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Figure 1. We define the difficulty level of the try-on task to easy, medium, and hard based on current works. Given a target clothing image and a reference

image, our method synthesizes a person in target clothes while preserving photo-realistic details such as characteristics of clothes (texture, logo), posture

of person (non-target body parts, bottom clothes), and identity of person. ACGPN (Vanilla) indicates ACGPN without the warping constraint or non-target

body composition, ACGPN† adds the warping constraint on ACGPN (Vanilla). Also, zooming-in of the greatly improved regions are given on the right.

Abstract

Image visual try-on aims at transferring a target cloth-

ing image onto a reference person, and has become a hot

topic in recent years. Prior arts usually focus on preserv-

ing the characteristics of a clothing image (e.g., texture,

logo, and embroidery) when warping it to an arbitrary hu-

man pose. However, it remains a big challenge to generate

photo-realistic try-on images when large occlusions and hu-

man poses are presented in the reference person (Fig. 1).

To address this issue, we propose a novel visual try-on net-

work, namely Adaptive Content Generating and Preserving

Network (ACGPN). In particular, ACGPN first predicts the

semantic layout of the reference image that will be changed

after try-on (e.g., long sleeve shirt→arm, arm→jacket), and

then determines whether its image content needs to be gen-

erated or preserved according to the predicted semantic

layout, leading to photo-realistic try-on and rich clothing

details. ACGPN generally involves three major modules.

First, a semantic layout generation module utilizes seman-

tic segmentation of the reference image to progressively

predict the desired semantic layout after try-on. Second,

a clothes warping module warps clothing images accord-

ing to the generated semantic layout, where a second-order
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difference constraint is introduced to stabilize the warp-

ing process during training. Third, an inpainting module

for content fusion integrates all information (e.g., reference

image, semantic layout, and warped clothes) to adaptively

produce each semantic part of human body. In compari-

son to the state-of-the-art methods, ACGPN can generate

photo-realistic images with a much better perceptual qual-

ity and richer fine-details.

1. Introduction

Motivated by the rapid development of image synthe-

sis [16, 30, 21, 22] , image-based visual try-on [19, 12] aim-

ing to transfer the target clothing item onto a reference per-

son has achieved much attention in recent years. Although

a considerable progress has been made [40, 4, 47, 2], it re-

mains a challenging task to build up the photo-realistic vir-

tual try-on system for the real-world scenario, partially as-

cribing to the semantic and geometric differences between

the target clothes and reference images, as well as the inter-

action occlusions between the torso and limbs.

To illustrate the limitations of existing visual try-on

methods, we divide the VITON dataset [12] into three sub-

sets of difficulty levels according to the human pose in 2D

reference images. As shown in Fig. 1, the first row gives an

easy sample from the VITON dataset [12], where the per-

son in the image is represented with a standard posture, i.e.,

face forward and hands down. In such a case, the methods

only need to align the semantic regions between the refer-

ence and target images. Some pioneering synthesized-based

methods [19, 2, 32, 3, 37] belong to this category. From

the second row, the image with the medium-level difficulty

is generally with torso posture changes. And several mod-

els [12, 40, 4, 47] have been suggested to preserve the char-

acteristics of the clothes, such as texture, logo, embroidery,

and so on. Such a goal is usually attained by developing

advanced warping algorithms to match the reference image

with clothes deformation. The last row of Fig. 1 presents

a hard example, where postural changes occur on both the

torso and the limbs, leading to spatial interactions between

the clothing regions and human body parts, e.g., occlusions,

disturbances, and deformation. Therefore, an appropriate

algorithm is required to understand the spatial layout of the

foreground and background objects in the reference image,

and adaptively preserve such an occlusion relationship in

the try-on process. However, content generation and preser-

vation remain an uninvestigated problem in virtual try-on.

To address the above limitations, this paper presents a

novel Adaptive Content Generation and Preservation Net-

work (ACGPN), which first predicts the semantic layout of

the reference image and then adaptively determines the con-

tent generation or preservation according to the predicted

semantic layout. Specially, the ACGPN consists of three

major modules as shown in Fig. 2. The first one is the Se-

mantic Generation Module (SGM), which uses the seman-

tic segmentation of body parts and clothes to progressively

generate the mask of the exposed body parts (i.e., the syn-

thesized body part mask) and the mask of warped clothing

regions. As opposed to prior arts, the proposed SGM gener-

ates semantic masks in a two-stage fashion to generate the

body parts first and synthesize the clothing mask progres-

sively, which makes the original clothes shape in the refer-

ence image completely agnostic to the network. The second

part is the Clothes Warping Module (CWM), which is de-

signed to warp clothes according to the generated semantic

layout. Going beyond the Thin-Plate Spline based meth-

ods [12, 40, 4], a second-order difference constraint is also

introduced to the Warping loss to make the warping process

more stable, especially for the clothes with the complex tex-

ture. Finally, the Content Fusion Module (CFM) integrates

the information from the synthesized body part mask, the

warped clothing image, and the original body part image to

adaptively determine the generation or preservation of the

distinct human parts in the synthesized image.

With the above modules, ACGPN adopts a split-

transform-merge strategy to generate a spatial configura-

tion aware try-on image. Experiments on the VITON

dataset [40] show that our ACGPN not only promotes the

visual quality of generated images for the easy and medium

difficulty levels (see Fig. 1), but also is effective in handling

the hard try-on case with the semantic region intersections

in an elegant way and producing photo-realistic results.

The main contributions of this paper can be summarized

as follows. (1) We propose a new image-based virtual try-

on network, i.e., ACGPN, which greatly improves the try-on

quality in semantic alignment, character retention, and lay-

out adaptation. (2) We for the first time take the semantic

layout into consideration to generate the photo-realistic try-

on results. A novel adaptive content generation and preser-

vation scheme is proposed. (3) A novel second-order dif-

ference constraint makes the training process of the warp-

ing module more stable, and improves the ability of our

method to handle complex textures on clothes. (4) Exper-

iments demonstrate that the proposed method can generate

photo-realistic images that outperform the state-of-the-art

methods both qualitatively and quantitatively.

2. Related Work

Generative Adversarial Networks. Generative Adver-

sarial Networks (GANs) have greatly facilitated the im-

provements and advancements in image synthesis [16, 30,

21, 22] and manipulation [20, 23, 5]. A GAN generally

consists of a generator and a discriminator. The genera-

tor learns to generate realistic images to deceive the dis-

criminator, while the discriminator learns to distinguish the

synthesized images from the real ones. Benefited from the

7851



powerful abilities of GANs, it enjoys pervasive applica-

tions on tasks such as style transfer [50, 3], image inpaint-

ing [43, 15, 45, 46, 26], and image editing [20, 5, 23, 30].

The extensive applications of GANs further demonstrate the

superiority in image synthesis.

Fashion Analysis and Synthesis. Fashion related tasks

recently have received considerable attention due to their

great potential in real-world applications. Most of the ex-

isting works focus on clothing compatibility and matching

learning [25, 17, 39], clothing landmark detection [29, 44,

8, 24], and fashion image analysis [14, 11, 27]. Virtual try-

on is among the most challenging tasks in fashion analysis.

Virtual Try-on. Virtual try-on has been an attractive

topic even before the renaissance of deep learning [49, 7,

38, 13]. In the recent years, along with the progress in

deep neural networks, virtual try-on has raised more and

more interest due to its great potential in many real applica-

tions. Existing deep learning based methods on virtual try-

on can be classified as 3D model based approaches [36, 1,

10, 31, 33] and 2D image based ones [12, 40, 4, 19], where

the latter can be further categorized based on whether to

keep the posture or not. Dong et al. [4] presented a multi-

pose guided image based virtual try-on network. Analo-

gous to our ACGPN, most existing try-on methods focus on

the task of keeping the posture and identity. Methods such

as VITON [12] and CP-VTON [40] use the coarse human

shape and pose map as input to generate a clothed person.

While methods such as SwapGAN [28], SwapNet [32] and

VTNFP [47] adopt semantic segmentation [48] as input to

synthesize a clothed person. Table 1 presents an overview

of several representative methods. VITON [12] exploits a

Thin-Plate Spline (TPS) [6] based warping method to first

deform the inshop clothes and map the texture to the refined

result with a composition mask. CP-VTON [40] adopts a

similar structure to VITON but uses a neural network to

learn the transformation parameters of TPS warping rather

than using image descriptors, and achieves more accurate

alignment results. CP-VTON and VITON only focus on

the clothes, leading to coarse and blurry bottom clothes and

posture details. VTNFP [47] alleviates this issue by simply

concatenating the high-level features extracted from body

parts and bottom clothes, thereby generating better results

than CP-VTON and VITON. However, blurry body parts

and artifacts still remain abundant in the results because VT-

NFP ignores the semantic layout of the reference image.

In Table 1, CAGAN uses analogy learning to transfer

the garment onto a reference person, but can only preserve

the color and coarse shape. VITON presents a coarse-to-

fine structure which utilizes the coarse shape and pose map

to ensure generalization to arbitrary clothes. CP-VTON

adopts the same pipeline as VITON, while changing the

warping module into a learnable network. These two meth-

ods perform quite well with retention of the character of

CA [19] VI [12] CP [40] VT [47] Ours

R
ep

re
se

n
ta

ti
o
n Use Coarse Shape × √ √ √ ×

Use Pose × √ √ √ √

Use Segmentation × × × √ √

P
re

se
rv

at
io

n Texture × √ √ √ √

Non-target clothes × × × √ √

Body Parts × × × × √

P
ro

b
le

m

Semantic Alignment
√ √ √ √ √

Character Retention × √ √ √ √

Layout Adaptation × × × × √

Table 1. Comparison of representative virtual try-on methods. CA refers

to CAGAN [19]; VI refers to VITON [12]; CP refers to CP-VTON [40],

and VT refers to VTNFP [47]. We compare ACGPN with four popular

image-based virtual try-on methods, i.e., CAGAN, VITON, CP-VTON and

VTNFP, and we compare them from three aspects: representations as in-

put, preservation of source information, and problems to solve.

clothes, but overlook the non-target body parts and bottom

clothes. VTNFP ameliorates this ignorance by adding weak

supervision of original body parts as well as bottom clothes

to help preserve more details, which generates more realis-

tic images than CAGAN, VITON and CP-VTON; however,

VTNFP results still have a large gap between photo-realistic

due to their artifacts.

3. Adaptive Content Generating and Preserv-

ing Network

The proposed ACGPN is composed of three modules, as

shown in Fig. 2. First, the Semantic Generation Module

(SGM) progressively generates the mask of the body parts

and the mask of the warped clothing regions via seman-

tic segmentation, yielding semantic alignment of the spatial

layout. Second, the Clothes Warping Module (CWM) is de-

signed to warp the target clothing image according to the

warped clothing mask, where we introduce a second-order

difference constraint on Thin-Plate Spline (TPS) [6] to pro-

duce geometric matching yet character retentive clothing

images. Finally, Steps 3 and 4 are united in the Content

Fusion Module (CFM), which integrates the information

from previous modules to adaptively determine the gener-

ation or preservation of the distinct human parts in the out-

put synthesized image.The non-target body part composi-

tion is able to handle different scenarios flexibly in try-on

task while mask inpainting fully exploits the layout adap-

tation ability of the ACGPN when dealing with the images

from easy, medium, and hard levels of difficulties.

3.1. Semantic Generation Module (SGM)

The semantic generation module (SGM) is proposed to

separate the target clothing region as well as to preserve the

body parts (i.e., arms) of the person, without changing the

pose and the rest human body details. Many previous works

focus on the target clothes but overlook human body gener-

ation by only feeding the coarse body shape directly into the
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Figure 2. The overall architecture of our ACGPN. (1) In Step I, the Semantic Generation Module (SGM) takes the target clothing image Tc, the pose

map Mp, and the fused body part mask MF as the input to predict the semantic layout and to output the synthesized body part mask MS
ω and the target

clothing mask MS
c ; (2) In Step II, the Clothes Warping Module (CWM) warps the target clothing image to T R

c according to the predicted semantic layout,

where a second-order difference constraint is introduced to stabilize the warping process; (3) In Steps III and IV, the Content Fusion Module (CFM) first

produces the composited body part mask MC
ω using the original clothing mask Mc, the synthesized clothing mask MS

c , the body part mask Mω , and the

synthesized body part mask MS
ω , and then exploits a fusion network to generate the try-on images IS by utilizing the information T R

c , MS
c , and the body

part image Iω from previous steps.

network, leading to the loss of the body part details. To ad-

dress this issue, a mask generation mechanism is adopted in

this module to generate semantic segmentation of the body

parts and target clothing region precisely.

Specifically, given a reference image I, and its corre-

sponding mask M, arms Ma and torso Mt are first fused

into an indistinguishable area, resulting in the fused map

MF shown in Fig. 2 as one of the inputs to SGM. Follow-

ing a two-stage strategy, the try-on mask generation mod-

ule first synthesizes the masks of the body parts MS
ω (ω =

{h, a, b} (h:head, a:arms, b:bottom clothes)), which helps

adaptively preserve the body parts instead of the coarse fea-

ture in the subsequent steps. As shown in Fig. 2, we train

a body parsing GAN G1 to generate MS
ω by leveraging the

information from the fused map MF , the pose map Mp,

and the target clothing image Tc. Using the generated infor-

mation of the body parts, and its corresponding pose map

and target clothing image, it is tractable to get the estimated

clothing region. In the second stage, MS
ω , Mp and Tc are

combined to generate the synthesized mask of the clothes

MS
c by G2.

For training SGM, both stages adopt the conditional

generative adversarial network (cGAN), in which a U-Net

structure is used as the generator while a discriminator

given in pix2pixHD [41] is deployed to distinguish gener-

ated masks from their ground-truth masks. For each of the

stages, the CGAN loss can be formulated as

L1 =Ex,y [log (D (x, y))]

+ Ex,z [log (1−D (x,G (x, z)))] ,
(1)

where x indicates the input and y is the ground-truth mask.

z is the noise which is an additional channel of the input

sampled from a standard normal distribution.

The overall objective function for each stage of the pro-

posed try-on mask generation module is formulated as Lm,

Lm = λ1L1 + λ2L2, (2)

where L2 is the pixel-wise cross entropy loss [9], which im-

proves the quality of synthesized masks from the generator

with more accurate semantic segmentation results. λ1 and

λ2 are the trade-off parameters for two loss terms in Eq. (2),

which are set to 1 and 10, respectively, in our experiments.

The two-stage SGM can serve as a core component for

accurate understanding of body-parts and clothes layouts in

visual try-on and guiding the adaptive preserving of image

content by composition. We believe that SGM is effective

for other tasks that need to partition the semantic layout.

3.2. Clothes Warping Module (CWM)

Clothes warping aims to fit the clothes into the shape

of the target clothing region with visually natural defor-

mation according to human pose as well as to retain the

characteristics of the clothes. However, simply training a

Spatial Transformation Network (STN) [18] and applying

Thin-Plate Spline (TPS) [6] cannot ensure the precise trans-

formation especially when dealing with hard cases (i.e., the

clothes with complex texture and rich colors), leading to

misalignment and blurry results. To address these prob-

lems, we introduce a second-order difference constraint on

the clothes warping network to realize geometric matching

and character retention. As shown in Fig. 3, compared to

the result with our proposed constraint, target clothes trans-

formation without the constraint shows obvious distortion

on shape and unreasonable mess on texture.

Formally, given Tc and MS
c as the input, we train the

STN to learn the mapping between them. The warped cloth-

ing image T W
c is transformed by the learned parameters

from STN, where we introduce the following constraint L3
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as a loss term,

L3=
∑

p∈P

λr |‖pp0‖2−‖pp1‖2|+|‖pp2‖2−‖pp3‖2|

+λs (|S (p, p0)−S (p, p1)|+|S (p, p2)−S (p, p3)|) ,

(3)

where λr and λs are the trade-off hyper-parameters. Prac-

tically we can minimize max(L3 −∆, 0) for restriction,

and ∆ is a hyper-parameter. As illustrated in Fig. 3,

p(x, y) represents a certain sampled control point and

p0(x0, y0), p1(x1, y1), p2(x2, y2), p3(x3, y3) are the top,

bottom, left, and right sampled control points of p(x, y),
respectively, in the whole control points set P; S (p, pi) =
yi−y
xi−x

(i = 0, 1, 2, 3) is the slope between two points. L3 is

proposed to serve as a constraint on TPS transformation by

minimizing the metric distance of two neighboring intervals

for each axis and the distance between slopes, which main-

tains the collinearity, parallelism, and immutability proper-

ties of affine transformation. To avoid the divided-by-zero

error, the actual implementation of the second term is

|S (p, pi)−S (p, pj) |

= |(yi − y)(xj − x)− (yj − y)(xi − x)|,
(4)

where (i, j) ∈ {(0, 1), (2, 3)}. The warping loss can be

represented as Lw, which measures the loss between the

warped clothing image T W
c and its ground-truth Ic,

Lw = L3 + L4, (5)

where L4 = ‖T W
c − Ic‖1. The warped clothes are then

fed into the refinement network to further generate more

details, where a learned matrix α(0 ≤ αij ≤ 1) is then

utilized to finally combine the two clothing images as the

refined clothing image T R
c by

T R
c = (1− α)⊙ T W

c + α⊙ T R
c , (6)

where ⊙ denotes element-wise multiplication. α is also re-

stricted by a regularization term (refer to CP-VTON [40])

and the VGG loss is also introduced on T R
c and T W

c . For

better quality, the GAN loss can be also used here. Con-

sequently, the refined clothing image can fully retain the

characteristics of the target clothes. We believe that our for-

mulation of CWM is effective in enforcing the collinearity

of local affine transforms while maintaining the flexibility

of TPS warping globally, which is beneficial to producing

geometrically matched and realistic warped results.

3.3. Content Fusion Module (CFM)

Going beyond semantic alignment and character reten-

tion, it remains a great challenge to realize layout adaptation

on the visual try-on task. To this end, the target clothing re-

gion is required to clearly rendered, and fine-scale details of

the body parts (i.e., finger gaps) are needed to be adaptively

Target 

Clothes

w/o our 

Constraint 

w/ our

Constraint 

warped

Grid

warped

Grid

Grid 

Image

Figure 3. Comparison of STN warping results with and without the

second-order difference constraint.

preserved. Existing methods usually adopt the coarse body

shape as a cue to generate the final try-on images, and fail

to reconstruct fine details. In contrast, the proposed content

fusion module (CFM) is composed of two main steps, i.e.,

Steps 3 and 4 in Fig. 2. In particular, Step 3 is designed

to fully maintain the untargeted body parts as well as adap-

tively preserve the changeable body part (i.e., arms). Step

4 fills in the changeable body part by utilizing the masks

and images generated from previous steps accordingly by

an inpainting based fusion GAN, G3 in Fig. 2.

Non-target Body Part Composition. The composited

body mask MC
ω is composed by the original body part mask

Mω , the generated body mask MG
a which is the region for

generation, and the synthesized clothing mask MS
c accord-

ing to

MG
a = MS

ω ⊙Mc, (7)

MC
ω = (MG

a +Mω)⊙ (1−MS
c ), (8)

Iω = Iω′ ⊙ (1−MS
c ), (9)

where ⊙ denotes element-wise multiplication, and Eq. (9) is

not shown in Fig. 2 for simplicity; Iω′ is the original image

I subtracting clothing region Mc. Note that the compos-

ited body mask MC
ω always keeps a similar layout to the

synthesized body part mask MS
ω by composition to elimi-

nate the misaligned pixels in MS
ω . It precisely preserves

the non-target body part by combining the two masks (i.e.,

MS
ω and Mω), which are used to fully recover the non-

targeted details in the following step to fully preserve Iω
and generate coherent body parts with the guidance of MG

a .

It is also worth noting that it can adaptively deal with differ-

ent cases. For example, when transferring a T-shirt (short-

sleeve) to a person in long-sleeve only the within region of

MG
a will perform generation and preserve all the others,

while in the opposite case, MG
a = 0 and bulgy body parts

will be shaded by clothes as in Eq. (8) and Eq. (9).

Mask Inpainting. In order to fully exploit the layout

adaptation ability of the network during training, CFM uses

masks Mk from the Irregular Mask Dataset [26] to ran-

domly remove part of the arms in the body images Iω as

Iω = (1−Mk ⊙Ma)⊙Iω′ for mimicking image inpaint-

ing, where Ma is the mask of arms and is similar to Eq. (9)

in the form, making it possible to separate the regions of
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Reference

Image

Reference

Pose Map

Reference

Pose Map

Computation

Example

Figure 4. An example of computing the complexity score C. Given a

reference image and its pose map, the connected points shown in the last

image are selected to calculate C for the reference image.

preservation and generation. To combine the semantic in-

formation, composited body mask MC
ω and synthesized

clothing mask MS
c are concatenated with the body part im-

age Iω and refined clothing image T R
c as the input. Thus,

the texture information can be recovered by the proposed

inpainting based fusion GAN, yielding the photo-realistic

results. Therefore, in the inference stage, the network can

adaptively generate the photo-realistic try-on image with

rich details via the proposed CFM. Extensive experiments

in Section 4 demonstrate that the proposed method can not

only solve cases of easy and medium levels but also hard

cases with significant improvement.

4. Experiments

4.1. Dataset

Experiments are conducted on the dataset (i.e., VI-

TON [12] dataset) that was used in VITON [12] and CP-

VITON [40]. It contains about 19,000 image pairs, each of

which includes a front-view woman image and a top cloth-

ing image. After removing the invalid image pairs, it yields

16,253 pairs, further splitting into a training set of 14,221

pairs and a testing set of 2,032 pairs. ACGPN is compared

with VITON, CP-VTON and VTNFP. Without the official

code of VTNFP, we compare the visual results reported in

VTNFP’s paper and reproduce it for quantitative compari-

son. Extensive ACGPN try-on results are given in appendix.

Dataset Partition. Images of the try-on task exhibit dif-

ferent difficulty levels as shown in Fig. 1. Easy case usu-

ally shows a standard posture with face forward and hands

down; Medium level images present the twisting of the

body torso or one of the hands overlapping with the body;

hard cases show both torso twisting and two hands blocking

in front of the body. Limbs intersections and torso occlu-

sions raise a great challenge for the semantic layout predic-

tion. To describe this, we propose to use reference points to

represent body parts by leveraging pose maps as illustrated

in Fig. 4. To quantitatively score the complexity of each

image, we define the complexity of a certain image as

C =

∑N

t∈Mp′

∥

∥

∥

∥

t−

∑
N
t∈M

p′
t

N

∥

∥

∥

∥

1

N
, (10)

where Mp′ represents points of left (right) arm, left (right)

shoulder, left (right) hand, and torso. t = (xt, yt) is a cer-

tain pose point and N = 7 indicates the number of reference

points. We define the thresholds of easy to medium as 80,

and medium to hard as 68, in the sense that when C < 68 the

layout intersections become complicated, and when C > 80
the images tend to be standard posture, face forward and

hands down. 423, 514, and 1095 images are split into hard,

medium, and easy levels, respectively.

4.2. Implementation Details

Architecture. ACGPN contains SGM, CWM and CFM.

All the generators in SGM and CFM have the same struc-

ture as U-Net [34] and all the discriminators are from

pix2pixHD [41]. The structure of STN [18] in CWM begins

with five convolutional layers followed by a max-pooling

layer with stride 2. Resolution for all images in training and

testing is 256 × 192. Followed by steps in Fig. 2, we first

predict the semantic layout of the reference image, and then

decide the generation and preservation of image content.

Training. We train the proposed modules separately and

combine them to ultimately output the try-on image. Target

clothes used in the training process are the same as in the

reference image since it is intractable to grab the ground-

truth images of try-on results. Each module in the proposed

method is trained for 20 epochs by setting the weights of

losses λr = λs = 0.1, λ1 = λ2 = 1, and batch-size 8. The

learning rate is initialized as 0.0002 and the network is op-

timized by the Adam optimizer with the hyper-parameters

β1 = 0.5 and β2 = 0.999. All the codes are implemented

by deep learning toolkit PyTorch and eight NVIDIA 1080Ti

GPUs are used in our experiments.

Testing. The testing process follows the same procedure

as training but is only different in that the target clothes are

different from the ones in the reference images. We test our

model in easy, medium and hard cases, respectively, and

evaluate the results qualitatively and quantitatively. More

evaluation results are given in the following sections.

4.3. Qualitative Results

We perform visual comparison of our proposed method

with VITON [12], CP-VTON [40], and VTNFP [47]. As

shown in Fig. 5, from top to bottom, the difficulty levels of

the try-on images are arranged from easy to hard. In all dif-

ficulty levels the images generated by VITON show many

visual artifacts including color mixture, boundary blurring,

cluttered texture, and so on. In comparison to VITON, CP-

VITON achieves better visual results in the easy level but

still results in unnecessary editing on bottom clothes and

blurring on body parts in the medium and hard levels. Bad

cases such as broken arms in the generated images can also

be observed when there are intersections between arms and

torso. To sum up, VITON and CP-VTON warp the image

onto the clothing region and map the texture and embroi-
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Reference Image Target Clothes VITON CP-VTON VTNFP ACGPN(ours) Reference Image Target Clothes VITON CP-VTON VTNFP ACGPN(ours)

Figure 5. Visual comparison of four virtual try-on methods in easy to hard levels (from top to bottom). ACGPN generates photo-realistic try-on results,

which preserves both the clothing texture and person body features. With the second-order difference constraint, the embroideries and texture are less likely

to be distorted (i.e., the 2nd row). With the preservation ability of the non-target body part composition, the body parts in our results are visually much more

photo-realistic (i.e., the 4th row). Especially different regions are marked in red-boxes.

ders, thereby possibly causing the incorrect editing on body

parts and bottom clothes.

VTNFP uses segmentation representation to further pre-

serve the non-target details of body parts and bottom

clothes, but is still inadequate to fully preserve the details,

resulting in blurry output. The drawbacks behind VTNFP

lie in the unawareness of the semantic layout and relation-

ship within the layout, therefore being unable to extract the

specific region to preserve. In comparison to VITON and

CP-VTON, VTNPF is better in preserving the characteris-

tics of clothes and visual results, but still struggles to gen-

erate body parts details (i.e., hands and finger gaps). It is

worth noting that all the methods cannot avoid distortions

and misalignments on the Logo or embroidery, remaining a

large gap to photo-realistic try-on.

In contrast, ACGPN performs much better in simultane-

ously preserving the characteristics of clothes and the body

part information. Benefited from the proposed second-order

spatial transformation constraint in CWM, it prevents Logo

distortion and realizes character retention, making the warp-

ing process to be more stable to preserve texture and em-

broideries. As shown in the first example of the second row

in Fig. 5, Logo ‘WESC’ is over-stretched in results of the

competing methods; however, in ACGPN, it is clear and

undistorted. The proposed inpainting-based CFM specifies

and preserves the unchanged body parts directly. Benefited

from the prediction of semantic layout and adaptive preser-

vation of body parts, ACGPN is able to preserve the fine-

scale details which are easily lost in the competing meth-

ods, clearly demonstrating its superiority over VITON, CP-

VTON and VTNFP.

4.4. Quantitative Results

We adopt Structural SIMilarity (SSIM) [42] to mea-

sure the similaity between synthesized images and ground-

truths, and Inception Score (IS) [35] to measure the visual

quality of synthesized images. Higher scores on both met-

rics indicate higher quality of the results.

Table 2 lists the SSIM and IS scores by VITON [12],

CP-VTON [40], VTNFP [47], and our ACGPN. Unsurpris-

ingly, the SSIM score decreases along with the increase of

difficult level, demonstrating the negative correlation be-

tween difficulty level and try-on image quality. Nonethe-

less, our ACGPN outperforms the competing methods by

a large margin in both metrics for all difficulty levels. For

the easy case, ACGPN surpasses VITON, CP-VTON and

VTNFP by 0.067, 0.101 and 0.044 in terms of SSIM, re-

spectively. For the medium case, the gains by ACGPN are

0.062, 0.099 and 0.040, respectively. As for the hard case,

ACGPN also outperforms VITON, CP-VTON and VTNFP

by 0.049, 0.099, and 0.040. In terms of IS, the overall gains

against VITON, CP-VTON and VTNFP are respectively

0.179, 0.072 and 0.045, further showing the superiority of

ACGPN by means of quantitative metrics.

4.5. Ablation Study

Ablation study is conducted to evaluate the effective-

ness of the major modules in ACGPN in Table 2. Here,
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Method
SSIM

IS
All Easy Medium Hard

VITON [12] 0.783 0.787 0.779 0.779 2.650

CP-VTON [40] 0.745 0.753 0.742 0.729 2.757

VTNFP [47] 0.803 0.810 0.801 0.788 2.784

ACGPN† 0.825 0.834 0.823 0.805 2.805

ACGPN* 0.826 0.835 0.823 0.806 2.798

ACGPN 0.845 0.854 0.841 0.828 2.829

Table 2. The SSIM [42] and IS [35] results of five methods. ACGPN† and

ACGPN* are ACGPN variants for ablation study.

ACGPN† refers to directly using MS
ω instead of MC

ω in

CFM to generate a try-on image, and ACGPN* refers to us-

ing MC
ω as the input. Both models use Iω with the removal

of arms. Comparing to ACGPN†, ACGPN* and ACGPN,

it shows that the non-target body part composition indeed

contributes to yield better visual results. We also notice that

ACGPN† and ACGPN* also outperform VITON [12], CP-

VTON [40] and VTNFP [47] by a margin, owing to the

accurate estimation of the semantic layout. Visual compar-

ison results in Fig. 6 further show the effectiveness of body

part composition in adaptive preservation. With the com-

position, the human body layout can be clearly stratified.

Otherwise, we can only get correct body part shape but may

generate wrong details as in (f) of Fig. 6.

Target 

Clothes

Reference 

Image

ACGPN†

Results

ACGPN*

Results

ACGPN

(Full)

(a) (b) (e) (f) (g)(c)

VITON

Results

(d)

CP-VTON

Results

Figure 6. Visual comparison of our non-target body part composition. (c)

generates incorrect target clothes and blurry body parts; (d) produces body

parts with deformation; (e) and (f) show some distorted body parts; (g)

generates the convincing result.

An experiment is also conducted to verify the effective-

ness of our second-order difference constraint in CWM. As

shown in Fig. 7, we choose target clothes with complicated

embroiders for example. From Fig. 7(c), the warping model

may generate distorted images without the constraint.

Target 

Clothes

(a) (b)

Reference 

Image

ACGPN

(w/o Constraint)

ACGPN

(w/o Constraint)

ACGPN

(w/ Constraint)

ACGPN

(w/ Constraint)

(c) (d) (e) (f)

Figure 7. Ablation study on the effect of the second-order difference con-

straint. (c), (e) are the warped clothes, and (d), (f) are the synthesized re-

sults. Although ACGPN eliminates the artifacts in distorted warped cloth-

ing image (c), it still largely influences its verisimilitude of (d).

It is worth noting that, due to the effectiveness of se-

mantic layout prediction, ACGPN without the constraint

can still produce satisfying results, and the target clothes

with pure color or simple embroideries are less vulnerable

to the degeneration of warping. Regarding the target clothes

with complex textures, the second-order difference con-

straint plays an important role in generating photo-realistic

results with correct detailed textures (see in Fig. 7(d)(f)).

Method Easy Medium Hard Mean

CP-VTON [40] 15.4% 11.2% 4.0% 10.2%

ACGPN 84.6% 88.8% 96.0% 89.8%

VITON [12] 38.8% 18.2% 13.3% 23.4%

ACGPN 61.2% 81.8% 86.7% 76.6%

VTNFP [47] 45.6% 31.0% 23.4% 33.3%

ACGPN 54.4% 69.0% 76.6% 66.7%

Table 3. User study results on the VITON dataset. The percentage indi-

cates the ratio of images which are voted to be better than the compared

method.

4.6. User Study

To further assess the results of try-on images gener-

ated by VITON [12], CP-VTON [40], VTNFP [47] and

ACGPN, we conduct a user study by recruiting 50 volun-

teers. We first test 200 images by different methods from

easy, medium, and hard cases, respectively, and then group

1,800 pairs in total (each method contains 600 test images

in three levels and each pair includes images from differ-

ent methods). Each volunteer is assigned 100 image pairs

in an A/B manner randomly. For each image pair, the tar-

get clothes and reference images are also attached in the

user study. Each volunteer is asked to choose a better image

meeting three criterion : (a) how well the target clothing

characteristics and posture of the reference image are pre-

served; (b) how photo-realistic the whole image is; (c) how

good the whole person seems. And we give the user unlim-

ited time to choose the one with better quality. The results

are shown in Table 3. It reveals the great superiority of

ACGPN over the other methods, especially in hard cases.

The results demonstrate the effectiveness of the proposed

method in handling body part intersections and occlusions

on visual try-on tasks.

5. Conclusion

In this work, we proposed a novel adaptive content gen-

erating and preserving network, dubbed ACGPN, which

aims at generating photo-realistic try-on results while pre-

serving both the characteristics of clothes and details

of the human identity (posture, body parts, and bottom

clothes). We presented three carefully designed modules,

i.e., Mask Generation Module (GMM), Clothes Warping

Module (CWM), and Content Fusion Module (CFM). We

evaluated our ACGPN on the VITON [12] dataset with three

levels of try-on difficulties. The results clearly show the

great superiority of ACGPN over the state-of-the-art meth-

ods in terms of quantitative metrics, visual quality, and user

study.
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