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Abstract

Recent advances in deep learning have provided pro-

cedures for learning one network to amalgamate multiple

streams of knowledge from the pre-trained Convolutional

Neural Network (CNN) models, thus reduce the annotation

cost. However, almost all existing methods demand mas-

sive training data, which may be unavailable due to privacy

or transmission issues. In this paper, we propose a data-

free knowledge amalgamate strategy to craft a well-behaved

multi-task student network from multiple single/multi-task

teachers. The main idea is to construct the group-stack gen-

erative adversarial networks (GANs) which have two dual

generators. First one generator is trained to collect the

knowledge by reconstructing the images approximating the

original dataset utilized for pre-training the teachers. Then

a dual generator is trained by taking the output from the

former generator as input. Finally we treat the dual part

generator as the target network and regroup it. As demon-

strated on several benchmarks of multi-label classification,

the proposed method without any training data achieves the

surprisingly competitive results, even compared with some

full-supervised methods.

1. Introduction

In the past few years, deep convolutional neural net-

works (CNNs) have been widely used to achieve state-of-

the-art performances in various artificial intelligent applica-

tions, such as tracking [22, 2], classification [16] and seg-

mentation [33, 35]. The success of the widely used CNNs,

however, heavily relies on heavy computation and storage

as well as a massive number of human annotations, some-

times even up to the scales of tens of millions such as those

of ImageNet. However, in many cases of the real-world ap-

plications, the training data or annotations are confidential

and therefore, unavailable to the public.

To alleviate the re-training and reproducing effort, vari-

ous effective approaches have been proposed recently. For
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Figure 1. The architecture of Dual-GAN where the corresponding

discriminator is not depicted. The generator (left) synthesizes the

images, while the dual-generator (right) produces the label vectors.

example, the usual transfer learning approach [37, 31] uti-

lizes the pre-trained base network and then copies its first

few layers to those of a target network to train toward the

target task. Besides, the seminal work of knowledge dis-

tillation (KD) [13] learns a compact student model by the

aid of the soft labels obtained from the teachers. Other than

these works that learn from one single network, knowledge

amalgamation (KA) [36] is proposed to effectively reuse

multiple pre-trained networks, and make the learned multi-

knowledge settle well in one single network. Besides, the

process of KA doesn’t require any annotations, where only

the intermediate features are treated as knowledge to guide

training.

Training with KA demands for the unlabeled dataset

only, which reduces the annotation cost largely. But it is

also a common situation with no access to any training sam-

ples, even the related raw input, due to the extreme privacy

policy or other irresistible factors. For example, building

the face detection system, it is a violation of portraits right

to publish the users’ profile photos. And taking the unre-

lated dataset as replacement leads to unsatisfying results for

the existence of the domain gap. So, in this paper, we in-

vestigate a practical strategy to train a customized network
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with the knowledge amalgamated from the teachers, where

neither the annotations nor the input images are required.

In the field of training without data, only a few re-

searches have been carried out, most of which work on the

network compression [21, 19]. For example, DAFL [3] ap-

plies a modified GAN to generate the input images and the

corresponding annotations. Nevertheless, these methods do

work on the simple datasets like MNIST [17] and CIFAR-

10 [15], but go under more complicated datasets with more

difficult tasks. In this paper, we propose a new data-free

knowledge amalgamation framework for training the tar-

get network, which is realized by the dual-GAN in Fig. 1.

Firstly, we train a generator to amalgamate the knowledge

from the pre-trained teachers. Secondly, the generator trans-

fers the learned knowledge to the dual-generator (Target-

Net) by the generated samples. Finally, the final target net-

work is extracted from the dual-generator.

To this end, we bring forward a feasible data-free frame-

work into knowledge amalgamation. Our contribution is

therefore an effective approach to training a student model

termed TargetNet, without human annotations, even with-

out any real input data, that amalgamates the knowledge

from a pool of teachers working on different tasks. The

procedure is to first collect the amalgamated knowledge into

the GAN and then pass it through to TargetNet. The con-

structed GAN is designed into the dual-architecture consist-

ing of several unique groups, with the intermediate features

generation improving the reliability.

2. Related Work

In this section, we briefly review the recent approaches

in multi-label learning, the knowledge-based methods and

several data-free methods.

Multi-task Learning. Multi-task learning(MTL) has

been widely studied in many fields, including computer vi-

sion [8, 1], natural language processing [4], and machine

learning [26, 42]. The main difficulty in MTL is how to

well describe the hierarchical relations among tasks and ef-

fectively learn model parameters under the regularization

frameworks.

One reliable way is to utilize the tree structure. For ex-

ample, Zhang et al. [10] proposes a probabilistic tree spar-

sity model that utilizes the tree structure to obtain the sparse

solution. More recently, ML-forest [32] is proposed to learn

an ensemble of hierarchical multi-label classifier trees to re-

veal the intrinsic label dependencies.

Another popular way has been focused on fusing MTL

with CNN to learn the shared features and the task-specific

models. For example, Zhang et al. [42] proposes a deep

CNN for joint face detection, pose estimation, and landmark

localization. Misra et al. [20] propose a cross-stitch network

for MTL to learn an optimal combination of shared and

task-specific representations. In [40], a task-constrained

deep network is developed for landmark detection with fa-

cial attribute classifications as the side tasks. Zhao et al. [43]

proposes a multi-task learning system to jointly train the

task of image captioning and two other related auxiliary

tasks which help to enhance the CNN encoder and the RNN

decoder in the image captioning model. With the con-

sideration of a large number of possible label sets, most

multi-task learning methods require sufficient labeled train-

ing samples. Multi-label co-training [39] introduces a semi-

supervised method that leverages information concerning

the co-occurrence of pairwise labels. To reduce the anno-

tation cost, Durand et al. [5] propose to train a model with a

partial label with a new classification loss that exploits the

proportion of known labels per example.

Knowledge-based Learning. First proposed in [13],

knowledge distillation aims at training a student model of

a compact size by learning from a larger teacher model or

a set of teachers handling the same task, and thus finds

its important application in deep model compression [38].

More recently, the work of [7] introduces a multi-teacher

and single-student knowledge concentration approach. The

work of [24], on the other hand, trains a student classifier

by learning from multiple teachers with different classes.

In order to handle the multi-task problem in one single

network, the work of [34] proposes an effective method to

train the student network on multiple scene understanding

tasks, which leads to better performance than the teachers.

To make it further, Ye et al. [36] apply a two-step filter strat-

egy to customize the arbitrary task set on TargetNet.

Data-free Learning. For the strict premise of leaving

out the whole dataset, there are only a few methods pro-

posed for training deep neural networks without the original

training dataset. For example, Srinivas et al. [25] choose to

minimize the expected squared difference of logits, which

makes it possible to avoid using any training data for model

compression. In addition, Lopes et al. [19] attempt to regen-

erate batches of data based on meta data collected at training

time describing the activation of the network, rather than re-

lying on the original dataset to guide the optimization.

In addition, utilizing generative models is thought to be

a more feasible way with regard to the data-free demand.

GAN [9] has shown the capability of generating better high-

quality images [28, 14], compared to existing methods such

as Restricted Boltzmann Machines [12] and Deep Boltz-

mann Machines [23]. A vanilla GAN model [9] has two

important components, i.e. a generator and a discriminator.

The goal of generator is to generate photo-realistic images

from a noise vector, while the corresponding discriminator

is trying to distinguish between a real image and the image

generated by the generator. DAFL [3] utilizes GAN in the

scheme of teacher-student learning, which treats the origi-

nal teacher network as the discriminator and generates the

training samples for the light-weight student.
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Figure 2. Training the group-stack GAN with the knowledge amalgamated from the teachers. The figure exhibits the situation that a

three-group GAN is trained with two teachers as corresponding multiple group-stack discriminators.

3. Problem Definition

In this work, we aim to explore a more effective approach

to train the student network (TargetNet), without any anno-

tations, even without any training input images, only utiliz-

ing the knowledge amalgamated from the pre-trained teach-

ers. The TargetNet is designed to deal with multiple tasks,

and particularly, we focus on the multi-label classification

problem, tending to learn a customized multi-branch net-

work that can recognize all labels selected from separate

teachers.

Notations. We denote by C the number of the cus-

tomized categories, and Ycst = {y1, y2, ..., yC} ⊆ {0, 1}
C

as the label vector. The problem we address here is to train

the TargetNet T which can simultaneously handle multiple

tasks on the customized label set Ycst. TargetNet amalga-

mates the knowledge from M pre-trained teachers, which

are denoted as A = {A1,A2, ...,AM}. For each teacher

m, a Tm-label classification task Ym = {y1m, y2m, ..., yTm
m }

is learned in advance. Then, the customized label set in

TargetNet and those in the teacher networks are in the con-

straint: Ycst ⊆
⋃M

m=1 Ym, which reveals that either the full

or the subset of classification labels is alternative for making

up the customized task set.

Specifically, we use F b
m to denote the feature maps in

the b-th block of the m-th pre-trained teacher, which are the

knowledge to be amalgamated for the student’s training.

4. Proposed Method

In this section, we will describe the details of the pro-

posed data-free framework for training a target network

with the knowledge amalgamated from the pre-trained

teachers, which is realized by constructing the group-stack

GAN in the dual architecture.

The process of obtaining the well-behaved TargetNet

with the proposed data-free framework contains three steps.

In the first step, we train the generator G with knowledge

amalgamation in the adversarial way, where the images in

the same distribution of the original dataset can be manu-

factured. In the second step, the dual generator T is trained

with the generated samples from G in the block-wise way

to produce multiple predict labels. This dual architecture

containing two sub-generators can be denoted as:

G(z) : z → I

T (I) : I → Ycst,
(1)

where I donates the image, z is the random noise and Ycst

is the predicted labels.

Finally in the third step, after training the whole dual-

GAN, we take and modify the dual-generator as TargetNet

for classifying the customized label set Ycst. In this way,

the specific GAN is embedded into the knowledge amalga-

mation training, thus makes it unconstrained for the training

data.

4.1. Amalgamating GAN

In order to learn the customized TargetNet while avoid-

ing using the real data, we choose first to amalgamate the

knowledge from multiple teachers in an extra container

(GAN).

Let’s begin with the arbitrary vanilla GAN. The original

formulation of the GAN is a minimax game between a gen-
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erator, G(z) : z → I and a discriminator, D(x) : I →
[0, 1], and the objective function can be defined as:

LGAN = Ex∼pdata(I)[logD(I)]

+ Ez∼pz(z)[log(1−D(G(z)))].
(2)

For the absence of the real data, it is infeasible to perform

the traditional training by Eq. 2. Besides, in order to amal-

gamate multiple streams of knowledge into the generator,

several modifications have been made as follows.

Group-stack GAN. The first modification is the group-

stack architecture. In this paper, the generator is designed to

generate not only the images suitable for TargetNet’s train-

ing, but also the intermediate activations aligned with the

teachers. Thus, we set B as the total group number of the

generator, which is the same as the block numbers of the

teacher and the student networks. In this way, the generator

can be denoted as a stack of B groups {G1, G2, ..., GB},
from which both the image Igan and the consequent activa-

tions F j
gan at group j are synthesised from a random noise

z:

F 1
gan = G1(z)

F j
gan = Gj(F j−1

gan ) 1 < j ≤ B,
(3)

when j = B, the output of the B-th group GB is FB
gan,

which is also thought as the final generated image Igan.

Since the generator is in the group-stack architecture,

the symmetric discriminator consisting of several groups

is built. For each group Gj , the corresponding discrimi-

nator is Dj , and the group adversarial pair is presented as

[{G1, D1}, {G2, D2}, ..., {GB , DB}]. In this way, the sat-

isfying Gj∗ can be acquired by:

Gj∗ = argmin
Gj

Ez∼pz(z)
[log(1−Dj∗(Gj(F j−1

gan )], (4)

where 1 ≤ j ≤ B and Dj∗ is the optimal j-group discrim-

inator. Recall that we don’t have the real data, training the

discriminator in the normal adversarial way becomes a vir-

tual impossibility. Therefore, we transfer it to designing a

plausible loss function to calculate the difference between

the generated samples and the real ones. Thus, we take the

off-the-shelf teacher network A to constitute each Dj :

Dj ←

j
⋃

i=1

{AB−j+i}. (5)

During the training for the group pair {Gj , Dj}, only

Gj is optimized with discriminator Dj fixed, whose output

is for classifying multiple labels. Motivated by the work

of [3], we make use of several losses to constraint the output

of Dj to motivate the real data’s response.

The raw output for D is O(Fgan) = {y1, y2, ..., yC},
with the predict label as ti:

ti =

{

1 yi ≥ ǫ

0 yi < ǫ
, (6)

where 1 ≤ i ≤ C and ǫ is set to be 0.5 in the experiment.

Then the one-hot loss function can be defined as:

Loh =
1

C

∑

i

ℓ(yi, ti), (7)

where ℓ is the cross entropy loss for each label’s classifica-

tion. AndLoh enforces the outputs of the generated samples

to be close to one-hot vectors.

In addition, the outputs need to be sparse, since an image

in the real world can’t be tagged with dense labels which are

the descriptions for different situations. So we propose an

extra discrete loss function Ldis:

Ldis = −
1

C

∑

i

|yi|, (8)

which is also known as the L1-norm loss function.

Finally, combining all the losses, the final objective func-

tion can be obtained:

Lgan = Loh + αLa + βLie + γLdis, (9)

where α, β, and γ are the hyper parameters for balancing

different loss items. La and Lie are the activation loss func-

tion and information entropy loss function, respectively.

Those losses are proposed by [3] and will be detailed in-

troduced in the supplementary.

Multiple Targets. In this paper, the TargetNet is cus-

tomized to perform multi-label classifications learning from

multiple teachers. So, the generator should generate sam-

ples containing multiple targets that are learned from mul-

tiple teachers. As a result, for the j-th group genera-

tor Gj , we construct multiple group-stack discriminators

{Dj
1, D

j
2, ..., D

j
M} in concert with teachers specializing in

different task sets by Eq. 5.

In order to amalgamate multi-knowledge into the gener-

ator by {Dj
m}

M
m=1, the teacher-level filtering is applied to

F j
gan. And this filtering is conducted as:

F j,m
gan = f j

m(F j
gan), (10)

where the filtering function f j
m is realized by a light learn-

able module consisting of a global pooling layer and two

fully connected layers. F j,m
gan is the filtered generated

features that approaches the output feature distribution of

AB−j
m , also known as the (B − j)-th block of Am. And the

validity of the generated F j,m
gan is justified by Dj

m, whose

outputs are donated as Om(F j
gan) = Dj

m(F j,m
gan ).
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Then for the generated features F j
gan from Gj , we col-

lect from the multi-discriminator the M prediction sets

{O1(F
j
gan),O2(F

j
gan), ...,OM (F j

gan)}, which are:

Ogan(F
j
gan) =

M
⋃

m=1

Om(F j
gan), (11)

which is treated as new input to the loss Eq. 9, then Lj
gan

is the adversarial loss for each Gj . Despite the fact that

the generated features should appear like the ones extracted

from the real data, they should also lead to the same pre-

dictions from the same input z. Thus, the stack-generator

{G1, G2, ..., GB} can be jointly optimized by the final loss:

Ljoint = L
B
gan +

1

B − 1

B−1
∑

j=1

ℓ(Ogan(F
j
gan),Ogan(Igan)),

(12)

where the adversarial lossLgan only calculates from the last

group {GB , DB}. The rest part of the final loss is the cross-

entropy loss that restrains the intermediate features gener-

ated from G1 to GB−1 to make the same predictions as

Igan, which offsets the adversarial loss {L1
gan, ...,L

B−1
gan }.

By minimizing Ljoint, the optimal generator G can syn-

thesis the images that have the similar activations as the real

data fed to the teacher.

4.2. Dual­generator Training

After amalgamating the multi-stream knowledge into

the group-stack GAN, a set of generated training sam-

ples are obtained, which are in the form of R =
{F 1

gan, F
2
gan..., F

B−1
gan } ∪ {Igan} including both the gen-

erated intermediate features and the RGB image. Then the

next step is to train the dual-generator T . Also, we construct

the group-discriminator for each T b as:

D
b,m
dual ←

B−b
⋃

i=1

{Ab+i
m }, (13)

where the dual generator T is trained to synthesis the sam-

ples that Ddual can’t distinguished from Igan produced by

the trained G.

Motivated by the work of [36], we use the block-wise

training strategy to transfer as much knowledge as possible

from the generator G into the dual-generator T . That is, we

divide dual-generator into B blocks as {T 1, T 2, ..., T B},
and during the training process of T b (1 < b ≤ B), the

whole generator G and the blocks of the dual-generator T
from 1 to b− 1 keep fixed.

Take training T b for example, the problem is to learn

the features F b
u generated by the b-th block of the dual-

generator. As shown in Fig. 3, which shows the adver-

sarial for dual-GAN block {T b, Db}, the generated F b
u is

b
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Figure 3. The adversarial mode for b-th block of the dual-GAN.

Two levels of filtering are performed to the features generated by

the b-th group of the dual-generator T b.

treated as ‘fake’ to the discriminator with Igan as the ‘real’

data in this dual part GAN. To do this, a two-level filtering

method is applied to F b
u. The first step is the teacher-level

filtering for multi-target demand, which transforms F b
u to

m teacher streams F b,m
u by F b,m

u = f b
m(F b

u), as defined in

Eq. 10. The second level is the task-level filtering conducted

after the last few fully connected layers of the correspond-

ing discriminator, which is established for the constraint of

Ycst ⊆
⋃M

m=1 Ym. We feed the generated features F b
u to the

corresponding discriminator D
b,m
dual, and derive the predic-

tionsOm(F b
u). Then the task-level filtering gm is applied to

meet the task customizable demand and embedded into the

m-th branch block-wise adversarial loss:

Lb,m
dual = ℓ(gm(Om(F b

u)), gm(Om(Igan))), (14)

where gm is utilized to select the needed predictions for

customized tasks in the constraint: Ycst =
⋃M

m=1 gm(Ym).
So the block-wise loss for updating dual-generator T b from

multiple branches can be denoted as:

Lb
dual =

∑

m

λm · L
b,m
dual, (15)

where we set λm = 1 for m ∈ {1, ...,M}.
Since the existence of the links between the generators

G and T , the input to the present block has two streams:

F 1
in = T b−1T ...T 1(Igan),

F 2
in = GB+1−bG...G1(z),

(16)

where F 1
in is obtained from Igan and F 2

in is generated by

GB+1−b that indicates the links in Fig. 1. Then according
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to the different inputs to T b, the final loss can be rewritten

from Eq. 15 as:

Lb
u = λ1

inL
b,m
dual(F

1
in) + λ2

inL
b,m
dual(F

2
in), (17)

where λ1
in and λ2

in are the balancing weights. With Eq. 17,

parameter updating takes place within block b and the cor-

responding learnable teacher-level filters {f b
1 , ..., f

b
M}, and

blocks from 1 to b− 1 remain unchanged.

4.3. TargetNet Regrouping

Once the training of all the B blocks from the dual-

generator has been completed by Eq. 15, the whole GAN

in the dual architecture is obtained. Then we can acquire

the embryo TargetNet from the dual-part of the genera-

tor {T 1, T 2, ..., T B} as well as a series of loss conver-

gence values {η1,m, η2,m, ..., ηB,m} calculated from Lb,m
dual

at each block for teacher Am. Tu treats all the sets of labels

equal and produces the final predictions at the last block

T B
u , which is against our expectation to make them hierar-

chical. Then we do the branching out on T and the branch-

out blocks are taken to be:

Sm = arg min
b∈[1,B]

ηb,m. (18)

Once the branch-out spot Sm for task set gm(Ym) is de-

termined, we regroup the branched task-specific TargetNet

and keep the corresponding teacher-wise filter fSm
m for con-

necting the TargetNet and the corresponding teacherAm as:

Tm = [{T 1, ..., T Sm}, fSm
m , {ASm+1

m , ...,AB
m}], (19)

where Tm is specialized for the task set gm(Ym).

Finally, we can regroup the final TaregtNet Tu in the hi-

erarchical architecture as:

Tu =

M
⋃

m=1

{Tm}, (20)

which shares the first few min{S1, S2, ...SM} blocks and

branches out in the following blocks for different tasks.

The proposed data-free knowledge amalgamation

method is first to amalgamate a group-stack multi-target

GAN, and then utilizing the generated intermediate fea-

ture maps as well as the final output images to train the

dual-generator. Finally, the TargetNet can be acquired by

modifying the trained generator. The whole process of

data-free training TargetNet is exhibited in Algorithm 1.

5. Experiments and Results

Here we provide our experimental settings and results.

More results can be found in our supplementary material.

Algorithm 1 Data-free Knowledge Amalgamation

Input: {A1,A2, ...,AM}: M pre-trained teacher set;

{A1
m,A2

m, ...,AB
m}: m-th teacher divided into B

blocks for classifying Ym; Ycst: customized label set.

1: Initial the group-stack generator {G1, G2, ..., GB} and

the dual generator {T 1, T 2, ..., T B};
2: Step I: Training the Generator.

3: Randomly sample the noise z and initial F 0
gan ← z;

4: for group j = 1 : B do

5: Build Dj for Gj by Eq. 5 and get F j
gan by Eq. 3;

6: For all m ∈ [1,M ], get F j,m
gan by Eq. 10;

7: Get predictions Ogan(F
j
gan) by Eq. 11;

8: end for

9: Calculate loss Ljoint by Eq. 12 to optimize G;

10: Step II: Training the Dual-generator.

11: Acquire {F 1
gan, F

2
gan, ...F

B−1
gan } ∪ Igan from z;

12: Feed Igan into Am and initial F 0
u ← Igan;

13: for block b = 1 : B do

14: Build Db
dual for T b by Eq. 13;

15: Obtain F 1
in, F 2

in by Eq. 16 and get F b
u = T b(Fin);

16: Do the two-level filtering to F b
u;

17: Optimize T b by the loss Eq. 17;

18: end for

19: Step III: Branching out.

20: Collect the convergence loss value ηk,m.

21: Find branch-out point Sm by Eq. 18;

22: Get task-specific Tm by Eq. 19;

23: Group and fine-tune Tu =
⋃M

m=1{Tm}.
Output: Tu: task-specific hierarchical TargetNet.

5.1. Experimental Settings

Datasets. In this paper, we evaluate the proposed

method on several standard multi-label datasets: the PAS-

CAL Visual Object Classes 2007 (VOC2007) [6] and Mi-

crosoft Common Objects in Context (MS-COCO) [18]

dataset. These two datasets contain 9,963 images and

123,287 images respectively, where there are totally 20

object concepts annotated for VOC2007 and 80 for MS-

COCO. In each dataset, we use the training set for pre-

training the teachers. For TargetNet, we don’t refer to any

real data and only draw support from the knowledge amal-

gamated from the teachers.

Implementation details. We implemented our model

using TensorFlow with a NVIDIA M6000 of 24G memory.

We adopt the poly learning rate policy. We set the base

learning rate to 0.01, the power to 0.9, and the weight decay

to 5e − 3. Due to limited physical memory on GPU cards

and to assure effectiveness, we set the batch size to be 16

during training. The TargetNet which is in the same archi-

tecture as the teachers (ResNet101 [11]), is initialized with

parameters pre-trained on ImageNet.
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Table 1. Comparisons of the classification results (AP in %) on the randomly selected 10-label set with other methods on VOC 2007.

Scenario Required Data plane bike bird boat bus car horse motor person train mAP

TeacherNet VOC2007 94.2 81.9 82.4 81.9 76.2 89.2 89.4 82.4 93.1 89.9 86.0

KA Unlabeled VOC2007 94.3 83.6 82.5 82.0 76.7 89.2 89.5 82.5 93.2 90.1 86.4

Similar Data CIFAR100 80.4 65.2 71.3 68.0 66.9 81.3 62.1 56.1 87.2 79.5 71.8

Diff Data CityScape 5.4 47.8 12.8 6.1 20.0 63.4 11.1 13.5 71.0 20.4 27.2

Random Noise None 1.2 3.5 34.5 13.5 7.8 9.2 23.7 29.0 3.5 19.8 14.6

DAFL None 32.8 58.0 37.3 50.5 28.9 63.1 51.8 41.6 75.1 29.4 46.8

Data-free KA None 84.9 67.1 66.9 67.1 58.4 83.0 72.5 58.0 80.4 77.2 73.6

5.2. Experimental Results

5.2.1 Performance on VOC 2007

Customized Tasks of Single Teacher. There are a total

20 labels in Pascal VOC 2007, we pre-trained one teacher

network (‘Pretrained Teacher’) on the total label set. Then

the TargetNet is designed to classify 10 labels randomly se-

lected from the 20 labels. Then we compare the results with

the following methods:

[KA]: The block-wise training method proposed by [36]

based on unlabeled original dataset;

[Similar Data]: The method trained with the real dataset

similar with the original one;

[Diff Data]: The method trained with the real dataset that is

quit different from the original one;

[Random Noise]: The method trained with Random Noise;

[DAFL]: The data-free method proposed by [3].

Then all results are shown in Table 1 for comparison,

where the AP for each label and the mAP for all are de-

picted. ‘KA’ outperforms the teacher by 0.4%, which trains

TargetNet with the unlabeled part of VOC 2007. And the

classification results trained from the substitute datasets

(‘Similar Data’ and ‘Diff Data’) show that using an irre-

lated dataset to replace the original one is not reliable, since

it heavily depends on the dataset choosing, which makes the

final results uncontrollable and stochastic. Besides, com-

pared with the methods (‘Random Noise’ and ‘DAFL’) that

don’t use any training data, the effectiveness of the proposed

method (‘Data-free KA’) can be easily proved.

Multiple Teachers on Whole Label Set. In this setting,

we divide the whole 20 labels randomly into two groups

which are learned separately in two teacher networks. To

the best of our knowledge, we are the first to study the

data-free customized-label classification. So we set the cus-

tomized task set Ycst =
⋃M

m=1 Ym, which makes the Target-

Net deal with a normal multi-label task for comparison with

other methods. We compare the performance of the pro-

posed method against the following typical multi-label ap-

proaches: ‘HCP-2000’ [29], ‘HCP-VGG’ [30], ‘RLSD+ft-

RPN’ [41] and ‘KA-ResNet’. And since we have not found

another data-free or unsupervised method on multi-label

classification, we refer to a related work ‘partial-BCE’ [5].

Table 2. Comparisons of the classification results (mAP in %) on

the whole 20-label on VOC 2007.

Methods mAP Description

HCP-2000 85.2

Training with original dataset.HCP-VGG 90.9

RLSD+ft-RPN 88.5

partial-BCE 90.7 Training with 10% annotations

KA-ResNet 92.5 Training with unlabeled dataset.

DAFL 54.9
Training without real data.

Data-free KA 87.2

Table 2 presents the results on this setting. The proposed

data-free method achieves the competitive results compared

with other methods that rely on the training dataset more or

less. Besides, the our accuracy results do surpass some of

the full-supervised methods.

Visualization Results. As shown in Fig. 4, we visualize

the images generated from the last group of G, and compare

them with the ones from the original data, random noise

and DAFL. For lack of the real data, the trained genera-

tor is unable to synthesis the images that are thought to be

‘real’ by human but it can synthesis the ‘real’ ones by the

convolutional networks’ perception. And the images gen-

erated from ‘DAFL’ seem to be more closer to the original

data than the ones generated from the GAN proposed in this

paper, but the proposed method outperforms ‘DAFL’ a lot,

which indicates the existence of the big gap between human

and the neural networks.

5.2.2 Performance on MS-COCO

On MS-COCO dataset, we follow the work of [27] to select

the top k = 3 labels for each image.

In Table 3, we compare the overall precision (‘O-P’),

recall (‘O-R’), F1 (‘O-F1’), and per-class precision (‘C-

P’), recall (‘C-R’), F1 (‘C-F1’) with other methods. Our

proposed ‘Data-free KA’ is trained to learn from two

pre-trained teachers, and outperforms some of the full-

supervised methods on some metrics. Compared with the

other data-free framework (‘DAFL’), our method shows

better results.
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Original Data Random Noise DAFL Dual-GAN (ours)

Figure 4. Visualization of the generated images compared with the original dataset trained on the teachers.

Table 3. Comparison of our method and state-of-the-art methods

on the MS-COCO dataset

Method C-P C-R C-F1 O-P O-R O-F1

RLSD+ft-RPN 67.6 57.2 62.0 70.1 63.4 66.5

KA-ResNet 79.8 63.5 69.4 83.9 65.7 75.0

DAFL 44.0 23.8 34.3 48.9 28.3 36.6

Data-free KA 66.5 55.9 61.0 69.8 65.4 68.2

Table 4. Ablation study of the influence on λ1

in and λ2

in.

{λ1

in, λ
2

in} {1, 0} {0, 1} {1, 1}

mAP (%) 70.2 59.8 73.6

5.2.3 Ablation study

We now analyze the components of our approach and

demonstrate their impact on the final performance. All these

ablation studies are performed on VOC2007 and learned

from one single teacher.

Discrete Loss. Compared with DAFL, we add an extra

discrete loss Ldis. In Fig. 5, the final predictions got from

the teacher with the generated images are depicted. In the

figure, the predictions with the discrete loss have more di-

versity, which means that the generated images in this way

are better for the TargetNet’s training.

Links in Dual-GAN. For the existence of the links be-

tween the generator and the dual-generator, the input to the

dual-generator has two streams, based on which, the inputs

can be divided into three cases:

1. {λ1
in = 1, λ2

in = 0}: The dual-generator is trained only

with F 1
in as input with no links between the generator and

the dual one;

2. {λ1
in = 0, λ2

in = 1}: The dual-generator is trained only

with F 2
in as input with the links, but Igan is not fed into;

3. {λ1
in = 1, λ2

in = 1}: The combination of 1 and 2.

As is presented in Table 4, the dual-GAN with the main

link and the link between the two dual parts performs the

best in the data free knowledge amalgamation.

Label Number Label Number

Pr
ed

ic
tio

ns

(a) Without Discret Loss (b) With Discret Loss

Figure 5. Label distribution without/with Ldis. The add of Ldis

helps the label distribution of the final output more uniform.

6. Conclusion

In this paper, we present a data-free method to customize

a network on multiple tasks, under the guidance of several

pre-trained teachers. The support for training without real

data is drawn from a specific GAN with two vital charac-

teristics: one is the architecture stacked with several groups

which force the generator to synthesis reliable images along

with reliable intermediate activations; the other one is the

dual architecture which enables the two sub generators to

cooperate together effectively. Once the required GAN has

been trained, the target network can be constructed immedi-

ately. Experimental results show that the proposed method

is able to train a well-behaved student network while avoid-

ing the participation of the real data.

In the future, we will explore a more effective data-free

approach to train TargetNet with the knowledge directly

transferred from the teachers.
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