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Abstract

While deep learning has recently achieved great success

on multi-view stereo (MVS), limited training data makes

the trained model hard to be generalized to unseen sce-

narios. Compared with other computer vision tasks, it is

rather difficult to collect a large-scale MVS dataset as it

requires expensive active scanners and labor-intensive pro-

cess to obtain ground truth 3D structures. In this paper,

we introduce BlendedMVS, a novel large-scale dataset, to

provide sufficient training ground truth for learning-based

MVS. To create the dataset, we apply a 3D reconstruction

pipeline to recover high-quality textured meshes from im-

ages of well-selected scenes. Then, we render these mesh

models to color images and depth maps. To introduce the

ambient lighting information during training, the rendered

color images are further blended with the input images to

generate the training input. Our dataset contains over 17k

high-resolution images covering a variety of scenes, in-

cluding cities, architectures, sculptures and small objects.

Extensive experiments demonstrate that BlendedMVS en-

dows the trained model with significantly better general-

ization ability compared with other MVS datasets. The

dataset and pretrained models are available at https:

//github.com/YoYo000/BlendedMVS.

1. Introduction

Multi-view stereo (MVS) reconstructs the dense repre-

sentation of the scene from multi-view images and corre-

sponding camera parameters. While the problem is previ-

ously addressed by classical methods, recent studies [30,

31, 10] show that learning-based approaches are also able to

produce results comparable to or even better than classical

state-of-the-arts. Conceptually, learning-based approaches

implicitly take into account global semantics such as specu-

larity, reflection and lighting information during the recon-

struction, which would be beneficial for reconstructions of

textureless and non-Lambertian areas. It has been reported

on the small object DTU dataset [2] that, the best overall

quality has been largely improved by recent learning-based

approaches [30, 31, 4, 13].

By contrast, leaderboards of Tanks and Temples [14] and

ETH3D [23] benchmarks are still dominated by classical

MVS methods. In fact, current learning-based methods are

all trained on DTU dataset [2], which consists of small ob-

jects captured with a fixed camera trajectory. As a result, the

trained model cannot generalize very well on other scenes.

Moreover, previous MVS benchmarks [24, 26, 2, 14, 23]

mainly focus on the point cloud evaluation rather than the

network training. Compared with other computer vision

tasks (e.g., classification and stereo), the training data for

MVS reconstruction is rather limited, and it is desired to es-

tablish a new dataset to provide sufficient training ground

truth for learning-based MVS.

In this paper, we introduce BlendedMVS, a large-scale

synthetic dataset for multi-view stereo training. Instead of

using expensive active scanners to obtain ground truth point

clouds, we propose to generate training images and depth

maps by rendering textured 3D models to different view-

points. The texture mesh of each scene is first reconstructed

from images, which is then rendered into color images and

depth maps. To introduce the ambient lighting information

during training, we further blend rendered images with in-

put color images to generate the training input. The result-

ing images inherit detailed visual cues from rendered color

images, which makes them consistently align with rendered

depth maps. At the same time, the blended images still

largely preserve the realistic ambient lighting information

from input images, which helps the trained model better
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Figure 1: Pipeline of rendered data generation. We reconstruct the textured 3D model from input images, and then rendered

the model into different view point to generate rendered images and depth maps.

generalize to real-world scenarios.

Our dataset contains 113 well selected and reconstructed

3D models. These textured models cover a variety of dif-

ferent scenes, including cities, architectures, sculptures and

small objects. Each of the scene contains 20 to 1,000 in-

put images and there are more than 17,000 images in total.

We train recent MVSNet [30], R-MVSNet [31] and Point-

MVSNet [4] on several MVS datasets. Extensive experi-

ments on different validation sets demonstrate that models

trained on BlendedMVS achieve better generalization abil-

ity compared with models trained on other MVS datasets.

Our main contributions can be summarized as:

• We propose a low-cost data generation pipeline with a

novel fusion approach to automatically generate train-

ing ground truth for learning-based MVS.

• We establish the large-scale BlendedMVS dataset. All

models in the dataset are well selected and cover a va-

riety of diversified reconstruction scenarios.

• We report on several benchmarks that BlendedMVS

endows the trained model with significantly better gen-

eralization ability compared with other MVS datasets.

2. Related Works

2.1. Learningbased MVS

Learning-based approaches for MVS reconstruction

have recently shown great potentials. Learned multi-patch

similarity [7] first applies deep neural networks for MVS

cost metrics learning. SurfaceNet [10] and DeepMVS [8]

unproject images to the 3D voxel space, and use 3D CNNs

to classify if a voxel belongs to the object surface. LSM [11]

and RayNet [18] encoded the camera projection to the net-

work, and utilized 3D CNNs or Markov Random Field to

predict surface label. To overcome the precision deficiency

in volume presentation, MVSNet [30] applies differentiable

homography to build the cost volume upon the camera frus-

tum. The network applies 3D CNNs for the cost volume

regularization and regress the per-view depth map as out-

put. The follow-up R-MVSNet [31] is designed for high-

resolution MVS, by replacing the memory-consuming the

3D CNNs with the recurrent regularization, and signifi-

cantly reduce the peak memory size. More recently, Point-

MVSNet [4] presents an point-based depth map refinement

network, while MVS-CRF [29] introduces the conditional

random field for the depth map refinement.

2.2. MVS Datasets

Middlebury MVS [24] is the earliest MVS dataset for

MVS evaluation. It contains two indoor objects with low-

resolution (640 × 480) images and calibrated cameras.

Later, the EPFL benchmark [26] captures ground truth mod-

els of building facades and provides high-resolution images

(6.2 MP) and ground truth point clouds for MVS evalua-

tion. To evaluate algorithms under different lighting con-

ditions, DTU dataset [2] captures images and point clouds

for more than 100 indoor objects with a fixed camera tra-

jectory. The point clouds are further triangulated into mesh

models and rendered into different view point to generate

ground truth depth maps [30]. Current learning-based MVS

networks [30, 31, 4, 13] usually apply DTU dataset as their

training data. Recent Tanks and Temples benchmark [14]

captures indoor and outdoor scenes using high-speed video

cameras, however, their training set only contains 7 scenes

with ground truth point clouds. ETH3D benchmark [23]

contains one low-resolution set and one high-resolution set.

But similar to Tanks and Temples, ETH3D only provides a

small number of ground truth scans for the network train-

ing. The available training data in these datasets is rather
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limited, and a larger scale dataset is required to further ex-

ploit the potentials of learning-based MVS. In contrast, the

proposed dataset will provide more than 17,000 images with

ground truth depth maps, which covers a variety of diversi-

fied scenes and can greatly improve the generalization abil-

ity of the trained model.

2.3. Synthetic Datasets

Generating synthetic datasets for training is a common

practice in many computer vision tasks, as a large amount

of ground truth can be generated at very low cost. Thanks to

recent advances in computer graphics, the rendering effect

becomes increasingly photo-realistic, making the usage of

synthetic datasets more plausible. For example, synthetic

rendered images are used in stereo matching [3, 16, 32],

optical flow [3, 16, 5], object detection [6, 27] and semantic

segmentation [6, 19, 5, 20, 25]. Similar to these datasets, we

consider incorporating the lighting effects in rendering syn-

thetic datasets for 3D reconstruction. However, since it is

difficult to generate correct material properties in different

parts of the model, we resort to a blending approach with

original images to recover the lighting effects.

3. Dataset Generation

The proposed data generation pipeline is shown in Fig. 1.

We first apply a full 3D reconstruction pipeline to produce

the 3D textured mesh from input images (Sec. 3.1). Next,

the mesh is rendered to each camera view point to obtain the

rendered image and the corresponding depth map. The final

training image input is generated by blending the rendered

image and input image in our proposed manner (Sec. 3.2).

3.1. Textured Mesh Generation

The first step to build a synthetic MVS dataset is gener-

ating sufficient high-quality textured mesh models. Given

input images, we use Altizure online platform [1] for the

textured mesh reconstruction. The software will perform

the full 3D reconstruction pipeline and return the textured

mesh and camera poses as final output.

With the textured mesh model and camera positions of

all input images, we then render the mesh model to each

camera view point to generate the rendered images and ren-

dered depth maps. One example is shown in Fig. 1. The

rendered depth maps will be used as the ground truth depth

maps during training.

3.2. Blended Image Generation

Intuitively, rendered images and depth maps can be di-

rectly used for the network training. However, one poten-

tial problem is that rendered images do not contain view-

dependent lightings. In fact, a desired training sample to

multi-view stereo network should satisfy:
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Figure 2: The blending process of the data generation

pipeline. The high-pass filter is applied to extract image vi-

sual cues from the rendered image, while the low-pass filter

is applied to extract ambient lightings from the input.

• Images and depth maps should be consistently aligned.

The training sample should provide reliable mappings

from input images to ground truth depth maps.

• Images should reflect view-dependent lightings. The

realistic ambient lighting could strengthen model’s

generalization ability to real-world scenarios.

To introduce lightings to rendered images, one solution is to

manually assign mesh materials and set up lighting sources

during the rendering process. However, this is extremely

labor-intensive, which makes it rather difficult to build a

large-scale dataset.

On the other hand, the original input images have al-

ready contained the natural lighting information. The light-

ing could be automatically overlaid to rendered images if

we can directly extract such information from input images.

Specifically, we notice that ambient lightings are mostly

low-frequency signals in images, while visual cues for es-

tablishing multi-view dense correspondences (e.g., rich tex-

tures) are mostly high-frequency signals in images. Fol-

lowing the observation, we propose to extract visual cues

from the rendered image Ir using a high-pass filter H, and

extract the view-dependent lighting from the input image I

using the low-pass filters L. The visual cues and lightings
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Rendered ImageInput Image Blended Image

Figure 3: Detailed textures of input, rendered and blended

images. The blended image has similar background light-

ings to the input image, while inherits texture details from

the rendered image.

are fused to generate the blended image Ib (Fig. 2):

Ib = Ir ∗H+ I ∗ L

= F−1
(

F(Ir) ·Hf

)

+ F−1
(

F(I) · Lf

) (1)

where ‘∗’ denotes the convolution operation, ‘·’ the

element-wise multiplication. The symbols F and F−1 are

2D Fast Fourier Transformation (FFT) and inverse FFT re-

spectively. In our implementation, the filtering process is

performed in the frequency domain. Lf and Hf are ap-

proached by 2D Gaussian low-pass and high-pass filters:

Lf (u, v) = exp
(

−
(u2 + v2)

2 ·D0

)

(2)

Hf (u, v) = 1− Lf (u, v) (3)

The Gaussian kernel factor is empirically set to D0 =
5, 000 in our experiments. The blended image inherits de-

tailed visual cues from the rendered image, while at the

same time largely preserves realistic environmental light-

ings from the input image. Fig. 3 illustrates the differ-

ences between these three images. We will demonstrate in

Sec. 5.2 that models trained with blended images have bet-

ter generalization abilities to different scenes.

4. Scenes and Networks

4.1. Scenes

For the content of the proposed dataset, we manually se-

lect 113 well-reconstructed models publicly available in the

Altizure.com online platform. These models cover a vari-

ety of different scenes, including architectures, street-views,

sculptures and small objects. Each of the scene contains 20

to 1,000 input images, and totally there are 17,818 images

in the whole dataset. It is also noteworthy that unlike DTU

dataset [2] where all scenes are captured by a fixed robot

arm, scenes in BlendedMVS contain a variety of different

camera trajectories. The unstructured camera trajectories

can better model different image capturing styles, and is

able to make the network more generalizable to real-world

reconstructions. Fig. 4 shows 7 scenes in BlendedMVS

dataset with camera positions.

The dataset also provides training images and ground

truth depth maps with a unified image resolution of H ×
W = 1536×2048. As input images are usually with differ-

ent resolutions, we first resize all blended images and ren-

dered depth maps to a minimum image size Hs ×Ws such

that Hs >= 1536 and Ws >= 2048. Then, we crop image

patches of size H × W = 1536 × 2048 from the resized

image centers to build training samples for BlendedMVS

dataset. The corresponding camera parameters are changed

accordingly. Also, the depth range is provided for each im-

age as this information is usually required by depth map

estimation algorithms.

Online Augmentation We also augment the training data

during the training process. The following photometric

augmentations are considered in our training: 1) Random

brightness: we change the brightness of each image by

adding a random value b such that −50 < b < 50, and

then clip the image intensity value to the standard range

of 0 − 255. 2) Random contrast: we change the contrast

of each image with a random contrast factor c such that

0.3 < c < 1.5, and then clip the image to the standard range

of 0 − 255. 3) Random motion blur: we add the Gaussian

motion blur to each input image. We consider a random mo-

tion direction and a random motion kernel size of m = 1 or

3 during the augmentation. The above mentioned augmen-

tations will be imposed to each training image in a random

order. In the ablation study section 5.2, we will demonstrate

the improvement brought by the online augmentation.

4.2. Networks

To verify the effectiveness of the proposed dataset, we

train and evaluate recent MVSNet [30], R-MVSNet [31]

and Point-MVSNet [4] on BlendedMVS dataset.

MVSNet [30] is an end-to-end deep learning architecture

for depth map estimation from multiple images. Given

a reference image I1 and several source images {Ii}
N
i=2

,

MVSNet first extract deep image features {Fi}
N
i=1

for all

images. Next, image features are warped into the reference

camera frustum to build the 3D feature volumes {Vi}
N
i=1

through the differentiable homographies. The network ap-

plies a variance-based cost metric to build the cost volume

C and applies a multi-scale 3D CNNs for the cost volume

regularization. The depth map D is regressed from the vol-

ume through the soft argmin [12] operation. The network is

trained with the stander L1 loss function.
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Figure 4: Several textured models with camera trajectories in BlendedMVS dataset. The blue box indicate the camera

position in the 3D space. Our dataset contains 113 scenes in total.

R-MVSNet [31] is an extended version of MVSNet for

high-resolution MVS reconstruction. Instead of regulariz-

ing the whole 3D cost volume C with 3D CNNs at once,

R-MVSNet applies the recurrent neural network to sequen-

tially regularize the 2D cost maps C(d) through the depth

direction, which dramatically reduces the memory con-

sumption for MVS reconstruction. Meanwhile, R-MVSNet

treats depth map estimation as a classification problem and

applies the cross-entropy loss during the network training.

Point-MVSNet [4] is a point-based deep framework for

MVS reconstruction. In the network, the authors apply

MVSNet framework to generate a coarse depth map, con-

vert it into a point cloud and finally refine the point cloud

iteratively by estimating the residual between the depth of

the current iteration and that of the ground truth.

Implementations we directly use the open-source imple-

mentations of the three networks from their GitHub pages.

Compared with the original papers, several modifications

have been made to MVSNet and R-MVSNet: 1) The 5-

layer 2D CNNs is replaced by a 2D U-Net to enlarge the

receptive field during image feature extraction. 2) The batch

normalization [9] is replaced with the group normalization

[28] with fixed a group channel size of 8 to improve the net-

work performance when training with small batch size. 3)

The refinement network in MVSNet is removed as this part

only brings limited performance gain. 4) The variational re-

finement step in R-MVSNet is removed so as to avoid the

non-learning component affecting the dataset evaluation.

All models are trained using one GTX 2080 Ti GPU with

batchsize = 1. MVSNet and R-MVSNet are trained for

160k iterations, while Point-MVSNet is trained for 320k it-

erations with the first 100k for coarse MVSNet initialization

and another 220k for the end-to-end training.
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5. Experiments

5.1. Quantitative Evaluation

5.1.1 Depth Map Validation

To demonstrate the capacity of BlendedMVS dataset, we

compare models trained on 1) DTU training set, 2) ETH3D

low-res training set, 3) MegaDepth dataset and 4) Blended-

MVS training set. Evaluations are done on the correspond-

ing validation sets. Three metrics are considered in our ex-

periments: 1) the end point error (EPE), which is the aver-

age L1 loss between the inferred depth map and the ground

truth depth map; 2) the > 1 pixel error, which is the ratio of

pixels with L1 error larger than 1 depth-wise pixel; and 3)

the > 3 pixel error. Quantitative results are shown in Fig. 5.

Trained on DTU [2] As suggested by previous methods

[30, 10, 31], DTU dataset is divided into training, validation

and evaluation sets. We train the three networks with a fixed

input sample size of H ×W ×D = 512× 640× 128 and

fixed depth range of [dmin, dmax] = [425, 937].

It is reported in Fig. 5 that all three models trained on

DTU (black lines) perform very well on DTU validation

set, however, produce high validation errors in Blended-

MVS and ETH3D datasets. In fact, models are overfitted in

small-scale indoor scenes, showing the importance of hav-

ing rich object categories in MVS training data.

Trained on ETH3D [23] The ETH3D training set contains

5 scenes. To separate the training and the validation, we

take delivery area, electro, forest as our training scenes, and

playground, terrains as our validation scenes. The training

sample size is fixed to H × W × D = 480 × 896 × 128.

The per-view depth range is determined by the sparse point

cloud provided by the dataset.

As shown in Fig. 5, validation errors of models trained

on ETH3D (blue dash lines) are high in all validation sets

including its own dataset, indicating that ETH3D training

set does not provide sufficient data for MVS training.

Trained on MegaDepth [15] MegaDepth dataset is orig-

inally built for single-view depth map estimation that it

applies multi-view depth map estimation to generate the

depth training data. The dataset provides image-depthmap

training pairs and SfM output files from COLMAP [21].

To apply MegaDepth for the MVS training, we apply the

view seletion and the depth range estimation [30, 31] to

generate training files in MVSNet format. Also, as re-

constructed depth maps of crowdsourced images are usu-

ally incomplete, we only use those training samples with

more than 20% valid pixels in the reference depth map dur-

ing our training. There are 39k MVS training samples in

MegaDepth dataset after the proposed pre-processing. The

training input size is fixed to H×W×D = 512×640×128

by applying the resize-and-crop strategy as described in 4.1.

Although MegaDepth contains more training samples

than BlendeMVS, models trained on MegaDepth (green

dash lines in Fig. 5) are still inferior to models trained on

BlendedMVS. We believe there are two major problems of

applying MegaDepth for the MVS training: 1) the ground

truth depth map is generated through MVS reconstructions.

In this case, input images and reconstructed depth maps are

not consistently aligned and the network will tend to overfit

to the chosen algorithm [22]. 2) MegaDepth is built upon

crowdsourced internet photos. The crowdsourced images

are not well-captured and the training data quality could

have significant influences on the training result.

Trained on BlendedMVS To train MVS networks with

BlendedMVS, we resize all training samples to H ×W =
576×768 for MVSNet and R-MVSNet, and further crop the

samples to H × W = 448 × 768 for Point-MVSNet. The

depth sample number is set to D = 128. Our dataset is also

divided into 106 training scenes and 7 validation scenes to

evaluate the network training.

As shown in Fig. 5, models trained on BlendedMVS (red

lines) generalizes well to both DTU and ETH3D scenes. All

models achieve the best validation results on BlendedMVS

and ETH3D validation sets, and achieve the second best re-

sult (very close to the best) on DTU validation set, showing

the strong generalization ability brought by our dataset.

5.1.2 Point Cloud Evaluation

We also compare point cloud reconstructions of models

trained on DTU, ETH3D, MegaDepth and BlendedMVS on

Tanks and Temples [14] training set. As the dataset contains

wide-depth-range scenes that cannot be handled by MVS-

Net and PointMVSNet, we only test R-MVSNet (trained

for 150k iterations) in this experiment. We follow methods

described in R-MVSNet paper to recover camera parame-

ters of input images, and then perform the per-view source

image selection and depth range estimation based on the

sparse point cloud. For post-processing, we also follow pre-

vious works [30, 31] to apply the visibility-based depth map

fusion [17], average depth map fusion and visibility depth

map filter to generate the 3D point cloud.

The dataset reports three evaluation metrics, namely pre-

cision (accuracy), recall (completeness) and the overall

f score [14, 23] to quantitatively measure the reconstruc-

tion quality. As shown in Table 1, R-MVSNet trained

on DTU [2] and MegaDepth [15] achieve similar f score

performances, while R-MVSNet trained on the proposed

dataset outperforms models trained on the other three

datasets for all scenes. The average f score is improved

from 0.475 to 0.532 by simply replacing the training data

from DTU to BlendedMVS. Qualitative comparisons on

depth maps are shown in Fig. 6.
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Figure 5: Depth map validation errors during the training process on all validation sets. Results of models trained on

BlendedMVS (red lines) demonstrate good generalization ability on both DTU and ETH3D validation sets.

R-MVSNet Models Metrics Barn Caterpillar Church Courthouse Ignatius Meetingroom Truck Average

Trained on DTU [2]

Precision 0.387 0.301 0.498 0.399 0.409 0.391 0.559 0.421

Recall 0.674 0.755 0.313 0.731 0.856 0.213 0.846 0.623

F score 0.492 0.430 0.384 0.517 0.553 0.276 0.673 0.475

Trained on ETH3D [23]

Precision 0.334 0.297 0.497 0.347 0.362 0.324 0.492 0.379

Recall 0.564 0.608 0.221 0.598 0.750 0.112 0.706 0.508

F score 0.420 0.399 0.306 0.439 0.488 0.166 0.580 0.400

Trained on MegaDepth [15]

Precision 0.414 0.291 0.566 0.441 0.408 0.418 0.522 0.437

Recall 0.676 0.724 0.282 0.741 0.854 0.152 0.815 0.606

F score 0.513 0.415 0.376 0.553 0.552 0.223 0.636 0.467

Trained on BlendedMVS

Precision 0.432 0.352 0.570 0.462 0.492 0.444 0.602 0.479

Recall 0.715 0.770 0.387 0.765 0.901 0.251 0.845 0.662

F score 0.539 0.484 0.461 0.577 0.636 0.321 0.703 0.532

Table 1: Point cloud evaluations on Tanks and Temples training set [14]. R-MVSNet trained on BlendedMVS outperforms

models trained on other datasets in all scenes.

Trained on ETH3D Trained on DTU Trained on BlendedMVSTrained on MegaDepthReference Image
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Figure 6: Qualitative comparisons on depth map reconstructions using R-MVSNet [31]. The model trained on BlendedMVS

generates much cleaner results than models trained on the other three datasets.
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Networks Training Images EPE <1 Px. Err <3 Px. Err

MVSNet [30]

Rendered 2.99 0.245 0.136

Input 3.70 0.243 0.135

Blended 2.88 0.224 0.118

Rendered+Aug. 2.94 0.225 0.116

Input+Aug. 3.16 0.234 0.123

Blended+Aug. 2.53 0.219 0.107

R-MVSNet [31]

Rendered 5.54 0.251 0.148

Input 4.47 0.242 0.134

Blended 5.77 0.239 0.137

Rendered+Aug. 5.10 0. 238 0.132

Input+Aug. 3.86 0.241 0.126

Blended+Aug. 3.95 0.234 0.127

Table 2: Ablation study on using different images for train-

ing. Validation errors on DTU dataset [2] show that blended

images with online augmentation produces the best result.

5.2. Ablation Study on Training Image

Next, we study the differences of using 1) input images,

2) rendered images and 3) blended images as our training

images. For these three setting, we also study the effective-

ness of the online photometric augmentation. All models

are trained for 150k iterations and are validated on DTU

validation set. Comparison results are shown in Table 2.

Environmental Lightings The proposed setting of blended

images with photometric augmentation produces the best

result, while rendered images only produces the worst re-

sult among all. Also, all images with photometric augmen-

tation results in lower validation errors than without, show-

ing that view-dependent lightings are indeed important for

MVS network training.

Training with Input Images It is noteworthy that while

input images are not completely consistent with rendered

depth maps, training R-MVSNet with input images (with or

without the augmentation) also produces satisfying results

(Table 2). The reason might be that 3D structures have been

correctly recovered for most of the scenesc as all scenes are

well-selected in advance. In this case, rendered depth maps

can be regarded as the semi ground truth given input images,

which could be jointly used for MVS network training.

5.3. Discussions

Imperfect Reconstruction One concern about using the re-

constructed model for the MVS training is whether defects

or imperfect reconstructions in textured models would af-

fect the training process. In fact, blended images inherit de-

tailed visual cues from rendered images, which are always

consistent with rendered depth maps even if defects occur.

In this case, the training process will not be deteriorated.

For the same reason, we could change the Altizure online

platform to any other 3D reconstruction pipelines to recover

the mesh model. What we have presented is a low-cost

MVS training data generation pipeline that does not rely

on any particular textured model reconstruction method.

Input Image Blended Image

Figure 7: Privacy preserving with blended images. Humans

will be removed or blurred in the blended images.

Occlusion and Normal Information While current

learning-based approaches [30, 31, 4, 13] does not take into

account the pixel-wise occlusion and normal information,

our dataset provides such ground truth information as well.

The occlusion and normal information could be useful for

future visibility-aware and patch-based MVS networks.

Privacy Using blended images could also help preserve the

data privacy. For example, pedestrians in input images are

usually dynamic, which will not be reconstructed in the tex-

tured model and rendered images (first row in Fig. 7). Fur-

thermore, if pedestrians appear in front of the reconstructed

object, our image blending process will only extract blurred

human shapes from the input image, which helps conceal

user identities in the blended image (second row in Fig. 7).

6. Conclusion

We have presented the BlendedMVS dataset for MVS

network training. The proposed dataset provides more

than 17k high-quality training samples covering a variety

of scenes for multi-view depth estimation. To build the

dataset, we have reconstructed textured meshes from input

images, and have rendered these models into color images

and depth maps. The rendered color image has been fur-

ther blended with the input image to generate the training

image input. We have trained recent MVS networks us-

ing BlendedMVS and other MVS datasets. Both quantita-

tive and qualitative results have demonstrated that models

trained on BlendedMVS achieve significant better general-

ization abilities than models trained on other datasets.
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