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Abstract

We present Hybrid Voxel Network (HVNet), a novel one-

stage unified network for point cloud based 3D object detec-

tion for autonomous driving. Recent studies show that 2D

voxelization with per voxel PointNet style feature extractor

leads to accurate and efficient detector for large 3D scenes.

Since the size of the feature map determines the computa-

tion and memory cost, the size of the voxel becomes a pa-

rameter that is hard to balance. A smaller voxel size gives

a better performance, especially for small objects, but a

longer inference time. A larger voxel can cover the same

area with a smaller feature map, but fails to capture in-

tricate features and accurate location for smaller objects.

We present a Hybrid Voxel network that solves this problem

by fusing voxel feature encoder (VFE) of different scales

at point-wise level and project into multiple pseudo-image

feature maps. We further propose an attentive voxel fea-

ture encoding that outperforms plain VFE and a feature fu-

sion pyramid network to aggregate multi-scale information

at feature map level. Experiments on the KITTI benchmark

show that a single HVNet achieves the best mAP among all

existing methods with a real time inference speed of 31Hz.

1. Introduction

3D object detection is the task to recognize and locate

objects in 3D scene. It serves as a fundamental task for 3D

scene understanding with wide applications in robotics and

self-driving cars. Recent approaches utilize various types

of data, including monocular images [23, 27], stereo im-

ages [11, 21] and point cloud [10, 35] from LiDAR.

Unlike 2D images, point cloud data has some unique

properties. The location of each point reflects the surface

of physical objects in the real world. In bird eye view, data

is scale invariant inherently and objects are naturally sep-

arated, which facilitates the detection of occluded object.

Due to its accuracy and robustness, LiDAR has become the

prevalent sensor for autonomous. However, the density of

point cloud varies greatly. The volume density is propor-

tional to the inverse of square distance to the sensor. This

makes it difficult to adopt point cloud segmentation net-
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Figure 1. Bird’s eye view performance vs speed in KITTI [5]

test set. Multi-sensor methods drawn as blue circles; two-stage

LiDAR based methods drawn as green diamonds and one-stage

methods drawn as red squares. Methods on the right of the blue

vertical bar are real-time. Methods should be at least 20Hz

since onboard application should cover 360 degree rather than

KITTI annotation at limited 90 degree. Drawn methods are FP: F-

PointNet [20], AF: AVOD-FPN [9], M: MMF [13], I: IPOD [31],

FC: F-ConvNet [26], S: STD [32], PR: PointRCNN [22], FPR:

Fast Point R-CNN [2], SE: SECOND [28], PP: PointPillars [10],

PI: PIXOR++ [29] and O: our HVNet. For PointPillars we use

their runtime on PyTorch for a fair comparison. Our approach out-

performs in most case, especially for mAP and Cyclist.

works or 2D image detection methods.

In order to handle these problems and utilize the advan-

tages of LiDAR data, many approaches have been proposed

recently (see Fig 1 caption). A noticeable line of methods

combine 2D/3D voxelization with PointNet feature extrac-

tor in each voxel [10, 28, 35], which we call voxel feature

encoding (VFE) methods. Using learnt point cloud features

and 2D pseudo image feature map, these methods achieve

both good accuracy and high inference speed. VFE methods

generally contain three steps (Fig 2 VFE). 1. Voxelization:

the point cloud is assigned to a 2D voxel grid. 2. Voxel

Feature Extraction: a grid dependent point-wise feature is
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Figure 2. The voxel feature extraction strategy of VFE methods

and our HVNet. Each point feature in VFE methods only contains

one specified scale knowledge. As to HVNet, point features under

hybrid scales are aggregated into a global context, then projected

to features in dynamic target scales.

computed for each point and fed into a Pointnet style fea-

ture encoder. 3. Projection: the point-wise feature is aggre-

gated to the voxel-level feature and projected back to their

original grid, forming a pseudo-image feature map.

A key parameter in VFE methods is the size of voxel.

A smaller voxel captures finer geometry feature and better

localizes the object but suffers from longer inference time.

A coarser voxel leads to a smaller feature map and faster

inference speed but has inferior performance, especially for

small objects. In [10], a grid size of 0.12 gives the best re-

sult on KITTI dataset with a speed of 25 Hz. However, the

inference space is limited to the 90 degree FOV in front with

a 70 meter range. Other work uses multiple voxel scales to

enhance the performance [24] of the network but the run-

time is still dominated by the largest feature map.

In order to utilize fine-grained voxel feature as well

as maintain runtime efficiency, we propose Hybrid Voxel

Network (HVNet). HVNet decouples the feature extrac-

tion scale and the pseudo-image projection scale. Similar

to [10], the HVNET contains three steps (Fig 2 HVFE):

1. Multi-Scale Voxelization: We create a set of feature

voxel scale and each point is assigned to multiple voxels.

2. Hybrid Voxel Feature Extraction: for each scale, a

voxel dependent feature is computed for each point and fed

into the attentive voxel feature encoder (AVFE). Feature

from each voxel scale is concatenated point-wise. 3. Dy-

namic Feature Projection To project the feature back to a

pseudo-image, we create another set of multi-scale projec-

tion voxels, which can be independent of the feature voxels.

The multi-scale point-wise feature from the last step is ag-

gregated according to the projection scale voxels, forming

multiple pseudo-image feature maps. By these strategies,

the HVNet is able to be time-efficient. As an example, a set

of feature voxel scale can be {0.1m, 0.2m, 0.4m} and the

projection voxel scale can be {0.4m}. For a 80m × 80m
area we end up with a feature map of size 200 × 200. For

a normal VFE structure, we need a feature map of size of

800× 800 to capture small feature at 0.1m scale.

We evaluated our HVNet on the KITTI [5] dataset.

HVNet achieves the state-of-the-art performance among all

the LiDAR one-stage methods (Fig. 1). Besides, even when

compared with methods of two stage and multi-sensor, our

approach also outperforms in mAP and Cyclist. At the same

time, HVNet runs at a real-time speed of 31Hz.

In summary, our contributions reside as follows:

• We propose an novel Hybrid Voxel Feature Encoder

that fuses multi-scale VFE efficiently by decoupling

the feature extraction voxels and the feature map pro-

jection voxels.

• We maintain all the voxels implicitly and perform the

scale aggregation in the compact point-wise form to

achieve high computation and memory efficiency.

• We propose an attentive VFE that achieves great im-

provement with little computation overhead.

• Extensive experiments are conducted on the KITTI to

demonstrate the effectiveness of each component.

2. Related Work

2.1. 3D Object Detection

There are roughly two different lines for existing meth-

ods of 3D object detection with point cloud:

Multi-sensor based 3D object detection. MV3D [1] is

a pioneering work which projects point cloud into bird eye

view and front view. AVOD [9], inspired by MV3D, designs

3D object anchors and then aggregates corresponding fea-

ture maps by projection to generate a comprehensive rep-

resentation for detection. F-PointNet [20] extends the 2D

detections from image into corresponding frustums in the

3D space. MMF [13] is proposed to exploit multiple related

tasks including depth completion and 2D object detection

for accurate multi-sensor 3D object detection. However,

although multiple sensors could provide extra information,

the inference efficiency for these frameworks are relatively

low. Besides, synchronization requirement between multi-

ple sensors makes it hard to deploy.

Point cloud based 3D object detection. Voxel based

methods [3, 9, 30, 25] share a main idea to project sparse

point cloud into compact representation. VoxelNet [35] em-

ploys VFE layers based on PointNet for 3D space points

characterization. SECOND [28] utilizes Sparse Convolu-

tion [6] to accelerate VoxelNet and improve performance.

Based on SECOND, PointPillars [10] applies voxelization

only in XY direction to form pseudo-image featurization for
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Figure 3. The first line is the whole structure of HVNet. The second line is the Hybrid Voxel Feature Extractor architecture, consisting of

four parts: a) multi-scale pre-voxelization in x-y plane; b) multi-scale point cloud data encoding by multi-stream AVFE layers parallelly;

c) encoded features aggregation; d) dynamic feature projection by AVFEO layers with aggregated features and target scale knowledge.

point cloud. However, point number in each voxel is lim-

ited, leading to information loss. In this work, we propose

a novel encoder for lossless 3D representation.

There have been many two-stage works [31, 26, 32, 22,

2] recently. Fast Point R-CNN [2] applies two-stage frame-

work exploiting volumetric representation for initial predic-

tions and raw point cloud for refinement. STD [32] first

generates proposals and compact proposal features with

PointsPool in the first stage, and then predicts 3D bounding

box in the second stage. These methods have high accuracy

due to better recall rate, but long inference time (lower than

20Hz). Therefore, We focus on one-stage unified frame-

work with both time efficiency and accuracy in this paper.

2.2. Multi-scale feature aggregation

Multi-scale strategy [14, 13, 2] has been proved to be

effective to 3D object detection. ContFuse [14] uses con-

tinuous convolution to aggregate multi-scale feature maps

from different ResNet Block [7]. Voxel-FPN [24] employs

a RPN-FPN module [15] to aggregate different voxel fea-

tures generated by voxelization from various voxel sizes.

However, the voxel feature maps have strict correspondence

to each voxel size, making the multi-scale learning inade-

quacy and inflexible. Instead, our HVNet, a novel multi-

scale zoomable aggregation strategy, is able to zoom scales

into a many-to-many relationship.

3. Approach

In this paper we describe our one-stage 3D object detec-

tor HVNet. The overall network is presented in the first line

of Figure 3, which consists of three main stages: 1) hybrid

voxel feature extraction that projects the raw point cloud

into pseudo-image feature; 2) 2D convolutional middle lay-

ers for multi-scale feature fusion; and 3) a detection head

that predicts 3D boxes for different classes separately.

3.1. Hybrid Voxel Feature Extractor

The three main steps included in the hybrid voxel fea-

ture extractor (HVFE), i.e., hybrid scale voxelization, hy-

brid voxel feature encoding and dynamic feature projec-

tion. Furthermore, to decouple the hybrid voxel scale and

pseudo-image feature projection scale for a more flexible

balance between speed and accuracy, the global context for

hybrid voxel representation is introduced under the voxel-

wise attention guidance, whose detail will be described in in

Sec. 3.2. Overall structure of this stage is shown in Fig. 3.

Point cloud representation. A point cloud would be

represented by an unordered point set {p1,p2, . . . ,pN}
with pi ∈ R

d, which includes xi ∈ R
3 for point coor-

dinate (x, y, z) and fi ∈ R
d−3 for associated feature vec-

tor. The physical dimension of the scene that we detect

objects on is defined as L × W × H , from the minimum

(xmin, ymin, zmin) to the maximum (xmax, ymax, zmax).

Hybrid scales voxelization. HSV is a way of voxeliza-

tion that assigns points to evenly spaced grid of voxels. The

assignment phase in prior methods, like VoxelNet [35] and

PointPillar [10], is accompanied by buffer allocation with

a fixed size. Points will be dropped when the buffer ca-

pacity for a voxel is exceeded, causing randomness and in-

formation loss. Instead, we maintain only the voxel index

of each point. Assume that the point cloud is discretized

into numerous voxels V = {vj |j = 1, . . . , Nv} with reso-

lution of vL × vW × vH per voxel. vH is set to H , followed

by [10]. The point-wise index ci for target voxel scale size

s is recorded as a cursor to which voxel it lies in, given as:

c
(s)
i =

⌊

(xi − xmin)

vLs

⌋⌊

W

vW s

⌋

+

⌊

(yi − ymin)

vW s

⌋

. (1)

Only the point to voxel mapping relation is needed in our

approach, unlike MVF [34] which need bi-directional rela-

tionships. In this way, only tensor c are allocated during
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voxelization stage. Besides, we keep all points retained in-

side a voxel other than methods, which also becomes the

precondition for voxel attention.

Hybrid voxel feature extraction. The HVFE module

provides a novel way to create fine-grained point cloud fea-

ture with little computation cost. Take PointPillar [10] as an

example (Fig 2), previous voxel based methods are limited

to the fixed voxel scale s, where each encoded point feature

only contains the scale knowledge of s. Besides, the size

of final projected features is the same as the correspond-

ing voxel size, which means that the computation com-

plexity will rise rapidly with the addition of fine-grained

voxel scale. Assume that the projected pseudo-image fea-

ture Is ∈ R
NW×NL×NH , where NL = ⌊L/(vLs)⌋, NW =

⌊W/(vW s)⌋ and NH is the projection output dimension.

When s reduces n times, NL ×NW will increase n2 times.

Shown in Fig 3, the HVFE module takes point features

of a set of voxel scales ST = {st|1 < t < NT } as input,

encoding them as unified point-wise feature H with infor-

mation from different voxel scales. Drawn in Fig. 3, firstly

the raw point cloud is hybrid voxelized to get cursor set

cST = {c
(st)
i |st ∈ ST , i ∈ [1, N ]} . Secondly, attention

feature set GST whose tensor dimensionality is same as

the pointnet features F ∈ R
N×q are obtained. Thirdly,

the AVFE layer takes F, GST and cST together to encode

raw data into voxel scale feature set HST specified to each

voxel scale s with Hst ∈ R
N×2q . All the AVFE layers

for different scales share the same parameter. After that,

H ∈ R
N×e is aggregated by concatenation of the HST ,

where e = 2qNT . It’s validated by experiments that only

limited NT of input multi-scale features is able to bring

enough information to retrieve features of unseen scales out

of ST , utilizing the dynamic feature projection.

Dynamic feature projection. The global context H

is a high level feature containing information of hybrid

voxel scales. Therefore, the feature projection scales SR =
{sr|1 < r < NR} of pseudo-image features that are out of

ST can be projected dynamically and flexibly with H. In or-

der to restore information at scales sr from H, some scale-

related information needs to be used as guidance in the pro-

jection, containing point-wise index csr and the attention

knowledge Gsr . The attentive VFE output (AVFEO) layer

takes H, csr and Gsr to retrieve the voxel-wise feature and

then project it to a pseudo-image feature Isr . Same as the

AVFE layer, all AVFEO layers share the same parameters.

In the dynamic feature projection, Gsr is the key for the

scale-wise feature retrieval, guiding the AVFEO layer to be

attentive to project H into corresponding scale sr. Besides,

csr is used for the efficient graph-based implementation of

the AVFEO layer (Sec. 3.2).

3.2. Attentive Voxel Feature Encoding

Standard VFE layer. Traditional VFE [35, 10] first vox-

elizes data with point number in each voxel limited and al-

Index
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Figure 4. AVFE and AVFEO layers. The index tensor is used in

indexing operation: Gather and Scatter.

locates fixed preassigned tensors for each voxel. After that,

linear transforms and max pooling are conducted in each

voxel to aggregate features. Then pseudo-image features

are collected according to the physical location of voxels.

While VFE method provides a simple means of integrat-

ing sparse point cloud, it has several drawbacks:

• There are points dropped stochastically during vox-

elization, leading to tremendous information losses

and instability prediction behaviours;

• Zero padding is conducted when point number is lower

than limitation, which can greatly enlarge amounts of

computation and memory consumption;

Voxel-wise attention feature. As the expansion of raw

point-wise features pi , attention knowledge gj ∈ R
q for

voxel vj is obtained by voxel-wise feature aggregation,

which guides our feature encoding network to concern more

about the interrelationships within a voxel. Given index c,

the attention knowledge gi of point pi is represented as:

gi =

((

xi −

∑

Uj
xk

NUj

)

⊕ fi

)

⊕

∑

Uj
pk

NUj

, (2)

where ⊕ represents the tensor concatenate. The collection

Uj , referred to the index set of points that lies in the same

voxel as pi, is denoted as Uj = {k|0 < k < N&ck = ci}
. The collection process of U has a lot of loops, making

this aggregation step unbearably slow. We will discuss the

efficient index-based implementation in Sec. 3.3.

Shown in the Eq. 2, the attention knowledge for a point

p in a voxel v is composed of two parts: a) the mean of

features from all the points lie in v; and b) the feature of

p whose point coordinate x is subtracted by the average

coordinate of v. The attention feature g participates in both

encoder and decoder as the bridge information.

Learning to be flexible and attentive. Shown in Fig. 4,

the input point features F and the attention knowledge G

are conducted by linear layers, followed by a element-wise

matrix multiply. After that, multiplied features M in the

same voxel are aggregated by max pooling layer to form

the voxel-wise features G
′

∈ R
N×q . For AVFE layer, the

output is the point-wise concatenation of M and G
′

. For
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Figure 5. The backbone network architecture of HVNet. Multi-

scale features are first fused shallowly in the main stream network,

and then fused deeply in the proposed FFPN network.

AVFEO layer, each feature of G
′

is projected to a pixel

(xsr
I , ysrI ) in pseudo image Isr , given as:

xsr
I = csrj |

⌊

W

vW sr

⌋

, ysrI = csrj mod

⌊

W

vW sr

⌋

, (3)

where sr is the target scale, | denotes exact division and

mod denotes the module operation.

3.3. Efficient Index-based Implementation

The Hybrid Voxel Feature Extraction module is a index-

based learning system, where the irregular graph data (point

cloud) is grouped by physical correlation. In order to handle

the sparse structures, we propose HSV operation to trans-

form sparse matrix into dense matrix and corresponding in-

dexes. Verified by experiments, the efficiency of the HVNet

then hinges heavily on how well The index strategy of U

and the parallel stream processing schedules. Therefore, the

key index-based propagation operators, Scatter and Gather,

is implemented on GPUs.

The Gather conducts the sparse point data propagation

within voxel and behave as tensor slice according to the cur-

sor vector c. For implementation, tensor slice operation in

PyTorch [19] is fast enough for Gather.

The Scatter manipulates all values from source tensor

into output at the indices specified in c along a given

axis. In our approach, Scatter Mean is used in voxel

wise attention and Scatter Max is used in AVFE and

AVFEO layers. Take Scatter Max as an example: outi =
max (outi,max ({srcj |cj = i, j ∈ c})) , where out and

src are output and input respectively, c is the ‘group-index’

that references the location of src. In the implementation of

Scatter, atomic lock of GPU Global Memory is used to en-

sure the consistency of argmax results for reproducibility.

3.4. Backbone Network

We use a 2D convolutional backbone network for fur-

ther detection. The backbone network has two main parts:

1) the main stream network that aggregates multi-scale fea-

tures ISR ; 2) the FFPN network that refines the feature map

and generates multi-class features in the same time.

Main stream network with multi-scale feature aggre-

gation . The main stream is shown in the orange part in

Fig. 5, characterized by a concatenation of several blocks.

In Block 2 and Block 3, the first layer has a 2× 2 stride to

reduce spatial resolution of features. Given pseudo-image

feature set ISR where sr+1 = 2sr, Is1 is taken as input of

Block 1 and Is2 is aggregated in Block 2 by tensor concate-

nation with output of the first layer in Block 2. More scales

can be added by the similar way. We take the output of the

last three blocks B1 ∈ R
NW×NL×C1 , B2 ∈ R

NW
2

×
NL
2

×C2

and B3 ∈ R
NW
4

×
NL
4

×C3 as the input of FFPN.

Feature fusion pyramid network. The FPN [15] has

been proved to be a valid means for multi-scale feature em-

bedding. Due to the sparse data distribution in point cloud

and the small resolution of IR, the FPN structure plays a

more important role in our approach. Therefore, an en-

hanced feature fusion pyramid network is proposed, whose

main structure is shown in Fig. 3 Instead fusing features

from top to bottom layer by layer in [15], we first concate-

nate features at the smallest scale to obtain an intermediate

feature Bf , represented as:

Bf=

NB
∑

i=1

Ψi (Bi + 1i<NB
Γi+1 (Bi+1)), (4)

where + means tensor concatenate, 1 means the indicator

function, NB is the number of Bi, Γi represents the deconv

function of each input feature map Bi for scale alignment

and Ψi denotes the conv function before being concatenated

together. The class-specific pyramid features are given as

B
(i)
o = Υi (Bf ) , where Υi denotes the conv layers with

various stride. Compared with F-SSD [12], we fuse features

in two stages: a) layer by layer fusion in Eq. 4 and b) down-

sample convolutional chain. Furthermore, within one for-

ward propagation, class-specific pyramid features are able

to be obtained, where B
(1)
o for Pedestrian class, B

(2)
o for

Cyclist class and B
(3)
o for Car class respectively.

3.5. Detection Head and Loss Design

We use the detection head in the SSD [17] to detect

3D objects as [10]. In our setting, the positive anchors

are selected by matching to the ground truth by Rotated

Intersection over Union (RIoU) [4, 33] in bird eye view

(BEV). Each pyramid feature B
(i)
o is wraped by three par-

allel branches which are 3× 3 convolution layers φ
(i)
c , φ

(i)
l

and φ
(i)
h to get classification probability, location offsets and

height regression respectively, whose output channel num-

bers are Nanc ×Ncls, Nanc × 8 for location corner offsets in

1635



Method
Speed Input Car BEV AP (%) Pedestrian BEV AP (%) Cyclist BEV AP (%)

(Hz) L I Easy Moder. Hard Easy Moder. Hard Easy Moder. Hard

F-PointNet [20] 5.9 � � 91.17 84.67 74.77 57.13 49.57 45.48 77.26 61.37 53.78

AVOD-FPN [9] 10 � � 90.99 84.82 79.62 58.49 50.32 46.98 69.39 57.12 51.09

MMF [13] 12.5 � � 93.67 88.21 81.99 N/A N/A N/A N/A N/A N/A

IPOD [31] 5 � 89.64 84.62 79.96 60.88 49.79 45.43 78.19 59.40 51.38

F-ConvNet [26] 2.1 � 91.51 85.84 76.11 57.04 48.96 44.33 84.16 68.88 60.05

STD [32] 12.5 � 94.74 89.19 86.42 60.02 48.72 44.55 81.36 67.23 59.35

PointRCNN [22] 10 � 92.13 87.39 82.72 54.77 46.13 42.84 82.56 67.24 60.28

Fast Point R-CNN [2] 16.7 � 90.87 87.84 80.52 N/A N/A N/A N/A N/A N/A

SECOND [28] 20 � 89.39 83.77 78.59 55.99 45.02 40.93 76.50 56.05 49.45

HRI-VoxelFPN [24] 50 � 92.75 87.21 79.82 N/A N/A N/A N/A N/A N/A

PointPillars [10] 42.4 � 90.07 86.56 82.81 57.60 48.64 45.78 79.90 62.73 55.58

PIXOR++ [29] 35 � 93.28 86.01 80.11 N/A N/A N/A N/A N/A N/A

Ours 31 � 92.83 88.82 83.38 54.84 48.86 46.33 83.97 71.17 63.65

Table 1. Performance of bird eye views on KITTI test set. Here ‘L’ denotes LiDAR input and ‘I’ denotes RGB image. We compare with

detectors on the KITTI leaderboard evaluated by 40 recall positions. Methods are divided into three types: LiDAR & image, two-stage

LiDAR only and one-stage. The bold results means the best in all methods and the blue results means the best among one-stage methods.

BEV and Nanc × 2 for z center and height.

Different from most voxel-based methods [10, 35,

24] that predict center x, y and w, h, l, θ, HVNet uti-

lizes location corner offsets relative to anchors in

BEV as localization objective, represented as ∆−→cor =
{∆−→x i,∆

−→y i|i = 1, 2, 3, 4}. ∆cor is a vector of R
8 dur-

ing propagation. Suppose that the location branch φl pre-

dicts the offset ∆cor, then the localization loss is given by

Lloc =
∑

SmoothL1 (∆−→cor−∆cor).
As to the classification branch φc, given the class prob-

ability pa of an anchor, focal loss [16] is used to handle

the unbalance between positive and negative samples, rep-

resented as Lcls = −α(1− pa)
γ
log (pa). Given predic-

tion z, h from φh, the vertical loss is denoted as Lh =
∑

b∈(z,h) SmoothL1 (∆b).
Therefore, the total loss is given by

L =
1

Npos
(λlocLloc + λclsLcls + λhLh) . (5)

4. Experiments

HVNet is evaluated on the challenging KITTI bench-

mark [5]. We first introduce the setup details of HVNet in

Sec. 4.1. In Sec. 4.2, we compare HVNet with state-of-the-

art methods. A detailed ablation study is also provided in

Sec. 4.3 to verify the validity of each component.

4.1. Setup

Dataset. KITTI dataset [5] consists of 7481 training

images and 7518 test images as well as the corresponding

point cloud with categories Car, Pedestrian and Cyclist.

Metric. KITTI’s metric is defined as average precision

(AP) over the 40 recall positions on the PR curve [4]. Labels

are divided into three subsets (Easy, Moderate, Hard) on the

basis of object size, occlusion and truncation levels. The

leaderboard rank is based on results of Moderate difficult.

Experiment details. The physical detection range

is limited within minimum (0,−32,−3) and maximum

(64, 32, 2). The size of a voxel is vL = 0.2, vW = 0.2,

thus the resolution of BEV feature is 320× 320. In the en-

coder and decoder, scale set ST = {0.5, 1, 2} and SR =
{1, 2, 4}. Besides, feature dimension is q = 64 for Hst and

NH = 128 for Ist . Anchor size is designed as [0.8, 0.8, 1.7]
for Pedestrian, 0.8, 1.8, 1.5 for Cyclist and [1.7, 3.5, 1.56],
[2.0, 6.0, 1.56] for Car. Each class has the same anchor ori-

entation in [0, π/4, π/2, 3π/4]. In the training phase, we

choose anchors that have RIoU with ground truth larger than

[0.35, 0.35, 0.5] for Pedestrian, Cyclist and Car respectively

as positive samples, and those lower than [0.25, 0.25, 0.35]
as negative samples. As to the test phase, prediction score

threshold is set to 0.2, and the rotated NMS [18] thresh-

old is set to [0.02, 0.02, 0.4]. In the loss design, α and γ

for focal loss are set to [0.75, 0.75, 0.25] and [2., 2., 2.] re-

spectively. Three loss weights are λloc = 1, λcls = 1 and

λh = 1.5. HVNet is trained for 70 epochs with Adam [8]

optimizer, the initial learning rate is lr = 2e−4 with weight

decay 1e−4. We first employ warmup strategy [7] with 300
warmup iterations and 1./3 warmup ratio. Besides, lr de-

cays in a ratio of 0.1 in the 40-th and 60-th epoch.

3D data augmentation. Global random flipping, rota-

tion, scaling and translation are first applied to the whole

point cloud data, where the flipping probability is set to

0.5, the rotation angle ranges are uniform distribution from

[−π/2, π/2], the scaling ratio is between [0.95, 1.05] and

the location translation obeys normal distribution with mean

0 and standard deviation [0.2, 0.2, 0.2] for (x, y, z). Fol-

lowed by SECOND [28], several new boxes from ground

truth and corresponding points in other frames, where 8
for Cyclist, 8 for Pedestrian and 15 for Car, will be fixed

into current training frame except boxes which have physi-

cal collision with boxes in the current frame.

4.2. Experimental Results

Quantitative Analysis. We compare with 3D object de-

tectors in three types: a) LiDAR & image based approaches;
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Figure 6. Qualitative analysis on KITTI validation set with Kitti Viewer [28]. We show 3D bounding boxes on point cloud along with

projected 2D bounding boxes on image. In each image, blue boxes indicates the ground truth, red boxes indicates detections by HVNet.

Method
Car BEV AP(%) Car 3D AP(%)

Easy Moder. Hard Easy Moder. Hard

MV3D [1] 86.55 78.10 76.67 71.29 62.68 56.56

F-PointNet [20] 88.16 84.02 76.44 83.76 70.92 63.65

VoxelNet [35] 89.60 84.81 78.57 81.97 65.46 62.85

SECOND [28] 89.96 87.07 79.66 87.43 76.48 69.10

PointPillars [10] N/A 87.7 N/A N/A 77.4 N/A

Ours 93.29 88.90 87.72 87.21 77.58 71.79

Table 2. Performance (AP) of BEV and 3D on KITTI validation

set for Car. Our method achieves the state of the art in most case.

Classes Tasks Easy Moder. Hard

Car 2D 96.50 92.04 89.34

Pedestrian

2D 76.53 70.75 68.37

BEV 75.65 69.76 65.25

3D 69.13 64.81 59.42

Cyclist

2D 93.90 80.54 77.41

BEV 89.98 77.13 72.27

3D 87.21 73.75 68.98

Table 3. Performance on KITTI validation set for Pedestrian, Cy-

clist in 2D, BEV and 3D tasks; and Car in 2D task.

b) LiDAR only two-stage approaches and c) one-stage ap-

proaches, shown in three columns respectively in Tab. 1.

Most methods in a) and b) are relatively slow for inference.

From the table we see that HVNet outperforms all other ap-

proaches in mAP and Cyclists. HVNet also achieves attrac-

tive performance for Car and Pedestrian under a real-time

runtime, even when compared with two-stage approaches.

Among one-stage approaches, HVNet achieves the state of

the art in Car and Cyclist, leading the second best HRI-

VoxelFPN [24] and PointPillars [10] by over 1.61% and

8.44% respectively in moderate. More details for our test

results are in KITTI leaderboard. Furthermore, we draw

the performance vs. speed figure in Fig. 1 according KITTI

leaderboard to have more intuitive comparison.

Only a few methods expose the results on the validation

set. The comparison results for Car are reported in Tab. 2.

Among methods that expose results, our approach achieves

the best performance in both BEV and 3D tasks. As almost

no currently published method presents validation results

for Pedestrian and Cyclist, we show only our validation re-

sults for these two classes in Tab 3 in all the three tasks: 2D,

BEV and 3D. Overall, evaluation both on test and validation

set shows that our approach can produce high-accuracy de-

tections with a fast inference speed. Besides that, we con-

Inference speed (Hz)
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PointPillars

Fast Point R-CNN

Second

HVNet

Figure 7. Voxel scale study on BEV of KITTI validation set. For

PointPillar we use our own implementation in Pytorch. Blue circle

shows the results of PointPillar. We choose voxel scale at {0.162,

0.202, 0.242}m2. Red rectangle illustrates results from Hybrid

Voxel Feature Extractor. From left to right, we use voxel scales at

{0.1, 0.2}m ,{0.2, 0.3}m, {0.2, 0.4}m, feature projection scales

at 0.2m, 0.3m, 0.4m respectively

duct experiments on our Hybrid Voxel Feature Extractor

architecture at different settings, compared with PointPil-

lar through different grid size in Fig. 7. We can easily see

the power of our architecture. Compared with best result

from PointPillar at grid size 0.16m, our model show great

advantages at both mAP and inference speed. Even at a

coarse scale for feature projection scale of grid size 0.4m,

our model can achieve comparable results of PointPillar at

grid size 0.24m and save a lot of runtime cost.

Qualitative Analysis. We present several 3D detections

on the KITTI validation set along with projected 2D bound-

ing boxes on 2D image in Fig. 6. HVNet can produce

high-quality 3D detections for all classes via a single pass

of the network. Moreover, good detections are also given

by HVNet for scenes that have point cloud occlusion or

strongly dense objects . Generally, these qualitative results

demonstrate the effectiveness of our approach.

4.3. Ablation Studies

Multiple components study. To analyze how different

components contribute to the final performance, we con-

duct an ablation study on KITTI validation set. We use the

BEV mean AP of three categories (Car, Pedestrian and Cy-

clist) as the evaluation matrix, shown in Tab. 4. Our base-

line model, shown in the first line of Tab. 4, is a detector

with a single scale feature extractor and a SSD [17] like
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Model
voxel scale ST projection scale SR

AVFE FPN FFPN α
BEV mAP (%)

0.5S 1S 2S 1S 2S 4S Easy Moder. Hard

Baseline � � 0.25 79.39 71.7 66.77

+ Attention � � � 0.25 81.36 73.76 69.18

+ FPN � � � � 0.25 81.84 74.34 69.83

+ FFPN � � � � 0.25 82.39 75.18 70.78

* Focal loss � � � � 0.75 82.82 75.71 71.54

+ Scale 2* � � � � � 0.75 84.34 76.88 73.01

+ Scale 2 � � � � � � 0.75 85.26 77.88 74.46

+ Scale 3 � � � � � � � � 0.75 86.31 78.59 75.08

Table 4. Ablation study on KITTI validation set for the mAP. 0.5S means the scale of 0.5. ∆ mAP denotes the change in Moderate mAP

compared with the corresponding controlled experiment. The maximum improvement is achieved by increasing ST and SR.
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Figure 8. Ablation study on KITTI validation set for hybrid scale.

The jacinth line means NT changes from 5 to 1 when NR = 1.

The blue line means NR changes from 5 to 1 when NT = 3.

backbone. Besides, the VFE layers [35] replace the AVFE

and AVFEO layers. It’s given that adding attention to VFE

layer is able to bring a 2.06 mAP gain in BEV Moderate

compared with baseline. FPN is effective with a 0.58 gain

but the proposed FFPN bring a larger improvement of a 1.42

gain. We also adopt focal loss for classification. However,

the default α results in the confidence score degradation for

Pedestrian and Cyclist. Therefore, we change α = 0.75
by experiments. As to the Hybrid Voxel Feature Extractor,

increasing voxel/feature projection scale number to 2 gives

the maximum performance boost of 2.17 in mAP. Further-

more, keeping going up to 3 scales gives another 0.71 gain.

Hybrid Voxel Feature Extractor. Given that the Hy-

brid Voxel strategy plays an important role, it is important

to make ST and SR enough for feature encoding while not

consuming much computation. Thus, we conduct a series

of experiments with various scale number. Note that as the

scale number increases, the block number in backbone in

Fig. 5 increases as well. Shown in Fig. 8, it’s a nice trade-

off between speed and performance when NT = NR = 3,

demonstrated that the effectiveness of scale projection be-

tween ST and SR. Furthermore, we visualize the HST

with/without attention in Fig. 9, which shows that the ac-

tivation of target region is greater with attention strategy.

VFE [10] HSV Multi-class Head Time (ms)

� × × 34

× � × 32

× � � 35

Table 5. Inference speed for HVNet with different module.

Inference speed. The inference time of HVNet is 32ms

Raw point cloud Scale 1 output Scale 2 outputAttention

×

Figure 9. Multi-scale features H
ST with/without attention. With

attention mechanism, our output feature map can suppress the

background area and enhance the shape feature of objects

for a single class in average on a 2080Ti GPU where the

Hybrid Voxel Feature Extractor takes 12ms, the backbone

network takes 11ms and the head with NMS takes the left

9ms. The required time for each module is changed with the

number of input points. In our approaches, HSV and index-

based implementation are proposed to accelerate the feature

encoding, whose effectiveness is shown in Tab. 5. We em-

ploy the VFE layer in PointPillars [10] as baseline. Utilize

the HSV and index-based implementation save 2ms in av-

erage. Furthermore, the head in our model only takes extra

3ms for extending multi-class detection in one forward.

5. Conclusion

In this work, we propose HVNet, a novel one-stage 3D

object detector. HVNet aggregates hybrid scale voxel grids

into unified point-wise features, and then projects them into

different scale pseudo-image features under the guidance of

attention knowledge. The key to HVNet is that it decouples

the feature extraction scales and the pseudo-image projec-

tion scales. Further more, a backbone with feature fusion

pyramid network takes pseudo-images and fuses features

to generate compact representations for different categories.

Experimental studies show that our method achieves state-

of-the-art mAP with a real-time speed.
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