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Abstract

We describe an approach for upgrading 2D optical flow

to 3D scene flow. Our key insight is that dense optical ex-

pansion – which can be reliably inferred from monocular

frame pairs – reveals changes in depth of scene elements,

e.g., things moving closer will get bigger. When integrated

with camera intrinsics, optical expansion can be converted

into a normalized 3D scene flow vectors that provide mean-

ingful directions of 3D movement, but not their magnitude

(due to an underlying scale ambiguity). Normalized scene

flow can be further “upgraded” to the true 3D scene flow

knowing depth in one frame. We show that dense optical

expansion between two views can be learned from anno-

tated optical flow maps or unlabeled video sequences, and

applied to a variety of dynamic 3D perception tasks includ-

ing optical scene flow, LiDAR scene flow, time-to-collision

estimation and depth estimation, often demonstrating sig-

nificant improvement over the prior art.

1. Introduction

Estimating 3D motion is crucial for autonomous robots

to move safely in a dynamic world. For example, collision

avoidance and motion planning in a dynamic requirement

hinge on such inferences [8, 33, 34, 40]. Many robotic plat-

forms make use of stereo cameras or time-of-flight sensors

for which metric distances are accessible. Here, 3D motion

can be determined by searching for correspondence over

frames, or registration between 3D point clouds. Such ac-

tive sensing and fixed-baseline stereo methods struggle to

capture far-away objects due to limited baselines and sparse

sensor readings. In this work, we analyze the problem of

dynamic 3D perception with monocular cameras, which do

not suffer from baselines or sparse readings.

Challenges However, estimating 3D motion from

monocular cameras is fundamentally ill-posed without

making assumptions about the scene rigidity: given a par-

ticular 2D flow vector, there is an infinite pair of 3D points

∗Code will be available at github.com/gengshan-y/expansion.

Figure 1. Optical flow vs optical expansion. From left to right:

overlaid two consecutive frames, color-coded optical flow fields

and optical expansion map, where white indicates larger expansion

or motion towards the camera. Notice it is difficult to directly read

the 3D motion of the hawk from optical flow. However, it is easy

to tell the hawk is approaching the caemra from optical expansion.

along two degrees of freedom (obtained by back-projecting

two rays for the source and target pixel - see Fig. 3) that

project to the same 2D flow. Intuitively, a close-by object

that moves slowly will generate the same 2D flow as a far-

away object that moves fast.

Prior work Nevertheless, there have been numerous at-

tempts at monocular dynamic scene reconstruction using

multi-body SfM and non-rigid SfM [26, 64]. A recent

approach [6] attempts to solve the monocular scene flow

problem in its generality. Because such tasks are under-

constrained, these methods need to rely on strong prior as-

sumptions, either in the form of prior 3D geometry (typi-

cally learned from data-driven scenes) or prior 3D motion

(typically rigid-body priors) that are difficult to apply to “in-

the-wild” footage. Instead, we derive a simple but direct

geometric relationship between 3D motion and 2D corre-

spondence that allows us to extract up-to-scale 3D motion.

Why optical expansion? Human perception informs us

that changes in the perceived size of an object are an impor-

tant cue to determine its motion in depth [50, 52]. Indeed,

optical expansion is also a well-known cue for biological

navigation, time-to-contact prediction, and looming estima-

tion [15]. Inspired by these observations, we propose to

augment 2D optical flow measurements with 2D optical ex-

pansion measurements: for each pixel in a reference frame,

we estimate both a 2D offset and a relative scale change

(u, v, s), as shown in Fig.2. We show that such measure-

ments can be robustly extracted from an image pair, and

importantly, resolve half of the fundamental ambiguity in

3D motion estimation. Because optical expansion is a local
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Figure 2. Optical expansion vs optical flow. (a): reference im-

age, where we are interested in the position and scale change of

the pixel marked as blue; (b): optical flow providing the position

change (u, v); (c): optical expansion providing the scale change s.

Intuitively, optical expansion can be measured as the square root

of the ratio between the two areas covered by the rectangles.

pixelwise measurement, we demonstrate that it can be eas-

ily incorporated into existing approaches for self-learning

of optical flow, increasing the accuracy.

3D motion from expansion Specifically, under a scaled

orthographic camera projection model, optical expansion

is directly equivalent to the motion-in-depth of the non-

rotating scene element that projects to the corresponding

source and target pixel. This eliminates one degree-of-

freedom. When combined with camera intrinsics and op-

tical flow, optical expansion reveals the true direction of the

3D motion, but not its magnitude. Fig. 3 demonstrates that

we now know if an object is moving closer toward or away

from the camera, but there is still an overall scale ambiguity,

which can also be resolved by specifying the depth of one

of the point pairs along its back-projected ray.

Method To estimate per-pixel optical expansion, we pro-

pose an architecture based on local affine transformations.

The relative scale ground-truth is obtained from the exist-

ing optical flow and 3D scene flow training datasets. We

also present a self-supervised approach to learn optical ex-

pansion from photometric information of the input images.

Contributions We summarize our contribution as fol-

lows. (1) We theoretically derive the effectiveness of optical

expansion to reduce the ambiguities inherent to monocular

scene flow. (2) We propose a neural architecture for nor-

malized scene flow estimation that encodes strong geome-

try knowledge and leads to better interpretability and gen-

eralization. (3) We demonstrate the effectiveness of optical

expansion across a variety of benchmark tasks, establish-

ing new SOTA results for optical scene flow, LiDAR scene

flow, time-to-collision estimation - while being significantly

faster than prior methods, and improving results for self-

supervised optical flow. (4) We apply dense optical expan-

sion to two-frame depth estimation and show improvements

over triangulation-based methods in numerically-unstable

regions near the epipole.

2. Related Work

Visual correspondence Visual correspondence dates

back to the early work in human visual perception and 3D

reconstruction, where it was found point correspondence

X

image plane

Z

Camera X

image plane

Z

Camera

(a) (b)

Figure 3. (a): Projection from scene flow t to optical flow u. (b):

Projection from scene flow t to normalized scene flow t̂ = t/Z .

Normalized scene flow is a 3-dimensional vector that extends stan-

dard optical flow to capture changes in depth. Notice when pro-

jecting a 4DoF scene flow vector to the image plane (given the ref-

erence 2D point), 2DoF can be recoverd by optical flow and 2DoF

are missing: 1) the depth Z , which is not recoverable; 2) and the

motion-in-depth, which can be recovered from optical expansion.

needs to be solved to perceive depth and 3D structures can

be recovered from their projected points [35, 54]. Affine

correspondence defines a 2×2 affine transform between the

neighborhood of point correspondences, to encodes higher-

order information about the scene geometry [2, 3, 46]. Sim-

ilar to affine correspondence, we extract local information

of point correspondences to encode rich geometric informa-

tion about motion-in-depth, but not rotation or shear.

Scale estimation The concept of scale changes of vi-

sual features is well studied in the context of feature de-

scriptor and matching [4, 31, 42] as well as dense opti-

cal flow [44, 57, 59]. In these approaches, scale is often

treated as a discrete auxiliary variable for producing better

descriptors and feature matches, but not estimated as a con-

tinuous quantity at a fine scale. Some other approaches ei-

ther directly estimate the intrinsic scales by Laplacian filter-

ing [41] or compute the scale changes from the divergence

of optic flow fields [9, 58], but give sub-accurate results.

Instead, our method produces continuous dense optical ex-

pansion reliably in a data-driven fashion. Moreover, the

relationship between relative scale and depth changes has

been explored for 3D reconstruction [12, 43, 49, 62] as well

as collision avoidance in robotics [20, 33, 40]. However,

prior methods often focus on object-level scale changes and

sparse interest points. Our work extends the concept of rel-

ative scale and depth changes to the dense, low-level corre-

spondence tasks of 3D scene flow estimation.

Monocular dynamic reconstruction Prior work on

monocular 3D motion estimation casts the task as a sub-

problem of monocular scene reconstruction, attempting to

jointly recover both motion and depth [26, 45, 48, 55]. Be-

cause of the ill-posed nature of this problem, they either rely

on strong motion priors such as multi-rigid body [45, 55]

and as rigid as possible [26], or strong shape priors such

as low rank and union-of-subspaces [17, 64]. Those hand-

crafted priors hallucinate good reconstructions when their
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Figure 4. We visualize a moving object under scaled orthographic

projection across two timesteps (a) and (b). Given a definition of

optical expansion s = l ′/l and motion-in-depth τ = Z ′/Z , Eq. 1

derives that s = 1/τ.

assumptions are met, but in other cases not applicable. On

the other hand, when scene elements are piece-wise rigid,

we can reconstruct up-to-scale local motions with planar

homographies. However, homography estimation is sensi-

tive to noise in 2D correspondences, requiring the use of

strong priors to regularize the problem [26]. In this work,

we propose a simpler representation of local motion, e.g.

optical expansion, which can be reliably estimated from

real-world imagery because fewer degrees of freedom are

needed to be inferred.

3. Approach

In this section, we first establish the relationship between

optical expansion and motion-in-depth under scaled ortho-

graphic projection model. Then we derive a direct rela-

tionship between motion-in-depth, normalized 3D motion,

and scene flow. Finally we propose a neural architecture of

learning optical expansion and normalized 3D flow.

3.1. Optical expansion

Here we explicitly derive the relationship between op-

tical expansion, which describes the change of the per-

ceived size of objects, and motion-in-depth. We begin with

a simple pinhole camera model that projects a 3D point

P = (X,Y, Z ) into an image position (x, y):

p = (x, y) =
f

Z
(X,Y ),

where f is the focal length. Under a scaled orthographic

camera model, the projection of all points on an object can

be computed with an orthographic projection onto a fronto-

parallel plane followed by a perspective projection of the

plane [19]. Such an approximation is reasonable if the vari-

ation in depth of an object is small compared to its distance

from the camera. With the physical length of an object be-

ing L and its orientation σ defined as the angle between the

surface normal and the camera z-axis, the projected length

of the object is then given by

l =
f L̄

Z
=

f L cosσ

Z
,

where L̄ = L cosσ accounts for the foreshortening. As-

sume the scene is locally rigid and one of the rigid pieces

changes its depth across two frames from Z to Z ′, while

keeping its physical size L and orientation σ unchanged.

Define the optical expansion s to be the ratio of its projected

lengths l ′/l, and define the motion-in-depth τ to be the ratio

of depths Z ′/Z . We can now derive that s = 1/τ assuming

1) a scaled orthographic camera model and 2) the scene

elements are not rotating relative to the camera (Fig. 4):

l =
f L̄

Z
, l ′ =

f L̄

Z ′
⇒ s =

l ′

l
=

Z

Z ′
=

1

τ
(1)

3.2. Normalized scene flow

In the last section, we showed that motion-in-depth τ

can be computed from optical expansion s for a scaled or-

thographic camera model. In this section, we show that

motion-in-depth τ can be combined with camera intrinsics

K to compute a normalized 3D scene flow vector.

Given camera intrinsics K, for a 3D point changing its

position from P to P′, we have

P = λK−1p̃, P′ = λ ′K−1p̃′,

where p̃ and p̃′ are homogeneous 2D coordinates with the

last coordinate being 1, and λ, λ ′ are scale factors. Because

the last row of the intrinsic matrix K is (0,0,1), scale factors

are directly equal to the depth of each point: λ = Z and

λ ′ = Z ′.
Following prior work [38], we model scene flow as 3D

motion vectors relative to the camera, which factorizes out

the camera motion. The scene flow t is then computed as:

t = P′ − P

= K−1(Z ′p̃′ − Zp̃)

= ZK−1
[

τ(ũ + p̃) − p̃
]

where ũ = p̃′ − p̃

= ZK−1
[

(τ − 1)p̃ + τũ
]

= Z t̂ where t̂ = K−1
[

(τ − 1)p̃ + τũ
]

(2)

We denote t̂ as the “normalized scene flow”, which is a

vector pointing in the direction of the true 3D scene flow.

It can be “upgraded” from 2D flow ũ knowing motion-in-

depth τ and camera intrinsics K. When augmented with the

true depth of the point in either frame Z or Z ′ (following an

analogous derivation to the above), normalized scene flow

can be further “upgraded” to the true 3D scene flow.

3.3. Learning normalized scene flow

In this section we introduce a network architecture for

optical expansion and normalized scene flow estimation,

and describe ways of learning optical expansion, either in

a supervised fashion, or with self-supervised learning.
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Figure 5. Network architecture for estimating normalized scene flow. 1) Given two consecutive images, we first predict dense optical

flow fields using an existing flow network. 2) Then we estimate the initial optical expansion with a local affine transform layer, which is

refined by a U-Net architecture taking affine fitting error and image appearance features as guidance [24]. 3) To correct for errors from the

scaled-orthographic projection and rotation assumptions, we predict the difference between optical expansion and motion-in-depth with

another U-Net. Finally, a dense normalized scene flow field is computed using Eq. 2 by combining (u, v, τ) with camera intrinsics K.

Network We separate the task of estimating normalized

scene flow into three sequential steps: (1) optical flow esti-

mation, where the (u, v) component is predicted from an im-

age pair, (2) optical expansion estimation, where the optical

expansion component s is estimated conditioned on the op-

tical flow, and (3) motion-in-depth estimation τ, where the

optical expansion is refined to produce correct outputs for

a full perspective camera model. Finally, normalized scene

flow can be computed given camera intrinsics. We design

an end-to-end-trainable architecture for the above steps, as

shown in Fig. 5. An ablation study in Sec. 5 discusses dif-

ferent design choices that affect the performance.

Local affine layer To extract dense optical expansion

over two frames, we propose a local affine layer that di-

rectly computes the expansion of local 3x3 patches over two

frames, as described in the three following steps:

1) Fit local affine motion models. Given a dense opti-

cal flow field u over a reference frame and a target frame,

we fit a local affine transformation A ∈ R2×2 [2] for each

pixel xc = (xc, yc) over its 3x3 neighborhood N (xc) in the

reference image by solving the following linear system:

(x′ − x′c) = A(x − xc), x ∈ N (xc), (3)

where x′ = x + u(x) is the correspondence of x.

2) Extract expansion. We compute optical expansion of

a pixel as the ratio of the areas between the deformed vs

original 3x3 grid: s =
√
|det(A) |.

3) Compute fitting errors. We compute the residual L2

error of the least-squares fit from Eq. 3 (indicating the con-

fidence of the affine fit) and pass this in as an additional

channel to the optical refinement network.

Crucially, we implement the above steps as dense, pixel-

wise, and differential computations as Pytorch layers that

efficiently run on a GPU with negligible compute overhead.

Learning expansion (supervised) To train the optical

expansion network that predicts s, one challenge is to con-

struct the optical expansion ground-truth. The common so-

lution of searching over a multi-scale image pyramid is in-

feasible because it gives sparse and inaccurate results. In-

stead, we extract expansion from the local patches of optic

flow fields [9, 58]. Specifically, for each pixel with optical

flow ground-truth, we fit an affine transform over its 7x7

neighborhood and extract the scale component, similar to

the local affine layer. Pixels with a high fitting error are

discarded. In practice, we found optical expansion ground-

truth can be reliably computed for training, given the high-

quality optical flow datasets available [1, 7, 11, 25, 38, 36].

Learning expansion (self-supervised) Since real world

ground-truth data of optical flow are costly to obtain, here

we describe a self-supervised alternative of learning the ex-

pansion network. Previous work on self-supervised opti-

cal flow [27, 37, 47] obtain supervision from photometric

consistency, where losses are computed by comparing the

difference between the intensity values of either the refer-

ence and target pixel, or a K ×K patch around the reference

pixel and their correspondences. In both cases, the motion

of pixels is not explicitly constrained. Our key distinction is

to use the predicted optical expansion to expand or contract

the reference patches when constructing the loss. The ben-

efits are two-fold: for one, it extracts the supervision signal

to train the optical expansion model; for another it puts ex-

plicit constraints to the local motion patterns of optical flow,

and thus guides the learning.

Learning motion-in-depth To train the motion-in-depth

network that predicts τ, we use existing 3D scene flow

datasets, from which the ground-truth motion-in-depth can

be computed as the ratio between the depth of correspond-

ing points over two frames,

τ∗(x) =
Z ′∗(x + u∗(x))

Z∗(x)
,

where Z∗ and Z ′∗ are the ground-truth depth in the reference
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Figure 6. Results for image “000105” in the KITTI val set. Top: Motion-in-depth between two frames where bright indicates points moving

towards the camera; bottom: error maps of motion-in-depth. Our method predicts more accurate motion-in-depth than the baselines.

and target frame respectively, and u∗ is the ground-truth op-

tical flow.

Losses We empirically find that supervised learning

of optical expansion yields better performance than self-

supervised learning (245 vs 336 in log-L1 error, as in

Tab. 5 and Tab. 6), and therefore supervised learning is used

throughout experiments in Sec. 4.1-4.3. Here, multi-task L1

losses are used to train the optical expansion (s) and motion-

in-depth (τ) networks jointly:

L =
∑

x

|σs (x) − log s∗(x) | + |στ (x) − log τ∗(x) |,

where σs and στ are the predicted log-scale expansion and

motion-in-depth, and s∗ and τ∗ are ground-truth labels. The

loss is summed over pixels with valid labels. We experi-

mented with stagewise training, but found joint end-to-end

training simpler while performant.

4. Experiments

We first evaluate our method on 3D scene perception

tasks including optical scene flow, LiDAR scene flow and

time-to-collision estimation. We then show results of self-

supervised training of optical expansion models. Finally,

we conclude with qualitative results that apply optical ex-

pansion for rigid depth estimation during forward or back-

ward translational camera movements that are difficult for

traditional structure-from-motion.

Setup We freeze the pre-trained optical flow net-

work [61] and train our normalized scene flow model on

Driving, Monkaa, and KITTI-15 [36, 38]. For KITTI, we

split the original 200 images with ground-truth into train

and validation sets. Specifically, for optical scene flow, we

select every 5 images for validation, and add the rest 160

images for training; while for LiDAR scene flow, we follow

the split of MeteorNet [29] and use the first 100 out of 142

images with LiDAR point clouds for training, and the rest

for validation. We follow a two-stage training protocol [21],

and empirically choose a larger learning rate of 0.01. Pre-

training on Driving and Monkaa takes 60k iterations, and

fine-tuning on KITTI takes 30k iterations.

4.1. Optical scene flow

We first compare to baselines on KITTI-15 validation

set, where the standard metrics of scene flow and error of

log motion-in-depth (MiD) are used [38].

Table 1. Scene flow estimation on KITTI-15 validation set. D1,

D2, Fl, and SF measure the percentage error of disparity, optical

flow and overall scene flow prediction respectively. MiD mea-

sures the L1 error of log motion-in-depth log(D2/D1) scaled by

10,000X. Monocular methods are listed at the top, while stereo-

based methods are listed below. Methods with † use validation

data to train. Our method outperforms the monocular baselines by

a large margin, and beats the stereo baselines in terms of MiD.

Method D1 Fl D2 SF MiD

Delta [22] 14.51 6.00 78.87 83.26 2237

Warp+copy [51] 14.51 6.00 27.73 31.16 623

Ours 14.51 6.00 16.71 19.65 75

FlowNet3 [22] 6.95 32.41 20.89 37.09 537
†FlowNet3-ft [22] 1.51 7.36 4.70 9.60 217

PRSM [56] 4.05 8.32 7.52 10.36 124

OSF [39] 3.98 8.95 7.69 10.16 115

Our solution Since our expansion network only pro-

vides motion-in-depth over two frames, to generate the full

scene flow vector, we use an off-the-shelf monocular depth

estimation network MonoDepth2 [16] to predict d1, which

is the disparity of frame one. To predict d2, the disparity of

frame one pixels that have moved to frame two, we simply

divide d1 by the predicted motion-in-depth.

Validation performance To compute d2, Schuster et

al. [51] warp the second-frame disparity maps to the first

frame using forward flow, without dealing with occlusions;

we consider a stronger baseline that further copies the dis-

parity of out-of-frame pixels from the first frame, denoted

by “Warp+copy”. Following FlowNet3 [22], we also train

a refinement network to hallucinate the disparities of the

regions occluded in the second frame. As for monocular

scene flow, shown in the first group of Tab. 1, our method

outperforms baselines by a large margin.

We further consider baselines using stereo cameras to

estimate the metric depth at both frames: PRSM [56] and

OSF [39] are stereo-based methods that break down the im-

age into rigid pieces and jointly optimize their depth and

3D motion. To evaluate MiD, we simply divide their pre-

dicted d2 by d1. As a result, our method achieves the low-

est error in terms of MiD, reducing the error by 10X for

monocular baselines, and outperforming the stereo baseline

by a large margin (115 v.s. 75). A visual example is shown

in Fig. 6. This demonstrates the effectiveness of modeling
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Table 2. Scene flow estimation on KITTI-15 benchmark fore-

ground pixels. All metrics are errors in perceptage shown for the

foreground pixels. The best among the same group are bolded, and

the best among all are underlined. Monocular methods are listed

at the top, while stereo-based methods are listed below.

Method D1 D2 Fl SF time (s)

Mono-SF [6] 26.94 32.70 19.64 39.57 41

Ours-mono 27.90 31.59 8.66 36.67 0.2

PRSM [56] 10.52 15.11 13.40 20.79 300

DRISF [32] 4.49 9.73 10.40 15.94 0.75

Ours-stereo 3.46 8.54 8.66 13.44 2

⋆ The expansion and motion-in-depth networks take 15ms for

KITTI-sized images on a TITAN Xp GPU, giving a total run time

of 200ms together with flow. Also notice that both PRSM and

Mono-SF run on a single-core CPU, and could possibly be paral-

lelized for a better speed.

relative scale change via optical expansion.

Test performance (fg objects) We then evaluate our

method on scene flow prediction for foreground objects on

KITTI-15 benchmark, as shown in Tab. 2. We first compare

against Mono-SF, the only monocular scene flow method on

the benchmark. It formulates monocular scene flow estima-

tion as an optimization problem, and use probabilistic pre-

dictions of a monocular depth network as one energy term.

Notice although our disparity error D1 is similar to Mono-

SF, we obtain better D2 and SF metrics, which indicates that

our prediction of normalized scene flow is more accurate.

Our method of estimating motion-in-depth and d2 is

also applicable to stereo scene flow, where we directly take

GANet [63], the SOTA method on D1 metric, to predict the

disparity of the first frame d1. To obtain d2, we divide the d1

with estimated motion-in-depth as before. As a result, we

obtained the SOTA accuracy on foreground depth change

D2 and scene flow SF, which further demonstrates the ef-

fectiveness of our method for upgrading optical flow to 3D

scene flow. In comparison, we effectively reason about rela-

tive depth change at a low cost (15ms), instead of explicitly

computing the disparity at frame two. This gives us im-

proved accuracy, spatial consistency and reduced latency.

4.2. LiDAR scene flow

Given two consecutive LiDAR scans of the scene, the

LiDAR scene flow task is defined as estimating the 3D mo-

tions of the point clouds. Prior work either register two

point clouds by optimization [10], or train a network to di-

rectly predict the 3D motion [18, 28, 29].

Our solution Practically, LiDAR scans are usually

paired with monocular cameras. Therefore, we use such

monocular images to predict optical flow and expansion and

convert them to normalized scene flow by Eq. 2. To obtain

3D scene flow for the point clouds, we project them onto the

image plane and use LiDAR depth to “upgrade” the normal-

Table 3. Evaluation LiDAR scene flow on KITTI-15.

Method input EPE (m)

ICP-global points × 2 0.727

HPLFlowNet [18] points × 2 0.590

FlowNet3D-ft [28] points × 2 0.287

MeteorNet-ft [29] points × 2 0.251

FlowNet3 [22] points + stereo × 2 0.878
†FlowNet3-ft [22] points + stereo × 2 0.551

OSF [39] points + stereo × 2 0.137

PRSM [56] points + stereo × 2 0.116

Ours points +mono × 2 0.119

w/o ft points +mono × 2 0.184

ized scene flow to full 3D scene flow.

Evaluation protocol We compare with prior work on

42 KITTI validation images, using the evaluation protocol

from MeteorNet [29]: raw LiDAR points are projected onto

the image plane and the ground-truth 3D flow is constructed

from disparity and flow annotations. Methods are scored by

3D end-point-error (EPE, L2 distance between vectors).

Baselines Among all the point-based methods,

FlowNet3D and MeteorNet are finetuned on the same

set of KITTI images as ours, and the numbers are taken

from their paper. HPLFlowNet is trained on FlythingTh-

ings [36] and we modify their code to run on raw point

clouds. ICP-global finds a single rigid transformation that

best describes the motion of all the scene points, and does

not deal with non-rigid elements. We further consider

stereo scene flow methods [22, 39, 56], where the projected

LiDAR depth and
d2

d1
are used to determine the depth-wise

flow displacements.

Results As in Tab. 3, our method trained on synthetic

dataset already performs better than all the point-based

methods as well as FlowNet3. After fine-tuning on KITTI,

it out-performs all the stereo-based methods, except for

PRSM, which takes 100X more inference time. Compared

to point-based methods where exact 3D correspondence

may not exist in the sparse scan, our method estimates nor-

malized scene flow on a much denser pixel grid, which leads

to higher precision. A visual example is shown in Fig. 7.

4.3. Timetocollision estimation

Modelling time-to-collision (TTC) is important for

robots to avoid collisions and plan the trajectory [8, 13, 33,

34, 40]. Indeed, knowing the motion-in-depth directly tells

us the time a point takes to collide with the image plane by

Tc =

Z

Z − Z ′
T =

T

1 − τ
,

assuming a constant velocity, where T is the sampling in-

terval of the camera and τ is motion-in-depth [20]. We
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overlaid images

optical flow prediction

motion-in-depth prediction

error map

ICP-global FlowNet3

OSF PRSM Ours

Figure 7. LiDAR scene flow result on KITTI-15 val set frame “000124”. Red (2nd frame) and blue (translated first frame) points are

supposed to overlap for perfect 3D flow estimation. Our method predicts more accurate 3D flow than global-ICP and FlowNet3 on the

front vehicles. OSF and PRSM produce motion fields with a similar quality as ours, but use stereo images and are much slower.

Table 4. Percentage errors of time-to-contact estimation on KITTI.

Method Err-1s Err-2s Err-5s Input

FlowNet3 [22] 22.87 21.49 15.97 stereo
†FlowNet3-ft [22] 11.97 13.86 12.43 stereo

OSF [39] 6.94 7.78 8.74 stereo

PRSM [56] 5.91 5.72 6.10 stereo

Ours 4.21 4.07 4.51 mono

convert the motion-in-depth estimations to time-to-collision

and compare our method with the baselines in Tab. 4.

We treat TTC prediction as a binary classification task

where we predict whether the TTC is less than {1s, 2s, 5s}
for each pixel [33]. The sampling interval is set as 0.1s and

only the points with positive TTC ground-truth are evalu-

ated. We compute the accuracy over 40 KITTI validation

images as used in optical scene flow evaluation.

We find that OSF and PRSM perform reasonably well on

TTC estimation, which is consistent with their high accu-

racy on motion-in-depth estimation. Our monocular method

outperforms all the baselines for all time intervals, indicat-

ing it makes better predictions on possible future collisions.

4.4. Selflearning of optical expansion

We explore the task of self-supervised learning of optical

flow and expansion. Our network is trained on 6800 images

from KITTI depth estimation dataset [53] for 20k iterations,

where the sequences that appear in KITTI-15 scene flow

training set are excluded. Then we evaluate 40 validation

KITTI-15 images as used in optical scene flow.

As for baselines, “Brightness” compares the difference

between the intensity values of the reference and target

pixel, and “Census” compares between intensity values of a

K ×K patch around the reference pixel and their correspon-

dences. Both methods do not provide supervision signals

for optical expansion. Our scale-aware loss provides su-

pervision for optical expansion, and combined with census

loss, gives the best performance, as shown in Tab.5.

Table 5. Results of self-supervised flow estimation on KITTI-15.

Method Fl EPE Exp. log-L1

Brightness [47] 9.472 N .A.

Census [37] 7.000 N .A.

Ours-Scale 7.380 336

Ours-Census+Scale 6.564 348

4.5. Rigid depth estimation

Structure-from-motion jointly estimates camera poses

and 3D point locations of a rigid scene given point cor-

respondences [19]. However, for two frames undergoing

a forward or backward translational camera motion, the

triangulation error for pixels near the focus of expansion

(FoE), or epipole, is usually high due to the limited baseline

and small triangulation angle [5, 14]. Here we describe a

method of computing depth from optical expansion, which

is not sensitive to small baseline.

Here we consider the case where camera motion is

a given translation tc = (tcx, tcy, tcz ), and compare the

depth estimation solutions using triangulation and motion-

in-depth. For triangulation, assuming an identity camera

intrinsics, we have depth

Z =
x − FoEx

u
tcz =

y − FoEy

v
tcz,

where FoE = (
tcx
tcz
,
tcy
tcz

) and (u, v) is the displacement of

reference point (x, y) [30]. Notice when only lateral move-

ment exists, the above is equivalent to Z = tcx/u. Motion-

in-depth τ also tells us the depth via time-to-contact,

Z =
1

1 − τ
tcz .

Assuming the errors according to triangulation and time-

to-contact are ǫ | |u | | and ǫτ respectively, we have

ǫZ1
∼

1

| |u| |2
, ǫZ2

∼
1

(1 − τ)2
,
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(a)

Focus of expansion

(b)

(c)

(e)

(d)

(f)

Figure 8. Rigid depth estimation with optical flow vs motion-in-

depth. (a): overlaid input frames, where the pixel motion is rela-

tive small for the marked region near the focus of expansion. (b):

distance to the focus of expansion from image coordinates, given

by | |p − FoE| |. (c): flow correspondences visualized by the Mid-

dlebury color wheel. (d): depth estimation by triangulation of flow

correspondences, where the estimation for the marked region near

the focus of expansion is corrupted due to small displacements.

(e): motion-in-depth estimation. (f): depth reconstruction by time-

to-contact, where the depth estimation near the focus of expansion

is more robust than the triangulation method.

which indicates large error occurs when flow is smaller for

the triangulation solution, and large error occurs when opti-

cal expansion is close to 1 for the time-to-contact solution.

Interestingly, it is always the case that for points near FoE

where displacements are small, the optical expansion is ei-

ther greater than one (moving forward) or smaller than one

(moving backward) [40], giving robust signals for recon-

structing points near the FoE as shown in Fig. 8.

5. Ablation

Setup To demonstrate the advantage of our method over

alternatives for estimating optical expansion, we perform an

extensive set of diagnostics. For all experiments, we train

the network for 20k iterations on Driving and Monkaa with

a batch size of 8, and test on the 40 KITTI validation im-

ages used in optical scene flow experiments. We also test

on the sintel training set, which compared to KITTI, has

more dynamic objects and a much smaller range of optical

expansion, since depth does not change much over frames.

Comparison to expansion-based options We first re-

move the residual prediction structure and directly learn to

regress the optical expansion from the initial prediction and

find the performance drops slightly. Then we investigate the

effectiveness of input features. Replacing initial expansion

to flow predictions as inputs increases the error by 50.2%

on KITTI and 39.8 on Sintel, which shows the initial scale

extracted from local affine transform is crucial for estimat-

ing the optical expansion. We then replace initial expan-

sion with the reference and warped target image features (by

flow) as inputs, and find the error rises by 76.5% on KITTI

and 109.6% on Sintel, which indicates it is difficult to learn

optical expansion directly from image features. To demon-

Table 6. Ablation study on optical expansion estimation.

Method KITTI log-L1 Sintel log-L1

Ours 245 78

w/o residual 255 83

affine→flow 383 116

affine→warp 450 174

Raw affine transform 363 131

Matching over scales 541 145

strate the improvement from the optical expansion network,

we evaluate the raw scale component extracted from the lo-

cal affine transforms, which increases the error by 42.4% on

KITTI and 57.8% on Sintel.

Matching over scales We consider a scale matching net-

work baseline that searches for scale over a pyramid of im-

ages [44, 57, 59]. At the quarter feature resolution, we dis-

cretize the s ∈ [0.5, 2] into S = 9 intervals in log space, and

construct a pyramid by scaling the reference image features.

Then a 3D cost volume of size (H/4,W/4, S) is constructed

by taking the dot product between reference feature and tar-

get feature pyramid warped by the optical flow prediction.

The cost volume is further processed by 3D convolutions

and soft-argmin regression following prior work on stereo

matching [23, 60]. However, this approach faces a hard

time predicting the optical expansion correctly. We posit

the signals in raw images feature is not strong enough for

the matching network to directly reason about expansions.

6. Discussion

We explore problems of 3D perception using monocular

cameras and propose to estimate optical expansion, which

provides rich information about relative depth change. We

design a neural architecture for optical expansion and nor-

malized scene flow, associated with a set of supervised

or self-supervised learning strategies. As a result, signif-

icant improvements over prior art on multiple 3D percep-

tion tasks are achieved, including LiDAR scene flow, op-

tical scene flow, and time-to-collision estimation. For fu-

ture work, we think dense optical expansion is a valuable

low-level cue for motion segmentation and robot collision

avoidance. Moreover, the geometric relationship between

optical expansion and normalized scene flow is currently

established assuming a scaled orthographic camera model

and non-rotating scene elements. Extending it to a perspec-

tive camera model with rotating scene elements would be

interesting. Finally, background rigidity is a powerful prior

for depth and motion estimation, and incorporating it with

our local estimates would further improve the performance.
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