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Abstract

While video-based person re-identification (Re-ID) has

drawn increasing attention and made great progress in re-

cent years, it is still very challenging to effectively overcome

the occlusion problem and the visual ambiguity problem for

visually similar negative samples. On the other hand, we

observe that different frames of a video can provide com-

plementary information for each other, and the structural

information of pedestrians can provide extra discriminative

cues for appearance features. Thus, modeling the temporal

relations of different frames and the spatial relations within

a frame has the potential for solving the above problems.

In this work, we propose a novel Spatial-Temporal Graph

Convolutional Network (STGCN) to solve these problems.

The STGCN includes two GCN branches, a spatial one and

a temporal one. The spatial branch extracts structural in-

formation of a human body. The temporal branch mines

discriminative cues from adjacent frames. By jointly opti-

mizing these branches, our model extracts robust spatial-

temporal information that is complementary with appear-

ance information. As shown in the experiments, our model

achieves state-of-the-art results on MARS and DukeMTMC-

VideoReID datasets.

1. Introduction

The widely deployed close-circuit television cameras

produce a mass of visual surveillance data everyday. This

brings the necessities of automatic surveillance video un-

derstanding. Because of the privacy or economic issue,

there is always non-overlapping regions. Thus it is chal-

lenging to conduct tracking or activity analysis on a non-

∗Corresponding author

(a)

(c) (d)

Large gap on 
appearance.

Some body 
parts are 
occluded in 
some frames, 
but reappear 
in others.

Large gap on structure.Samples of different 
identities with  similar 
appearance.

Providing complementary 
information for missing 
same patches

Providing complementary 
information for other patches

(b)

Figure 1. Four image sequences from four different pedestrians

on MARS dataset. In (a), it is easy to find the same body parts

are occluded in some frames but reappear in others. It’s easy

to differentiate the pedestrians of (c) and (d) due to their large

gap in appearance. However, only using the appearance features

are not discriminative enough to distinguish (b) and (d), but their

structural information of the body is different. Exploiting spatial-

temporal relations of parts among the sequence can alleviate these

problems.

overlapping camera network. In this regard, it is crucial

to re-identify pedestrians across non-overlapping camera

views, which is called person re-identification (Re-ID).

Existing Re-ID methods can be divided into two cate-

gories, i.e., image-based [10, 13, 31, 29, 36, 74, 60, 27, 1,

56, 59, 51, 30, 68, 69, 49] and video-based [8, 4, 61, 11].

Image-based Re-ID takes one or several images as input

without considering the temporal information. Generally,

it heavily relies on appearance features that are related to

color/texture of clothes. When the bounding boxes are not

perfect, or there exist noise or occlusions, appearance-based

features could be less effective, and image-based Re-ID

may not work well in this case. In contrast, by taking a
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short video clip as input, video-based Re-ID can leverage

much richer information, which is potentially beneficial to

alleviate the limitations of appearance-based features. To

this end, most of the video-based methods employ 3D-

CNN [24, 42, 50], RNN/LSTM [63, 66, 75], or attention

mechanism [11, 75, 61, 33, 26, 23] to exploit temporal rela-

tions from the video. However, these methods only model

the temporal relations across the different frames and ignore

the potential relations of different parts of the body within a

frame or across frames, which may contain more discrimi-

native and robust information for person Re-ID.

As shown in Figure 1 (a), different body parts of persons

are occluded or misaligned in different frames, which often

causes a performance degeneration for person Re-ID. How-

ever, we can also observe some patches of the pedestrian

are occluded in some frames but reappear in others. These

patches could mutually provide complementary information

for each other if we explicitly exploit the temporal relations

of patches across different frames, so as to alleviate the oc-

clusion and misalignment problem.

On the other hand, it is effortless to distinguish the

pedestrians in Figure 1 (c) and (d) because their appear-

ances are significantly dissimilar. However, the pedestrians

in Figure 1 (b) and (d) are very visually similar and the ap-

pearance may be not powerful enough for distinguishing in

this case. But their structural information of body (e.g., the

shape of body) is obviously different which can be seen as

complementary with the appearance features and benefits

the identification. Thus, capturing the structural informa-

tion by modeling the spatial relations of patches for each

frame is also important.

Inspired by the strong ability of automatically relation

modeling of graph convolutional network (GCN) [20] and

the successful application of GCN in computer vision, we

propose to use GCN to model the relations of different

patches. Specifically, we construct the graph by connect-

ing all patches of the different frames to model the tempo-

ral relations, aiming at providing complementary informa-

tion across different patches which can alleviate the occlu-

sion and misalignment problem. On the other hand, we also

consider the structural information of intra-frame to provide

complementary information of appearance by constructing

a patch graph for each frame in a video. Finally, a unified

framework, namely Spatial-Temporal Graph Convolutional

Network (STGCN), is proposed to simultaneously model

the spatial and temporal relations of patches in a video.

While graph modeling has been seen in person Re-ID, these

methods build a graph on image-level [64, 45] or ignore the

structural information within an image [57].

In summary, our contributions are the following. (1) We

employ GCN to model the potential relations of different

parts of the body within a frame and across frames, provid-

ing more discriminative and robust information for person

Re-ID. (2) We propose a unified framework that jointly con-

siders the temporal and structural relations and is able to

perform end-to-end training. Extensive experiments show

that our proposed method outperforms existing state-of-the-

art methods on two large-scale video-based person Re-ID

datasets.

2. Related Work

Image-based person Re-ID. Existing image-based per-

son Re-ID mainly focus on designing discriminative hand-

crafted feature [10, 13, 31, 29, 36, 74, 60], distance metric

learning [13, 29, 60, 55, 41, 21, 72, 38, 40, 28, 35, 39, 6, 73,

65, 67, 54, 3] or deep learning [27, 1, 56, 59, 51, 30, 68, 69,

49]. However, a video contains many frames and the tem-

poral information is important. Image-based methods lack

modeling the temporal relations of a video so these methods

are sub-optimal for video-based person Re-ID.

Video-based person Re-ID. Most of video-based methods

use optical flow [8, 4, 37, 61], recurrent neural networks

(RNNs), temporal pooling [71], or spatial-temporal atten-

tion to model the temporal information. Specifically, In

[8, 4, 37, 61], the authors use optical flow by computing

between adjacent frames to extract temporal features for

person Re-ID. However, the process of computing optical

flow is time-consuming and the optical flow is not robust

enough for occlusion and noisy. As for RNN-based meth-

ods [8, 37, 66, 4, 61, 75], as mentioned in [12], RNN has

a limited effect on modeling temporal information in Re-ID

task, or too hard to train caused by its complicated struc-

ture. Compared with temporal pooling [71] which assigns

the same weights to all frames, many attention-based meth-

ods [11, 75, 61, 33, 26] learn the weight of different frames

or parts from a static perspective, i.e. considering the spa-

tial attention and temporal attention separately. Thus, these

methods do not fully consider the temporal relations of body

parts across different frames and the effect is limited.

Graph neural network methods. In recent years, graph

convolutional networks (GCNs) and its variants [20, 5,

14, 18] have been successfully applied to some tasks in

computer vision, such as skeleton-based action recogni-

tion [62], video classication [52], and multi-label image

recognition [7] due to its strong ability of relations mod-

eling. Similarly, many works [57, 64, 45] also apply GCNs

on person Re-ID. Specifically, Yan et al. [64] and Shen et

al. [45] build the graph model on image-level, i.e. each node

of the graph represents an image, to consider the relations

of among images. However, these methods are image-based

which do not consider the temporal relations. Furthermore,

they ignore the relations of different body parts of intra-

frame or inter-frame. Particularly, Wu et al. [57] introduce

a graph neural network to enable the contextual interactions

between the relevant regional features by exploiting pose

alignment connection and feature affinity connection. How-
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Figure 2. The overall architecture of our proposed method. The input video has T frames and we use a CNN backbone to extract the

feature map for each frame. Then, the model is divided into three branches. For the temporal branch and spatial branch, we divide the

feature maps horizontally into P patches. These patches are served as nodes in the graph. The temporal branch consists of a temporal

GCN module that constructs a graph for each video to model the temporal relations of different patches across different frames. The spatial

branch consists of a structural GCN module that constructs graphs for each frame in the video to model the spatial relations of patches

within a frame. In the global branch, we perform average pooling on each feature map and then use a temporal average pooling to aggregate

features across different frames.

ever, the pose information extraction requires extra com-

putation and it is not integrated into the whole network to

perform end-to-end training, which may cause sub-optimal

result. Furthermore, this method connects features of differ-

ent parts of all frames and does not model the spatial rela-

tions of body parts for each frame, ignoring the intra-frame

structural information.

Compared to these methods, we propose a unified

spatial-temporal GCN framework to jointly model the re-

lations of the whole patches in video level and the struc-

tural information of individual frames in frame level, which

can learn the discriminative and robust spatial-temporal re-

lations of patches to facilitate video-based Re-ID.

3. The Proposed Method

As shown in Figure 2, the architecture for our proposed

model consists of three branches. The upper branch is

the temporal branch for extracting temporal cues from the

patches across the adjacent frames. The middle branch is

the spatial branch for extracting structural information of a

human body by modeling the spatial relations of patches.

The bottom branch is global branch for extracting appear-

ance feature of the pedestrian.

In the following sections, we firstly introduce the con-

struction of patch graph in Section 3.2. Based on this, we

further develop the temporal GCN module in Section 3.3

and the structural GCN module in Section 3.4.

3.1. Preliminary

Given a video, we denote it as V = {I1, I2, . . . , IT },

where T is the number of frames sampled from the video.

For each frame of the video, we denote feature map of

frames extracted by the backbone model as F ,

F = {F1, F2, . . . , FT } , (1)

where Fi is the feature map of i-th frame in the video,

Fi ∈ R
h×w×c, in which h, w, c denotes the height, width

and channel number, respectively. Each feature map Fi is

horizontally partitioned into P patches. Then each patch is

processed by average pooling and each patch feature is rep-

resented as xi. Thus, for a video with T frames, the total

number of patches is N = T · P . We denote the patches of

the video as pi = 1, . . . , N and the obtaining patch feature

vector as xi ∈ R
c, i = 1, . . . , N .

3.2. Patch Graph Construction

To explore and utilize the relations of patches, we use

GCN to model the relations between patches. Let G(V, E)
be the constructed patch graph of N nodes with nodes

vi ∈ V and edges eij = (vi, vj) ∈ E . Here, each patch

is treated as a node and the edges in E are used to repre-

sent the relations between patches. And A ∈ R
N×N is the

adjacency matrix where each element represents a pairwise

relations of patches.

Motivated by [52], we represent the pairwise relations

between every two patches in the graph as follows:

e (xi, xj) = φ (xi)
T
φ (xj) , (2)

where φ represents a symmetrical transformation of the

original patch features. More specifically, φ can be repre-

sented as φ = wx. The parameter w is a d × d dimension

weight which is learnable via back propagation. By adding

such transformation, it allows us to adaptively select and

learn the correlations of different patches within a frame or

across different frames.
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Figure 3. Illustration of the temporal GCN branch. The different

color borders mean different patches. In this branch, we horizon-

tally partition each feature map into P patches, then we can totally

get T ·P patches for a video sampling T frames. These patches are

used as the nodes of graph. We can get the graph representation

of the video, which be denoted as Gt(Vt, Et). Then, we perform

graph convolution operation on the graph. Finally, we use max

pooling on the output of GCN to get final feature.

Then, the adjacency matrix A ∈ R
N×N associated to G

can be constructed, which is the key component for GCN

because each element Aij reflects the relations of node

xi and node xj . However, considering the following two

points, 1) for each row of the affinity matrix, the sum of all

the edge values (i.e. the edges connect to patch i) should be

1; 2) each element of the adjacency matrix should be non-

negative, the coefficient should be in the range of (0,1); we

perform normalization operation on each row of the adja-

cent matrix A by

A(i,j) =
e2(xi, xj)∑N

j=1 e
2(xi, xj)

. (3)

Following Kipf and Welling [20], let Ã = A + In rep-

resents the self-loop adjacency matrix and In ∈ R
N×N is

the identity matrix, we can use a re-normalization trick to

approximate the graph-Laplacian:

Â = D̃
−

1

2 ÃD̃
−

1

2 , (4)

where D̃(i,i) =
∑

j Ã(i,j). Finally, we can obtain the cor-

responding adjacent matrix Â for the graph G(V, E) so that

we can further model the structural and temporal relations

of patches.

3.3. Temporal GCN Module

As we have mentioned in Section 1, the patches of differ-

ent frame in video can provide complementary information

for alleviating the problem causing by occlusion and noise.

In our proposed model, the Temporal GCN module (TGCN)

is designed to capture the temporal dynamics relationships

between patches across the different frames.

As shown in Figure 3, each video has N patches then we

use all patches to construct the temporal graph Gt(Vt, Et),
where Vt = {x1, x2, . . . , xN}, and the corresponding adja-

cent matrix Â
t by using Equation (2) (3) (4).

For the temporal branch, given the adjacent matrix Â
t,

we apply the GCN to capture the temporal relations of the

patches of the whole video. We build M -layer graph con-

volutions in our implementation. Specifically for the m-th

layer (1 ≤ m ≤ M ), the graph convolution is implemented

by

X
m = Â

t
X

m−1
W

m. (5)

where X
(m) ∈ R

N×dm are the hidden features for all

patches at layer m and dm is the dimension of feature;

X
0 ∈ R

N×d is the initial patches features obtained by CNN

backbone; W(m) ∈ R
dm×dm is the parameter matrix to be

learned. After each layer of graph convolution, a Layer Nor-

malization [2] layer and a LeakyReLU(with negative input

slope α = 0.1) are appended. In addition, our experiments

find it will be more effective and stable by using shortcut

connection as [15],

X
m := X

m +X
m−1, 2 ≤ m ≤ M. (6)

After graph convolution, the output of temporal GCN mod-

ule is XM ∈ R
Nt

×dM for each video. Finally, we use max

pooling operation on X
M . Therefore, for each video, we

can obtain its temporal GCN feature : f t ∈ R
1×dM , where

dM is set to 2048 in our experiments.

3.4. Structural GCN Module

One of the most challenging difficulties of image-based

person Re-ID is how to distinguish visually similar iden-

tities, and most of the image-based methods can only rely

on extracting fine-grained appearance features. However,

in video-based person Re-ID, the structural information

(e.g. shape information) of the same identity will be more

complete and precise because each video has many frames

which may cover more views and poses. Thus the structural

information can provide extra discriminative information to

enhance a Re-ID system.

As shown in Figure 4, the structural GCN module

(SGCN) is different from the TGCN. In TGCN, we use

all patches of different frames to construct the graph and

it aims at capturing complementary information among

patches across frames. While in SGCN, we firstly use GCN

to model the spatial relations of different patches for each

frame in a video (i.e. each frame has a GCN). Then, we fuse

the GCN features of frames in the video to get the intrinsic

structural feature in the video.

Specifically, given a video with T frames, the GCN

of i-th frame is represented as Gs
i (V

s
i , E

s
i ), where Vs

i =
{xi,1, xi,2, . . . , xi,P } (note that the subscript i represents

the i-th frame and each frame is divided into P patches).
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Figure 4. Illustration of the spatial GCN branch. We independently

exploit the relations of the patches of each frame to capture the

structural information from video sequences. We aggregate all the

output features of GCNs to form the structural feature of the video.

Similar to TGCN, we use Equation (2) (3) (4) to obtain

the corresponding adjacent matrix Âs
i for each Gs

i (V
s, Es);

then we build a K-layer graph convolutions for i-th frame.

For the k-th (1 ≤ k ≤ K) graph convolution layer, the

detailed operation can be written as

X
k
i = Â

s
iX

k−1
i W

k
i , (7)

where W
k
i ∈ R

dk×dk , and dk is the dimension of feature.

To reduce the dimension of each sub GCN feature, the final

output of GCN is XK
i ∈ R

P×256; then, we use max pooling

operation so that dimension of the feature of each frame is

256. Finally, the features of the video are concatenated and

the final feature is denoted as fs.

3.5. Overview of Our Model and Loss Functions

As shown in Figure 2, our proposed model consists of

a global branch, a temporal branch, and a spatial branch.

The global branch extracts the global appearance feature

for each video. The temporal branch with TGCN models

the temporal relations of patches across different frames for

learning temporal information, which can provide comple-

mentary information for other patches. The spatial branch

with SGCN is designed for modeling the spatial relations

for each frame to extract the structural information.

We use the batch hard triplet loss function [16] and the

softmax cross-entropy loss function to train the networks.

As shown in Figure 2, the two loss formulas are denoted as

Ltriplet and Lsoftmax respectively.

Specifically, in our experiments, we individually com-

pute each triplet loss of three type features. Thus the final

triplet loss can be represented as:

L′

triplet = L
global
triplet + Lt

triplet + Ls
triplet. (8)

For the softmax cross-entropy loss function Lsoftmax,

in our experiments, we concatenate the three type features

fglobal,f t,fs as the final feature, which can be written as

fall = [fglobal, f t, fs], where [·] means concatenation. Fi-

nally, we use the feature fall to compute the softmax cross-

entropy loss.

Thus the total loss Ltotal is the combination of these two

losses as follows:

Ltotal = Lsoftmax + L′

triplet. (9)

4. Experiments

4.1. Datasets and Evaluation Protocols

Datasets. We evaluate our proposed model on two large-

scale video-based person Re-ID datasets: DukeMTMC-

VideoReID [58, 53] and MARS [71]. MARS is the largest

video-based person re-identification benchmark dataset

with 17,503 sequences of 1,261 identities and 3,248 dis-

tractor sequences. The training set contains 625 identities

and the testing set contains 636 identities. DukeMTMC-

VideoReID dataset is another large-scale benchmark dataset

with 4,832 tracklets of 1,812 identities for video-based per-

son Re-ID. It is derived from the DukeMTMC dataset [43].

The dataset is divided into 408, 702 and 702 identities for

distraction, training, and testing, respectively. The bound-

ing boxes are annotated manually.

Evaluation protocols. In our experiments, we adopt the

Cumulative Matching Characteristic (CMC) curve and the

mean average precision (mAP) to evaluate the performance

of our proposed method.

4.2. Implementation Details

We use ResNet50 [15] as our backbone network which

is pre-trained on ImageNet [9] firstly. The last stride of

ResNet50 is set to be 1. We adopt a restricted random sam-

pling strategy [26] to randomly sample T = 8 frames from

every video. Each image is resized to 256 × 128 with ran-

dom horizontal flips [32] for data augmentation. We train

our network for 800 epochs in total, with an initial learn-

ing rate of 0.0003 and decayed it by 10 every 200 epochs.

Adam [19] is chosen to optimize the networks. Following

[16], we sample 16 identities, each with 4 tracklets, to form

a batch of size 16×4×8 = 512 images. For the parameters

of GCN modules, the number of GCN layers in TGCN M

is 3, the number of GCN layers in SGCN K is 2, and the

number of patches P is 4.

4.3. Comparison with the Stateoftheart Methods

To validate the effectiveness of our proposed method on

the video-based person Re-ID problem, we compare our

proposed method with several recent state-of-the-art meth-

ods on MARS and DukeMTMC-VideoReID. The results of

the comparisons are presented in Table 1 and Table 2. We
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Table 1. Performance (%) comparison with related works on

MARS.

Method mAP rank1 rank5 rank20

BoW+kissme [71] 15.50 30.60 46.20 59.20

IDE+XQDA [71] 47.60 65.30 82.00 89.00

SeeForest [75] 50.70 70.60 90.00 97.60

QAN [33] 51.70 73.70 84.90 91.60

DCF [22] 56.05 71.77 86.57 93.08

TriNet [16] 67.70 79.80 91.36 -

MCA [47] 71.17 77.17 - -

DRSA [26] 65.80 82.30 - -

DuATM [46] 67.73 81.16 92.47 -

MGCAM [47] 71.17 77.17 - -

PBR [48] 75.90 84.70 92.80 95.00

CSA [4] 76.10 86.30 94.70 98.20

STMP [34] 72.70 84.40 93.20 96.30

M3D [24] 74.06 84.39 93.84 97.74

STA [11] 80.80 86.30 95.70 98.10

GLTR [23] 78.47 87.02 95.76 98.23

Wu et al. [57] 81.1 89.8 96.1 97.6

VRSTC [17] 82.3 88.5 96.5 97.4

Zhao et al. [70] 78.2 87.0 95.4 98.7

STE-NVAN [32] 81.2 88.9 - -

STGCN(Ours) 83.70 89.95 96.41 98.28

Table 2. Performance (%) comparison with related works on

DukeMTMC-VideoReID.

Method mAP rank1 rank5 rank20

EUG [58] 78.3 83.6 94.6 97.6

ETAP-Net [58] 78.34 83.62 94.59 97.58

STE-NVAN [32] 93.5 95.2 - -

VRSTC [17] 93.5 95.0 99.1 -

STA [11] 94.90 96.20 99.30 99.60

GLTR [23] 93.74 96.29 99.30 99.71

Wu et al. [57] 94.2 96.7 99.2 99.7

STGCN(Ours) 95.70 97.29 99.29 99.72

can see that our proposed method achieves the best results

on rank-1 accuracy and mAP on both datasets.

Specifically, existing attention-based methods (including

STA [11], GLTR [23]) process different regions and frames

independently and they do not fully consider the intrinsic

relations between patches. Thus they may miss some dis-

criminative cues for Re-ID. Zhao et al. [70] requires ex-

tra attribute labels, which limits its application. As for

M3D [24], the 3D convolutional operation is computation-

ally expensive and sensitive to spatial misalignment. Partic-

ularly, compared with other graph-based method [57], our

proposed method achieves better results on both datasets.

The main reason can fall into two aspects: 1) the pose esti-

mation in [57] is separate from the whole framework which

may cause sub-optimal result and the pose alignment is sen-

sitive to the quality of pose estimation; 2) it does not explic-

itly model the spatial relations of body parts for each frame,

ignoring the structural information of intra-frame.

In summary, compared to existing methods, our pro-

Table 3. The performance (%) of individual components in our

proposed method. “SGCN+global” means we only used spatial

and global branches during training and testing, and similar for

“TGCN+global”. For the baseline model, we remove the temporal

branch and the spatial branch. “Ensemble” means we combine

“SGCN+global” and “TGCN+global” by using score sum.

Dataset MARS DukeMTMC

Method mAP rank1 mAP rank1

Baseline (only global branch) 80.76 88.74 94.08 96.01

TGCN+global 81.97 89.70 95.12 96.87

SGCN+global 82.17 89.80 94.55 96.44

Ensemble 82.67 89.55 94.64 96.15

STGCN (SGCN+TGCN+global) 83.70 89.95 95.70 97.29

posed method jointly considers the potential relations of

different parts of the body within a frame and across dif-

ferent frames which can provide more discriminative and

robust information, and is able to perform end-to-end train-

ing. These experimental results validate the superiority of

our method.

4.4. Ablation Study

4.4.1 The Impact of Two GCN Modules

To verify the impact of the spatial branch and the tem-

poral branch separately, we train the baseline model,

“SGCN+global”, and “TGCN+global” under the same ex-

periment setting of STGCN, respectively. “SGCN+global”

means we only use spatial and global branches dur-

ing training and testing, and similar for “TGCN+global”.

For the baseline model, we remove the temporal branch

and the spatial branch. “Ensemble” means we combine

“SGCN+global” and “TGCN+global” by using score sum.

The experimental results are reported in Table 3.

In Table 3, the performance of “SGCN+global” and

“TGCN+global” are higher than the performance of the

baseline model, which verifies the effectiveness of each

GCN module. Because the baseline model (i.e. only global

branch) does not model the relations of patches, which

contains more discriminative and robust information. We

can see that STGCN and “Ensemble” achieve better results

compared to “SGCN+global” and “TGCN+global”, which

means the temporal relations and structural relations are

complementary. Furthermore, by comparing STGCN and

“Ensemble”, we also can conclude that STGCN is not only

simply superimposing a single feature but benefits from

jointly modeling temporal and structural relations.

4.4.2 The Impact of Graph Convolution

To verify the effectiveness of graph convolution, we re-

place the layers in GCN with fully-connected layers then

performe training and testing under the same experimental

setting. Specifically, considering one-layer GCN, the Equa-

tion (5) or (7) can be written as Y = AXW, where A is

adjacent matrix, X is input, W is the parameters matrix of
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Table 4. Performance (%) of our proposed model with graph con-

volution network or fully connected network. For the baseline

model, we remove the temporal branch and the spatial branch.

“SGCN+global” means we only use spatial and global branches

during training and testing. “TFCN+SGCN+global” means we

combine the global, spatial, and temporal branches during train-

ing and testing. And the others are similar.

Dataset MARS DukeMTMC

Method mAP rank1 mAP rank1

Baseline (only global branch) 80.76 88.74 94.08 96.01

TFCN+global 80.62 88.28 94.34 96.15

TGCN+global 81.97 89.70 95.12 96.87

SFCN+global 81.10 89.39 94.28 95.30

SGCN+global 82.17 89.80 94.55 96.44

TFCN+SGCN+global 81.51 89.24 95.62 97.15

TGCN+SFCN+global 82.65 89.90 95.24 96.30

TFCN+SFCN+global 82.27 88.94 95.03 96.15

SGCN+TGCN+global (STGCN) 83.70 89.95 95.70 97.29

the GCN layer. On the other hand, the formulation of the

fully-connected network (FCN) can be written Y = XW,

where X is input and W is the parameters matrix of the

FCN layer. Compared with GCN, the FCN can be viewed

as removing the adjacent matrix A.

Thus, to evaluate the impact of the graph convolution,

we replace the GCN layers with fully-connected layers for

each GCN Module by removing all the adjacent matrices

in Equation (5) and (7). We have following variants of

our model, including: (1) “TFCN” means the GCN lay-

ers in TGCN is replaced by fully-connected layers; (2)

“SFCN” means the GCN layers in SGCN is replaced by

fully-connected layers; and (3) “TFCN + SFCN” means the

GCN layers in TGCN and SGCN are both replaced. The

experimental results are shown in Table 4.

As shown in Table 4, the performance of the models with

the GCN module is significantly higher than the models

without the GCN module, and the effect of fully-connected

layers is limited or could be detrimental. This is because the

fully-connected layers cannot model the relations of differ-

ent patches, such methods cannot further mine the potential

information in a video. Thus, the graph convolution oper-

ation and the modeling temporal and structural relations is

necessary.

4.5. Visualization

Visualization of class activation maps. We visualise the

class activation maps (CAMs) in Figure 5 by using Grad-

CAM [44]. We can observe that the class activation maps

of different frames of our proposed method have higher ac-

tivation in the same discriminative area. Meanwhile, it is

not difficult to find that our proposed method can focus on

more discriminative cues by leveraging the spatial and tem-

poral relations of patches.

Retrieval results analysis. As shown in Figure 6, we vi-

Without graph

With  graph

Image sequences

(a) (b)

Figure 5. The visualization of the class activation maps (CAMs).

The first row is the original image sequences from MARS. The

second row is the class activation maps of the baseline model. The

third row is the class activation maps of our proposed model.

sualise the retrieval results of the same person. We can see

that the top 5 results of our proposed method are all match-

ing. However, the Rank-4 and Rank-5 results of the baseline

model are disturbed by the samples of other identities with

similar appearance or occlusion. Thus, the retrieval results

prove our proposed method indeed alleviate the problem

of similar appearances of different identities and occlusion

problem.

4.6. Further Analysis

4.6.1 The Number of GCN Layers in GCN Module

In our proposed model, the number of GCN layers in TGCN

and SGCN are denoted as M and K, respectively. We carry

out experiments to investigate the effect of the number of

GCN layers by changing one of the GCN modules while

freezing the other one.

The impact of the number of GCN layers in TGCN. In

this experiment, we fix the number of GCN layers in SGCN

(i.e., K = 2) then evaluate the performance of our model

when M = 2, 3, 4, 5, 6. From Figure 7 (a), we can see that

the best Rank-1 is 90.35% when M = 4, and the best mAP

is 83.70% then M = 3. Whether M = 3 or M = 4, the

results outperform the state-of-the-art methods and baseline

by a large margin.

The impact of the number of GCN layers in SGCN. Sim-

ilarly, we fix the number of GCN layers in SGCN (i.e.,

M = 4) then evaluate the performance of our model when

K = 1, 2, 3, 4. As shown in Figure 7 (b). When K = 2, the

model achieves the best performance.

As shown in Figure 7, the performance of STGCN

mostly higher than the baseline model (i.e., 80.76%/88.74%

in mAP/Rank-1), although the number of GCN layers will

affect the performance of the model. We also can observe

that if two GCN modules are too shallow or deep, the effect

of GCN will decrease. The graph convolution of the GCN

can be simply view as a special form of Laplacian smooth-

ing, which mixes the features of a vertex and its nearby

neighbors. A shallow GCN cannot effectively propagate

the node information to the entire data graph. But when

the GCN is too deep, it also brings potential concerns of
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Figure 6. (a) and (b) are the top 5 retrieval results of the baseline model and our proposed method in the MARS dataset, respectively. The

query and gallery both are image sequences. Best viewed in color.
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Figure 7. (a) Analysis on the number of GCN layers in TGCN (b)

Analysis on the number of GCN layers in SGCN. We carry out

these experiments on the MARS dataset.
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Figure 8. (a) Analysis on the number of patches in TGCN. (b)

Analysis on the number of patches in SGCN. We carry out these

experiments on the MARS dataset.

over-smoothing [25].

4.6.2 Analysis on the number of patches in GCN mod-

ule

The number of nodes in the graph (i.e., the number of

patches) is another key parameter of GCN. For convenience,

we denote the number of patches of each frame in TGCN

and SGCN are P t and P s, respectively.

The impact of the number of patches in TGCN. In this

experiment, we fix P s = 4 and evaluate the results when

P t = 2, 4, 8. From the Figure 8 (a), we can see the model

achieves the best performance when P t=4.

The impact of the number of patches in SGCN. Similarly,

when we analyze the effect of P s, we fix P t = 4. As shown

in Figure 8 (b), the model has the best performance when

ps=4.

From Figure 8, we can observe that our proposed model

is robust to the number of nodes in the graph to some ex-

tent and the performance of these experiments outperforms

the baseline model significantly. However, if the number

of patches of each frame is too large or small, the perfor-

mance will decrease. Because when the number of patches

increases, the patches will become smaller, which cannot

contain enough information. Conversely, when the number

of patches is too small, the patches might ignore subtle but

discriminative cues.

5. Conclusions

In this paper, we demonstrate the effectiveness of lever-

aging the temporal relations of patches for alleviating oc-

clusion problem and the spatial relations of patches for dis-

tinguishing the ambiguity samples with similar appearance.

Specifically, we propose a novel Spatial-Temporal Graph

Convolutional Network (STGCN), which contains two core

GCN branches. The spatial branch learns the structural in-

formation of human body by modeling relations of patches

of each frame. The temporal branch can alleviate occlu-

sion problem by modeling the temporal relations of patches

across the different frames. Furthermore, we integrate the

spatial branch and the temporal branch into a unified frame-

work and jointly optimize the model. Extensive experi-

ments validate the effectiveness of our proposed method.
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