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Abstract

In self-supervised spatio-temporal representation learn-

ing, the temporal resolution and long-short term character-

istics are not yet fully explored, which limits representation

capabilities of learned models. In this paper, we propose

a novel self-supervised method, referred to as video Play-

back Rate Perception (PRP), to learn spatio-temporal rep-

resentation in a simple-yet-effective way. PRP roots in a

dilated sampling strategy, which produces self-supervision

signals about video playback rates for representation model

learning. PRP is implemented with a feature encoder,

a classification module, and a reconstructing decoder, to

achieve spatio-temporal semantic retention in a collabo-

rative discrimination-generation manner. The discrimina-

tive perception model follows a feature encoder to prefer

perceiving low temporal resolution and long-term repre-

sentation by classifying fast-forward rates. The genera-

tive perception model acts as a feature decoder to focus

on comprehending high temporal resolution and short-term

representation by introducing a motion-attention mecha-

nism. PRP is applied on typical video target tasks includ-

ing action recognition and video retrieval. Experiments

show that PRP outperforms state-of-the-art self-supervised

models with significant margins. Code is available at

github.com/yuanyao366/PRP.

1. Introduction

Deep networks, i.e., Convolutional Neural Networks

(CNNs) [22], have achieved unprecedented success in com-

puter vision area. This can be largely attributed to the

learned rich representation incorporating both low-level

fine-details and high-level semantics [35]. To realize rich
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Figure 1. With limited visible frames, video clips with different

playback rates (temporal resolutions) imply different semantics.

A video clip with normal playback rate (first row) can be misun-

derstood as “race”. With higher playback rate (second row), we

can see that it is in fact “long jump”, of which short-term motion

details can be perceived in the slow-down video (third row). Per-

ceiving videos with different playback rates is crucial in learning

long-short term spatio-temporal representation.

representation, networks are typically pre-trained using

large-scale image/video datasets (e.g., ImageNet [16] and

Kinetics [18]) under accurate annotation supervision [19].

However, large-scale data annotation is laborious, ex-

pensive, or can be impractical, particularly for complex

data such as videos and concepts such as action analysis

and video retrieval [10, 18]. Considering the availability of

large-scale unlabelled data on the Web, self-supervised rep-

resentation learning, which leverages intrinsic correspon-

dence within unlabelled data to pre-train desired represen-

tation models, has attracted increasing attention.

Self-supervised representation learning defines an

annotation-free proxy task, which leverages easily devel-

oped supervision signals from data itself to train network
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models, which then facilitate the implementation of the

downstream target tasks. From the perspective of frame

content perception, early self-supervised methods focused

on predicting the spatial transformation of images [10].

Without considering the temporal relations, however, the

learned features are merely on a frame-by-frame basis,

which are inappropriate to video analysis tasks because the

temporal dimension defines essential differences between a

video sequence and an image set. Recent works [36] learned

spatio-temporal representation by regressing both motion

and appearance statistics. Nevertheless, without the capa-

bility to perceive temporal resolution characteristics, such a

mechanism is unable to learn long-short term representation

necessary for precise video understanding, Fig. 1.

In this paper, we propose a novel self-supervised ap-

proach, referred to as video Playback Rate Perception

(PRP), targeting at learning representation about multiple

temporal resolutions in a simple-yet-effective manner. PRP

is motivated by the motion perception mechanism observed

in primate visual systems [25, 26], i.e., different visual cells

respond to different temporal changes. M-cells are sensi-

tive to quick and short-term changes while P-Cells focus on

slower and longer-term variation. This mechanism has been

explored by SlowFast networks [7] for video recognition,

while we update it to a self-supervised manner to perceive

multiple temporal resolutions.

To perceive temporal resolution characteristics within

video data, a dilated sampling strategy is designed to

produce videos with various playback rates. The origi-

nal videos simulate high playback rates relative to frame-

sampled videos, and content similarity between videos of

different playback rates are used as a supervision signal for

representation learning.

With a discriminative model, PRP can be trained to clas-

sify videos of different playback rates. With a genera-

tive model, PRP is driven to reconstruct low playback rate

videos from high playback rate ones. The discriminative

perception model follows a feature encoder to focus on per-

ceiving low temporal-resolution and long-term representa-

tion by classifying fast-forward rates. The generative per-

ception model acts as a feature decoder to focus on compre-

hending high temporal-resolution and short-term represen-

tation by introducing a motion-attention mechanism. Col-

laborative discriminative-generative perception further ag-

gregates long-short term representation capacity, Fig. 2.

The contributions of this work include:

• A novel video Playback Rate Perception (PRP) ap-

proach is proposed to capture temporal resolution char-

acteristics within video domain in a self-supervised

manner.

• PRP is implemented with discriminative and gener-

ative perception models, which cooperatively retain

spatio-temporal semantics in representation models.

Furthermore, we introduce a motion attention mech-

anism, which drives representation to focus on mean-

ingful foreground regions.

• We apply PRP to three kinds of 3D CNNs and two

target tasks including action recognition and video re-

trieval, and improve the state-of-the-arts with signifi-

cant margins.

2. Related Work

Self-supervised learning leverages information from un-

labelled data to train models. Existing approaches usu-

ally define an annotation-free proxy task which demands

a network predicting information hidden within unanno-

tated videos. The learned models can then be applied to

target tasks (eitehr supervised or unsupervised) after fine-

tuning. Conventional self-supervised methods include dis-

criminative proxy tasks such as classifying transformed im-

ages [12, 20, 6] or video content [43], and generative proxy

tasks which include image inpainting [29] and video recon-

struction [34, 43].

2.1. Proxy Tasks

From a broader view, proxy tasks can be constructed

on top of multiple sensory data such as ego-motion [5],

sound [4], and cross-modal data [17, 30, 11]. Although in

this paper, we mainly review proxy tasks based on visual

signals.

Spatial Representation Learning. Spatial transforms

applied to images can produce supervision signals for rep-

resentation learning [23]. As a representative method, the

rotation-based self-supervised approach [12, 9] learns CNN

features by rotating images and using rotated angles as su-

pervision. The completion-based approach [20, 6, 13]

learns image representations by predicting damaged Jig-

saw puzzles. While context impainting [2] trains the CNN

model to predict content of a withheld image region con-

ditioned according to its surroundings, the image-patch

matching approach [38, 42] trains a representation model

to capture spatial in-variance.

Spatio-temporal Representation Learning. The large

amount of video clips with rich spatio-temporal informa-

tion provide various supervision signals. In [37], the tem-

poral continuity of video frames could be used as a su-

pervisory signal. In [27, 24], predicting orders of frames

or video clips drives learning spatio-temporal representa-

tion. In [10], an odd-one-out network was proposed to

identify the unrelated or odd clips from a set of other-

wise related clips. To find the odd clip, the models have

to learn spatio-temporal features which can discriminate

similar clips. In [3], unsupervised motion segmentation
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Figure 2. Playback rate perception (PRP) is composed of dilated sampling and perception modeling. Perception modeling is implemented

with a feature encoder, a discriminative module, and a reconstructing decoder (generative module). The self-supervision signals are

generated using dilated sampling.

on videos was used to obtain segments, which perform as

pseudo ground truth to train CNNs for segmentation.

Early methods usually learn features based upon 2D

CNNs and simplistically based on a frame-by-frame pro-

cess, which are inappropriate to video analytic tasks where

spatio-temporal features are prevailing. Recently, 3D rep-

resentations are learned [36] by regressing motion and ap-

pearance statistics. The order of video clips is then used

as a supervised signal for temporal representation learning

[39]. 3D CNN models are trained by completing space-time

cubic puzzles [19].

Despite of substantial progress in the field, existing

methods unfortunately ignore the multiple temporal reso-

lutions, which are essential for video-based tasks. Without

these temporal resolution characteristics, the representation

capability of learned models remains limited.

2.2. Target Tasks

For video-related tasks 3D CNN models were trained us-

ing a large-scale video databases with video category an-

notation [8, 32]. Nevertheless, the representation models

trained on video classification tasks lack general applica-

bility. Fine-tuning such models to other target tasks, e.g.,

action recognition and video retrieval, could produce sub-

optimal results. To conquer these issues, we propose the

self-supervised PRP approach, and target at improving the

model generality, by incorporating long-short term tempo-

ral representations,

3. Playback Rate Perception

Fast-forward and slow-down playback are two com-

monly used modes when browsing videos. To quickly un-

derstand video content, e.g., a movie, we can use the fast-

forward mode. To capture the fine details within a wonder-

ful clip, we usually require action replay with a slow-down

play rate. The way humans perceive video content demon-

strates an important fact that the temporal resolution and

long-short term characteristics are critical to get better un-

derstanding of videos.

Based on this observation, we propose the video Play-

back Rate Perception (PRP) for representation learning,

which is composed of two components: dilated sampling

and perception modeling. Dilated sampling augments video

clips into different temporal resolution (fast-forward) while

perception modeling learns rich spatio-temporal representa-

tion to classify videos into playback rates and/or reconstruct

from the low temporal resolution videos to high temporal

resolution ones (slow-down), Fig. 2.

3.1. Dilated Sampling

Given a raw video V (1), we uniformly sample a video

frame from each s frames with the same temporal inter-

val, which is denoted as s× dilated sampling. This proce-

dure generates video V (s) with s× fast-forward playback

rate. Considering the spatial similarity and temporal ambi-

guity among video frames, we sample successive l frames

from V (s) as a learning sample, X(s), which can be fed to

3D CNNs. For the example shown in Fig. 2(left), s = 2
and l = 2. The videos V (s) with different dilated sam-

pling intervals have consistent content but different play-

back rates. Such playback rates, together with their corre-

sponding video content, provide self-supervision signals for

representation model learning.

3.2. Perception Modeling

Feature Encoder. To extract both spatial and tempo-

ral features, we choose C3D [32], R3D and R(2+1)D [33]

as feature encoders. C3D is a natural extension from 2D
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Figure 3. Up: encoder-decoder structure. Down: C3D, R3D, and

R(2+1)D blocks.

CNNs for spatio-temporal representation learning as it can

model the temporal information of videos. It stacks five

C3D blocks which consist of a classic 3D convolution with

the kernel size of t× k × k followed by a batch normaliza-

tion layer and a ReLU layer. As shown in Fig. 3, we take

C3D backbone as an example to build the feature encoder

and show the dimensional transformation of each block.

R3D refers to 3D CNNs with residual connections. As

shown in Fig. 3, R3D block consists of two 3D convolution

followed by batch normalization and ReLU layers. The in-

put and output are connected with a residual unit before the

last ReLU layer. In R(2+1)D, the overall structure is similar

tp R3D. The 3D convolution is decomposed into a spatial

2D convolution and a temporal 1D convolution with addi-

tional batch normalization and ReLU layers attached.

Discriminative Perception. As shown in Fig. 3, fea-

tures of the input video clip extracted by the encoder is fed

to a classification model to predict the playback rate. The

ground-truth label is denoted as sc, where 1 ≤ c ≤ C, C

is the number of different sampling intervals of the inputs.

This procedure can be referred to as discriminative percep-

tion upon a normalized probability pc of which the input

video clip belongs to class c, pc = exp(ac)∑
C

c=1
exp(ac)

, where ac

is the c-th output of the fully connected layer. Based on

the normalized probability, the parameter θ for the network

model is updated by optimizing a cross entropy loss, as

argmin
θ

Ld = −

C∑

c

sc log pc. (1)

To optimize Eq. 1, the feature encoder is driven to per-

ceive subtle differences of motion intensity and scenario dy-

namics among adjacent frames which is essential for precise

spatio-temporal representation.

Generative Perception. Beyond discriminative percep-

tion we further propose a generative perception mode to

promote PRP’s understanding capacity, which targets at re-

constructing the r× slow-down video clips. The reconstruc-

tion procedure is performed with a feature decoder network

which has four 3D deconvolutional blocks, Fig. 3. For each

decoder block, we stack a deconvolutional layer with stride

2×2×2 followed by a C3D block. To generate a video with

reconstructing rate r (r times as slow as the input video), the

fourth deconvolutional takes a stride of r × 2× 2.

Ground-Truth. To predict the interpolated frames, we set

the dilated sampling interval as s = 2k1 , (k1 = 0, 1, 2, · · · )
and the reconstructing rate as r = 2k2 , k2 ∈ 0, 1, 2. The

ground-truth of the input clip X(2k1) with 2k2× slow-down

generation can be sampled from the video V (2k1−k2). As

shown in Fig. 2(right), a 2× slow-down generative percep-

tion is implemented by taking the 2× dilated sampled video

clip as input and the raw video as output (self-supervision

signal). If k2 > k1, we can use linear interpolation to gen-

erate the ground-truth clip from the raw video.

Motion Attention. To reconstruct video clips, MSE [14]

loss is commonly used to build a generative network. It is

important to note that our PRP is not designed to generate

high quality videos but to learn long-short term video rep-

resentations. To fulfill this purpose, we propose a motion

attention regularized MSE (m-MSE) loss, which drives the

network concentrating on reconstructing and interpolating

frame regions in significant motion.

Denoting the t-th ground-truth frame for slow-down

generation, the t-th motion attention map and the t-th pre-

dicted video frame as Gt = (gtij), M t = (mt
ij) and

Y t = (ytij), the m-MSE loss can be defined as

argmin
θ

Lg =
1

N

∑

t,i,j

mt
ij(y

t
ij − gtij)

2, (2)

where N is the number of pixels in the predicted video clip.

(ij) denotes a spatial location on video frames.

As shown in Fig. 4, the motion attention maps M are

calculated according to the raw video frames X(1) (de-
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Figure 4. Calculation of motion attention based on frame difference, 3D-Pooling, activation and 3D-Upsampling operations.

noted as R) which is an s× slow-down video clip of in-

put X(s), and through four steps including difference, 3D-

Pooling, activation and 3D-Upsampling. In the difference

step, adjacent frames Rt and Rt+1 from the raw video clip

are used to calculate the t-th frame difference map Dt as

Dt = D(Rt, Rt+1) = |Rt − Rt+1|2. Considering that the

frame difference maps can be affected by accidental noise as

well as missing static foregrounds, a 3D-Pooling operation

P , as a spatio-temporal filer, is conducted on the difference

maps to make it more consistent with foregrounds and more

stable in the spatio-temporal domain. Then, an increasing

activation function A is used to transform the pixel value of

the difference maps to [λ1, λ2], 0 ≤ λ1 ≤ 1 and 1 ≤ λ2.

Finally, a 3D-Upsampling operation U is applied to obtain

motion attention maps of the same size with the ground-

truth video frames. The overall process of motion attention

map generation is formulated as

M = M(R) = U(A(P(D(R)))). (3)

Discriminative-Generative Perception. To further

learn richer spatio-temporal representations, discriminative

and generative perception models are fused, Fig. 2, by opti-

mizing the following objective function, as

argmin
θ

λdLd + λgLg. (4)

Fusion is performed in a cooperative manner, as the classi-

fication model is good at identifying long-term representa-

tion for playback rate discrimination, while the generative

model can capture short-term fine-details for content recon-

struction. With end-to-end learning, Fig. 2, spatio-temporal

characteristics of multiple temporal resolution can be en-

coded within the model.

3.3. Discussion

The proposed encoder-decoder framework contributes a

new feature learning strategy, which is neither identical to

E Gx
Semantic Sampling

z~E(x)
G(z)VAE

E Gx
Semantic Retention

G(z)

D

PRP
(Ours)

G Dz True/False

Semantic Adversary

GAN

Figure 5. Comparison of Variational Auto-Encoder (VAE), Gen-

erative Adversarial Network (GAN), and the proposed encoder-

decoder model. ‘E’, ‘D’, and ‘G’ denote ‘Encoder’, ‘Discrimina-

tor’ and ‘Generator’, respectively.

Variational Auto-Encoder (VAE) [21] nor to Generative Ad-

versarial Network (GAN) [41], Fig. 5. Specifically, our

framework is driven by discriminative and generative mod-

els to achieve semantic retention, which means that the en-

coded temporal semantics can be transferred to downstream

target tasks, as much as possible. By contrast, VAE targets

at semantic sampling controlled by the latent variable (z)

following normal distribution. The encoder in VAE should

learn features that best represent the distribution of inputs

while the generator uses specified features for data genera-

tion conditioned on the latent variable.

Like GAN, our approach involves both generative and

discriminative models. The essential difference is that GAN

leverages models in an adversarial manner while ours works

cooperatively. GAN uses the generative model to produce

images which are difficult to be classified by the discrimi-

native model. Our approach learns general semantics, i.e.,

multi-resolution spatio-temporal representation, in a coop-

erative discrimination-generation manner.
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