initial layer is implemented to generate H base fea-

tures in S scales and it only includes vertical connections

in Figure 2. One could view its vertical layout as a minia-

ture “H-layers” convolutional network (H is the number of

base features in the network). Figure 2 shows an RANet

with 3 base features in 3 scales. The first base features with

the largest scale is derived from a Regular-Conv layer2, and

the coarse features are obtained via a Strided-Conv layer3

from the former higher-resolution features. It is worth not-

ing that the scales of these base features can be the same.

For instance, one could have an RANet with 4 base features

in 3 scales, where the scales of the last two base features are

of the same resolution.

3.3.2 Sub-networks with Different Scales

As the Initial layer generates H base features, the proposed

network can then be separated into H sub-networks, which

are further composed by different Conv Blocks. Each sub-

network, except the first one, conducts the classification

task with its corresponding base feature maps and features

from the previous sub-network.

Sub-network 1. Sub-network 1 with input x
1,1
0

pro-

cesses the lowest-resolution features. We adopt regular

Dense Blocks [13] with l layers in Sub-network 1, which

2A Regular-Conv layer in this paper is consisted of a bottleneck layer

and a regular convolution layer. Each layer is composed of a Batch nor-

malization (BN) layer [15], a ReLU layer [27] and a convolution layer.
3A Strided-Conv layer is realized by setting the stride of the second

convolution in Regular-Conv layer as 2.
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Figure 3. Two kinds of Conv Blocks in RANet: Dense Block, (a),

and Fusion Block, (b,c). Moreover, the block in (b) maintains the

input resolution of the feature maps, while the block in (c) down-

samples the features by a factor of 2 at the end of the block.

is shown in Figure 3 (a). Moreover, the i-th layer’s output

x
1,1
i , i=1, 2, ...l in each Dense Block is also propagated to

Sub-network 2 to reuse the early features. In general, one

can view Sub-network 1 as a DenseNet with multiple clas-

sifiers, processing the lowest-resolution feature maps.

Sub-networks on larger-scale features. Sub-network

h (h> 1) with scale s processes the base features xs,h and

fuses the features from Sub-network (h−1). We call Conv

Blocks with feature fusion as Fusion Blocks (shown in Fig-

ure 3 (b, c)). Suppose that Sub-network (h−1) has bh−1

blocks, then the first bh−1 blocks in Sub-network h will all

be Fusion Blocks.

We design two different ways of feature fusion. One

maintains the input resolution, which is illustrated in Fig-

ure 3 (b), while the other reduces the feature scale by a

Strided-Conv layer, as shown in Figure 3 (c). To generate

new feature maps with higher resolution as inputs, the Fu-

sion Block in Figure 3 (b) first produces x
s,h
in with a Regular-
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Conv layer. Features in scale (s−1) from the previous sub-

network is processed by an Up-Conv layer, which is com-

posed of a Regular-Conv layer and an up-sampling bilin-

ear interpolation. This ensures the produced features are of

the same spatial resolution. The resulting features are then

fused through concatenation with dense connection.

As shown in Figure 3 (c), a Fusion Block with downsam-

pling utilizes a Strided-Conv layer to reduce the spatial res-

olution at the end of the block. Concatenation with dense

connection is also conducted after a pooling operation as

shown by a blue dashed arrow. Since the feature scale is

reduced in the current sub-network, features from the previ-

ous sub-network are processed by a Regular-Conv layer to

maintain the low resolution, and then fused by concatena-

tion at the end of the block in Figure 3 (c).

Sub-network h with scale s can be established as follow:

for a sub-network with bh blocks, block 1 to block bh−1

(bh−1 <bn) are all Fusion Blocks, while the rest of them

are regular Dense Blocks. Moreover, we downsample the

feature maps s times at the bh−s,...,bh−1-th blocks during

forward propagation. This ensures that at the end of each

sub-network where we attach classifiers, the features must

be of the lowest resolution.

Transition layer. Similar to the architecture design in

[13] and [11], we implement Transition layers to further

compress the feature maps in each sub-network. The design

of a Transition layer is exactly the same as the one in [13]

and [11], which is composed of a 1 × 1 convolution opera-

tor following by a BN layer and a ReLU layer. Transition

layers further guarantee the computational efficiency of the

proposed network. For simplicity, we omit these Transition

Layers in Figure 2.

Classifiers and loss function. The classifiers are imple-

mented at the last few blocks of different sub-networks. At

the training stage, we let input samples pass through Sub-

network 1 to Sub-network H sequentially and cross-entropy

loss function is used for each classifier. We set the overall

loss function for RANet as a weighted cumulative loss of

these classifiers. We empirically follow the settings in [11]

and use the same weight for all loss functions in this paper.

3.4. Resolution and Depth Adaptation

Our proposed RANet can simultaneously implement the

idea of depth adaptation, which is adopted in MSDNet [11],

and resolution adaptation. Figure 4 illustrates the main dif-

ferences between MSDNet (left) and our RANet (right). In

MSDNet, the classifiers are located at the lowest resolution

scale, and once an intermediate predictor does not yield a

confident prediction, the following layers of all scales will

be executed. However, in our RANet, the Dense Blocks with

the smallest scale input are first activated sequentially and

the depth adaptation is conducted within a single scale. If

the previous sub-network cannot make a confident predic-
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Figure 4. Depth adaptation in MSDNet (a) and resolution-depth

adaptation in our RANet (b). Different shaded areas represent the

network blocks with varied computational costs, and the colored

arrows represent the feature propagation path. The lighter the col-

or is, the earlier the propagation is executed. The dashed arrows in

(b) indicate that RANet adopts a zigzag-shape computation graph

from the bottom to the top.

tion, the input sample will be propagated to the next sub-

network and repeat the depth adaptation process until the

prediction confidence meets the criterion, or the last clas-

sifier of the whole network is reached. Such an inference

scheme naturally combines resolution and depth adaptation,

achieving significant improvement over MSDNet.

4. Experiments

To demonstrate the effectiveness of our approach, we

conducted experiments on the CIFAR [18] and ImageNet

[5] datasets. The code is available at https://github.

com/yangle15/RANet-pytorch. The implementa-

tion details of RANets and MSDNets in our experiments

are described in Appendix A.

Datasets. The CIFAR-10 and CIFAR-100 datasets con-

tain 32× 32 RGB natural images, corresponding to 10 and

100 classes, respectively. The two datasets both contain

50,000 training and 10,000 testing images. Following [11],

we hold out 5,000 images in the training set as a validation

set to search the optimal confidence threshold for adaptive

inference. The ImageNet dataset contains 1.2 million im-

ages of 1,000 classes for training, and 50,000 images for

validation. For adaptive inference tasks, we use the original

validation set for testing, and hold out 50, 000 images from

the training set as a validation set.

Training policy. We train the proposed models using

stochastic gradient descent (SGD) with a multi-step learn-

ing rate policy. The batch size is set to 64 and 256 for the

CIFAR and ImageNet datasets, respectively. We use a mo-

mentum of 0.9 and a weight decay of 1× 10−4. Moreover,

for the CIFAR datasets, the models are trained from scratch

for 300 epochs with an initial learning rate of 0.1, which is

divided by a factor of 10 after 150 and 225 epochs. The

same training scheme is applied to the ImageNet dataset.

And we train the models for 90 epochs from scratch and the

initial learning rate decreases after 30 and 60 epochs.

Data augmentation. We follow [7] and apply standard
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data augmentation schemes on the CIFAR and ImageNet

datasets. On the two CIFAR datasets, images are randomly

cropped to samples with 32×32 pixels after zero-padding (4

pixels on each side). Furthermore, images are horizontally

flipped with probability 0.5 and RGB channels are normal-

ized by subtracting the corresponding channel mean and di-

vided by their standard deviation. On ImageNet, we follow

the data augmentation scheme in [7] for training, and apply

a 224× 224 center crop to images at test time.

4.1. Anytime Prediction

In the anytime prediction setting [11], we evaluate all

classifiers in an adaptive networks and report their classifi-

cation accuracies with corresponding FLOPs (floating point

operations).

Baseline models. Following the setting in [11], in

addition to MSDNet, we also evaluate several competitive

models as our baselines, including ResNetMC, DenseNetMC

[20], and ensembles of ResNets and DenseNets of varying

sizes. Details on architectural configurations of MSDNets

and RANets in the experiments are described in Appendix

A. As recent research in [22] investigates improved tech-

niques for training adaptive networks, we further evaluate

these techniques on both RANet and MSDNet. The experi-

ments show that the computational efficiency of the RANet

can be further improved and outperforms the improved MS-

DNet. The results are provide in Appendix B.

Results. We report classification accuracies of all in-

dividual classifiers in our model and other baselines. The

results are summarized in Figure 5. The evaluated MSD-

Nets and RANets are depicted by black and yellow lines,

respectively. In general, MSDNet substantially outperforms

other baseline models, and RANet are superior to MSDNet,

especially when the computational budget is low.

In particular, on CIFAR-10 (CIFAR-100), the accuracies

of different classifiers for RANet are over 1% (2%−5%)

higher than those of MSDNet when the computational bud-

get ranges from 0.1 × 108 to 0.5 × 108 FLOPs. Moreover,

compared to MSDNet, RANet achieves its highest accura-

cy with less computational demands (around 0.25 × 108

FLOPS). On ImageNet, the proposed network outperform-

s MSDNet by around 1%−7% when the budget ranges of

0.5 × 109 to 1.5 × 109 FLOPs. Although both MSDNet

and RANet achieve similar classification accuracy (74%) at

the last classifier, our model only uses around 27% fewer

FLOPs compared to MSDNet.

At the first classifier, the accuracies of RANets are 2%
and 5% higher than those of MSDNets on CIFAR-10 and

CIFAR-100, respectively. On the ImageNet dataset, RANet

still slightly outperforms MSDNet at the first classifier.

With 1.0× 109 FLOPs, RANet can achieve a classification

accuracy of around 68%, which is around 5% higher than

that achieved by MSDNet. We also observe that ensembles

of ResNets outperform MSDNets in low-budget regimes,

because the predictions of ensembles are performed by the

first lightweight networks, which are optimized exclusively

for the low budget. However, RANets are consistently su-

perior to ensembles of ResNets on all datasets. This meets

our expectation that Sub-network 1 with the first classifier in

RANet is specially optimized for recognizing “easy” sam-

ples. Since Sub-network 1 directly operates on the feature

maps with the lowest resolution, it avoids performing the

convolutions on high-resolution feature maps, which result-

s in the high computational efficiency of the first classifier.

Furthermore, as Sub-network 1 in RANets can be viewed as

exclusively optimized lightweight models, the early classi-

fiers of RANets show their advantages in the classification

tasks. Different from ResNet ensembles, which repeat the

computation of similar low-level representations, RANets

fuse the feature maps from previous lightweight networks

into a large network to make full use of the obtained fea-

tures. This mechanism effectively improves classification

accuracies when we have more computational resources.

4.2. Budgeted Batch Classification

The budgeted batch classification setting is described in

[11]. We set a series of thresholds that depend on different

computational budgets. For a given input image, we let it

pass through each classifier in an adaptive network, sequen-

tially. The forward propagation stops at the classifier whose

output confidence reaches the given threshold, and then we

report its prediction as the final result for this image.

Baseline models. For CIFAR-10 and CIFAR-100, we

use ResNet, DenseNet and DenseNet* [11] as baseline

models. For ImageNet, we additionally evaluate ResNet

and DenseNet with multi-classifier [20]. Performance of

some classical deep models are also reported in the exper-

imental results, such as WideResNet [40] (for CIFAR) and

GoogLeNet [33] (for ImageNet). See Appendix A for de-

tails about the architecture configurations of MSDNets and

RANets in the experiments. Moreover, we implement the

techniques in [22] to further evaluate the improved RANets

and MSDNets. The results are provided in Appendix B.

Results. The results are summarized in Figure 6. We

plot the classification accuracy of each MSDNet and RANet

in a gray and a light-yellow curve, respectively. We select

the best model for each budget based on its accuracy on

the test set, and plot the corresponding accuracy as a black

curve (for MSDNet) or a golden curve (for RANet).

The results on the two CIFAR datasets show that RANets

consistently outperform MSDNets and other baseline mod-

els across all budgets. In general, the networks with multi-

scale dense connection architecture are always substantial-

ly more accurate than other baseline models with the same

amount of computation cost under the budgeted batch clas-

sification setting. For low computational budget (less than
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Figure 5. Accuracy (top-1) of anytime prediction models as a function of computational budget on CIFAR-10 (left), CIFAR-100 (middle)

and ImageNet (right). Higher is better.
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Figure 6. Accuracy (top-1) of budgeted batch classification models as a function of average computational budget per image on CIFAR-10

(left), CIFAR-100 (middle) and ImageNet (right). Higher is better.

0.2 × 108 FLOPs), on CIFAR-10, the proposed model us-

es 20% fewer FLOPs to achieve the classification accura-

cy of 92% compared to MSDNet. On CIFAR-100, RANet

can achieve the classification accuracy of 68% with only

about 60% FLOPs compared to MSDNet. Even though our

model and MSDNet show close performance on CIFAR-10

when the computational budget ranges from 0.2 × 108 to

0.3× 108, the classification accuracies of RANets are con-

sistently higher than ( 1%) these of MSDNets on CIFAR-

100 in median and high budget intervals (over 0.2 × 108

FLOPs). Moreover, our model can achieve an accuracy of

94.2% when the budget is higher than 0.2 × 108 FLOPs.

This accuracy is 0.5% higher than that of MSDNet under

the same computational budget condition. The experiments

also show that RANets are up to 4 times more efficient than

WideResNets on CIFAR-10 and CIFAR-100.

The experiments on ImageNet yield similar results to

those on CIFAR. We observe that RANets consistently sur-

pass MSDNets. Our networks win about 0.5%, 1% and

1.2% in terms of top-1 accuracy with 0.75 × 109, 1 × 109

and 1.75 × 109 FLOPs respectively. The results indicate

that our RANet outperforms MSDNet by a larger margin as

more computational resources are provided. With the same

FLOPs, our models achieve more accurate classification re-

sults than these popular deep neural networks. With the

same classification accuracy, our model reduces the com-

putational budget by around 65%, 56% and 44% compared

to GoogLeNet, ResNets and DenseNets, respectively. All

these results demonstrate that the resolution adaptation a-

long with the depth adaptation can significantly improve the

performance of adaptive networks under the budgeted batch

classification setting.

4.3. Visualization and Discussion

Figure 7 illustrates the ability of RANet to recognize

samples with different difficulties. In each sub-figure, the

left column shows “easy” samples that are correctly classi-

fied by the earlier classifiers with high classification confi-

dence. The right column shows “hard” samples that fail to

reach sufficient confidence at the early exits and are passed

on to the deeper sub-networks handling high-resolution fea-

tures. The figure suggests that the earlier classifiers can rec-

ognize prototypical samples of a category, whereas the later

classifiers are able to recognize non-typical samples, which
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(a) Owl (b) Hummingbird (c) German Sheperd

“easy” “hard” “easy” “hard” “easy” “hard”

Figure 7. Visualization of ImageNet samples: Owl, Hummingbird

and German Shepherd. The column on the left of each sub-figure:

the images that exit from the earlier classifiers (“easy” samples);

The column on the right of each sub-figure: the images that fail to

be correctly classified at the earlier classifiers but are successfully

recognized at the last few classifiers (“hard” samples).

is similar to the experimental results in [11].

It is also observed that the high-resolution feature maps

and their corresponding sub-networks are necessary for ac-

curately classifying the object in three different cases.

• Multiple objects. We find that an image contain-

ing multiple objects can be viewed as a “hard” sample for

RANet. The co-occurrence of different objects may corrupt

the feature maps and therefore confuse the early classifiers.

In this case, the relationship between each object is a key

factor that can seriously affect the categorical prediction of

the whole image. For example, in Figure 7 (a), the Ima-

geNet dataset refers the image with an owl on a man’s hand

as the class “owl”, even though there are two people in this

image. Apparently, rapid downsampling could submerge

the own in the image and the network can recognize it as

the class “person”. Furthermore, categorizing this image as

the class “owl” may result from human perception that we

consider objects on a person’s hand at the center of an image

as more important information. This complex relationship

can only be exploited with stronger representations learned

by a powerful network.

• Tiny objects. It is observed that the images with tiny

objects always pass through the whole network and thus are

also considered as “hard” samples for RANet. A possible

explanation for this phenomenon is that the information of

these tiny target objects in the images can be completely

lost after rapidly downsampling the images. The clues for

classifying those tiny objects can only be obtained by pro-

cessing the high-resolution feature maps. For instance, in

the right image on the second row of Figure 7 (b), the hum-

mingbird drinking water is too small. Therefore, the repre-

sentations of the hummingbird can easily be lost due to the

rapid downsample operations and might be completely van-

ished in the coarse feature maps. This makes the image un-

able to be recognized until the high-resolution feature maps

are used for inference, which results in its late exiting in our

adaptive inference network.

• Objects without representative characteristics. An-

other kind of “hard” samples for RANet contain object-

s without representative characteristics. Such samples are

not uncommon due to various factors (such as lighting con-

ditions and shooting angles). In this scenario, we conjec-

ture that the network learns to utilize alternative charac-

teristics instead of representative ones for image recogni-

tion. For instance, by comparing the “easy” and “hard”

samples in Figure 7 (c), the network can easily recognize

the German Shepherd as long as its facial features are pre-

sented completely in the images. However, without com-

plete facial features, a German Shepherd can only be cor-

rectly classified at the last classifier. For those “hard”

samples, the network may take the fur texture of the Ger-

man Shepherd as the alternative discriminative features dur-

ing inference. Therefore, without complete facial informa-

tion, the network learns to correctly classify German Shep-

herd by searching useful alternative characteristics in high-

resolution feature maps.

The rationality and effectiveness of the resolution adap-

tation can be further understood from the signal frequen-

cy perspective, which has been demonstrated and verified

in [4]. The low-frequency information encoded in low-

resolution features, which usually contains global informa-

tion, can be sufficient for successful classification of most

input samples. Nevertheless, higher frequencies encoded

with fine details are obligatory for classifying those untypi-

cal samples.

5. Conclusion

In this paper, we proposed a novel resolution adaptive

neural network based on a multi-scale dense connection ar-

chitecture, which we refer to as RANet. RANet is designed

in a way that lightweight sub-networks processing coarse

features are first utilized for image classification. Samples

with high prediction confidence will exit early from the net-

work and larger scale features with finer details will only be

further utilized for those non-typical images which achieve

unreliable predictions in previous sub-networks. This res-

olution adaptation mechanism and the depth adaptation in

each sub-network guarantee the high computational effi-

ciency of RANet. On three image classification benchmark-

s, the experiments demonstrate the effectiveness of the pro-

posed RANet in both the anytime prediction setting and the

budgeted batch classification setting.
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