
RPM-Net: Robust Point Matching using Learned Features

Zi Jian Yew Gim Hee Lee

Department of Computer Science, National University of Singapore

{zijian.yew, gimhee.lee}@comp.nus.edu.sg

Abstract

Iterative Closest Point (ICP) solves the rigid point cloud

registration problem iteratively in two steps: (1) make hard

assignments of spatially closest point correspondences, and

then (2) find the least-squares rigid transformation. The

hard assignments of closest point correspondences based

on spatial distances are sensitive to the initial rigid trans-

formation and noisy/outlier points, which often cause ICP

to converge to wrong local minima. In this paper, we pro-

pose the RPM-Net – a less sensitive to initialization and

more robust deep learning-based approach for rigid point

cloud registration. To this end, our network uses the dif-

ferentiable Sinkhorn layer and annealing to get soft as-

signments of point correspondences from hybrid features

learned from both spatial coordinates and local geometry.

To further improve registration performance, we introduce

a secondary network to predict optimal annealing param-

eters. Unlike some existing methods, our RPM-Net han-

dles missing correspondences and point clouds with par-

tial visibility. Experimental results show that our RPM-Net

achieves state-of-the-art performance compared to existing

non-deep learning and recent deep learning methods. Our

source code is available at the project website1.

1. Introduction

Rigid point cloud registration refers to the problem of

finding the rigid transformation to align two given point

clouds with unknown point correspondences. It has appli-

cations in many areas of computer vision and robotics, e.g.

robot and object pose estimation, point cloud-based odom-

etry and mapping, etc. Rigid point cloud registration is a

chicken-and-egg problem that requires solving for both un-

known point correspondences and rigid transformation to

align the point clouds, and is thus commonly known as

the simultaneous pose and correspondence problem [17].

Knowledge of either point correspondences or rigid trans-

formation trivializes the problem.

1https://github.com/yewzijian/RPMNet

…

In
p

u
ts

It
e

ra
ti

o
n

 1
It

e
ra

ti
o

n
 4

Our result (iteration 5) RPM Result

Estimated soft correspondences

Figure 1. Our RPM-Net estimates soft correspondences from hy-

brid features learned from both spatial coordinates and local ge-

ometry of the points, and converges to the correct solution after 5

iterations. In contrast, RPM [12] gets trapped in a local minima.

ICP [3] is widely accepted to be the de facto algorithm

for solving the rigid point cloud registration problem. It

solves for both the point correspondences and rigid transfor-

mation by alternating between two steps: (1) assigns each

point from the reference point cloud to its spatially closest

point in the source point cloud, and (2) computes the least-

squares rigid transformation between the correspondences.

Unfortunately, ICP is highly sensitive to initialization and

often converges to wrong local minima. It can also fail in

the presence of noisy/outlier points. This limits ICP to rela-

tively low noise and outlier-free scenarios with good initial

rigid transforms, and precludes its use in applications such

111824

as registration of noisy scans and global registration. A re-

cent deep learning-based ICP – Deep Closest Point (DCP)

[35] computes point correspondences from deep features to

desensitize initialization, but remains not robust to outliers

and does not work well on partially visible point clouds.

Many works [6, 12, 33] are proposed to mitigate the

problems of ICP, and one prominent work is the Robust

Point Matching (RPM) [12]. It starts with soft assignments

of the point correspondences, and gradually hardens the as-

signments through deterministic annealing. As we show in

the experiments, although RPM is more robust than ICP, it

remains sensitive to initialization and local minima as the

point correspondences are still obtained solely from spa-

tial distances. On the other hand, feature-based methods

[26, 28, 32] avoid initialization and the local minima prob-

lem by detecting distinctive keypoints and describing the

local geometry of the keypoints using feature descriptors.

Feature descriptors in one point cloud can then be matched

to those in the other, and the rigid transformation can be

solved robustly using a RANSAC scheme. However, these

methods only work well for point clouds with distinctive

geometric structures [30].

In this paper, we propose a deep learning-based RPM,

the RPM-Net: an end-to-end differentiable deep network

that preserves robustness of RPM against noisy/outlier

points while desensitizing initialization with point corre-

spondences from learned feature distances instead of spa-

tial distances. To this end, we design a feature extraction

network to compute hybrid features of each point from its

spatial coordinates and geometric properties, and then use a

Sinkhorn [31] layer and annealing to get soft assignments of

the point correspondences from these hybrid features. The

fusion of spatial coordinates and geometric properties, and

learning from data improve point correspondences. This

desensitizes initialization and enhance the ability to regis-

ter point clouds with missing correspondences and partial

visibility. Similar to ICP and most of its variants, our RPM-

Net refines rigid point cloud registration iteratively. Fur-

thermore, we introduce a secondary network to predict op-

timal annealing parameters based on the current state of the

alignments, i.e. our annealing does not follow a fixed sched-

ule. Together with the use of hybrid features, our algorithm

can converge in a small number of iterations as illustrated

in the example shown in Figure 1. Experiments show that

our RPM-Net achieves state-of-the-art performance com-

pared to existing non-deep learning and recent deep learn-

ing methods. Our main contributions are:

• Learn hybrid features with a feature extraction net-

work, Sinkhorn layer and annealing to desensitize ini-

tialization and enhance robustness of rigid point cloud

registration.

• Introduce a secondary network to predict optimal an-

nealing parameters.

• Suggest a modified Chamfer distance metric to im-

prove measurement of registration quality in the pres-

ence of symmetry or partial visibility.

• Show state-of-the-art performance compared to other

existing works on experimental evaluations under

clean, noisy, and partially visible datasets.

2. Related Work

Feature-Based Methods. Feature-based methods tackle

the registration problem in a two-step approach: (1) estab-

lish point correspondences between the two point clouds,

and (2) compute the optimal transformation from these cor-

respondences. The first step is non-trivial and requires well-

designed descriptors to describe distinctive keypoints in or-

der to match them between point clouds. A large variety

of handcrafted 3D feature descriptors have been proposed

and a comprehensive survey can be found in [13]. Gener-

ally, these descriptors accumulate measurements (typically

number of points) into histograms according to their spa-

tial coordinates [9, 14, 32], or their geometric attributes

such as curvature [4] or normals [28]. To orientate the

spatial bins, most of these methods require a local refer-

ence frame (LRF) which is hard to obtain unambiguously,

so other works e.g. PFH [27] and FPFH [26] design rota-

tion invariant descriptors to avoid the need for a LRF. More

recent works apply deep learning to learn such descriptors.

One of the earliest such works, 3DMatch [42], voxelizes the

region around each keypoint and compute descriptors with

a 3DCNN trained using a contrastive loss. Voxelization re-

sults in a loss of quality, so later works such as PPFNet [7]

uses a PointNet [23, 24] architecture to learn features di-

rectly from raw point clouds. In addition to predicting fea-

ture descriptors, 3DFeat-Net [41] and USIP [18] also learn

to detect salient keypoints. The main problem with feature

based methods is that they require the point clouds to have

distinctive geometric structures. Additionally, the resulting

noisy correspondences require a subsequent robust registra-

tion step (e.g. RANSAC) which does not fit well into typical

learning frameworks.

Handcrafted Registration Methods. The original ICP

algorithms [3, 5] circumvent the need for feature point

matching by alternating between estimating point corre-

spondences and finding the rigid transform that minimizes

the point-to-point [3] or point-to-plane [5] error. Subse-

quent works try to improve upon the convergence of ICP

by e.g., selecting suitable points [10, 25] or weighting point

correspondences [11]. An overview of ICP variants can

be found in [25]. Nevertheless, most ICP variants still re-

quire relatively good initialization to avoid converging to

bad local minima. A notable exception, Go-ICP [40] uses

a branch-and-bound scheme to search for the globally opti-

mal registration at the trade-off of much longer computation

11825

times. Alternatively, the basin of convergence of ICP can

be widened using soft assignment strategies [6, 12, 33]. In

particular, RPM [12] uses a soft assignment scheme with a

deterministic annealing schedule to gradually “harden” the

assignment at each iteration. IGSP [21] uses a different ap-

proach and measures the point similarity on a hybrid metric

space with the spatial coordinates of the point and hand-

crafted BSC [8] features. However, the authors do not learn

the features, and have to handcraft the weighting scheme

between the spatial and feature distances. Our work builds

upon the iterative framework of RPM. However, we con-

sider distances between learned hybrid features during its

soft assignment stage. Moreover, we do not use a prede-

fined annealing schedule, instead we let the network decide

the best settings to use at each iteration.

Learned Registration Methods. Recent works improve

existing methods with deep learning. PointNetLK [1] uti-

lizes PointNet [23] to compute a global representation of

each point cloud, then optimizes the transforms to minimize

the distances between the global descriptors in an iterative

fashion analogous to the Lucas-Kanade algorithm [20, 2].

Later, PCRNet [30] improves the robustness against noise

by replacing the Lucas-Kanade step with a deep network.

Deep Closest Point [35] proposes a different approach. It

extracts features for each point to compute a soft match-

ing between the point clouds, before using a differentiable

SVD module to extract the rigid transformation. They also

utilize a transformer network [34] to incorporate global and

inter point cloud information when computing the feature

representations. Although shown to be more robust than

traditional methods, the above works cannot handle partial-

to-partial point cloud registration. A concurrent work, PR-

Net [36] incorporates keypoint detection to handle partial

visibility. Our work uses a simpler approach and is more

similar to Deep Closest Point, but unlike [35], our network

is able to handle outliers and partial visibility through the

use of Sinkhorn normalization [31] from RPM, and uses an

iterative inference pipeline to achieve high precision.

3. Problem Formulation

Given two point clouds: X = {xj ∈ R
3 | j = 1, ..., J}

and Y = {yk ∈ R
3 | k = 1, ...,K}, which we de-

note as the source and reference, respectively, our objec-

tive is to recover the unknown rigid transformation {R, t}.
R ∈ SO(3) is a rotation matrix and t ∈ R

3 is a translation

vector that align the two point clouds. We assume the point

normals can be easily computed from the points. Unlike

the most recent deep learning-based related work [35], we

do not assume a one-to-one correspondence between points.

The two point clouds can have different number of points,

i.e., J 6= K or cover different extents.

4. Background: Robust Point Matching

As mentioned earlier, our work builds upon the frame-

work of RPM [12]. We briefly describe the algorithm in

this section for completeness and interested readers are re-

ferred to [12] for further details. We define a match matrix

M = {0, 1}J×K to represent the assignment of point cor-

respondences, where each element

mjk =

{

1 if point xj corresponds to yk

0 otherwise
. (1)

Let us first consider the case where there is a one-to-one

correspondence between the points. In this case, M is a

square matrix. The registration problem can be formulated

as finding the rigid transformation {R, t} and correspon-

dence matrix M which best maps points in X onto Y, i.e.,

argmin
M,R,t

J
∑

j=1

K
∑

k=1

mjk(‖Rxj + t− yk‖
2
2 − α), (2)

subject to
∑K

k=1 mjk = 1, ∀j,
∑J

j=1 mjk = 1, ∀k, and

mjk ∈ {0, 1}, ∀jk. The three constraints enforces M to

be a permutation matrix. α is a parameter to control the

number of correspondences rejected as outliers: any pair of

points (xj ,yk) with a distance ‖Rxj + t − yk‖
2
2 < α is

taken to be an inlier since setting mjk = 1 decreases the

cost in Eq. 2.

In RPM, the permutation matrix constraint is relaxed to

a doubly stochastic constraint, i.e., each mjk ∈ [0, 1]. The

minimization of Eq. 2 is then solved using deterministic an-

nealing that iterates between two steps: (1) softassign, and

(2) estimation of the rigid transformation. The match ma-

trix M is estimated in the softassign step. To this end, each

element mjk ∈M is first initialized as follows:

mjk ← e−β(‖Rxj+t−yk‖
2

2
−α), (3)

where β is the annealing parameter to be increased over

each iteration step: small initial values of β result in soft

assignments which help avoid falling into local minima. As

β increases, mjk → {0, 1} and the match matrix M be-

comes closer to a permutation matrix. Alternate row and

column normalizations are then performed to satisfy the

doubly stochastic constraints. This is due to a result from

Sinkhorn [31], which states that a doubly stochastic matrix

can be obtained from any square matrix with all positive en-

tries by repeated applications of alternating row and column

normalizations. Note that the assignments are determin-

istic (hence the term deterministic annealing). β controls

the “hardness” of correspondences in a deterministic fash-

ion. This contrasts with simulated annealing methods [16]

where the decision of whether to accept a certain solution is

a stochastic function of the temperature.

11826

Once the correspondences are estimated, the rigid trans-

formation {R, t} can be computed. Various methods can be

used for this purpose, we follow [19, 35] to compute {R, t}
using SVD (Section 5.3) in this paper. Lastly, when J 6= K

or in the presence of outlier non-matching points, the equal-

ity constraints on M in Eq. 2 become inequality constraints,

but can be converted back into an equality constraint by in-

troducing slack variables:

K
∑

k=1

mjk ≤ 1, ∀j →
K+1
∑

k=1

mjk = 1, ∀j, (4)

and likewise for the column constraints. In practice,

this is implemented by adding an additional row and col-

umn of ones to the input of Sinkhorn normalization, i.e.,

MJ+1,K ,MJ,K+1.

5. Our RPM-Net

Figure 2 shows an illustration of our RPM-Net.. We

make two main changes to RPM: (1) spatial distances are

replaced with learned hybrid feature distances, and (2) our

network decides the values of α, β (c.f . Eq. 3) at each iter-

ation. At each iteration i, the source point cloud X is first

transformed by the rigid transformation {Ri−1, ti−1} es-

timated from the previous step into the transformed point

cloud X̃i. The feature extraction module (Section 5.1) then

extracts hybrid features for the two point clouds. Concur-

rently, a secondary parameter prediction network (Section

5.2) predicts the optimal annealing parameters α, β. The

hybrid features and α, β parameters are used to compute

the initial match matrix, followed by Sinkhorn normaliza-

tion to enforce the doubly stochastic constraints to get the

final match matrix Mi. Finally, the updated transformation

{Ri, ti} is computed and used in the next iteration.

5.1. Feature Extraction

We replace the spatial distances in Eq. 3 with distances

between learned features, i.e.,

mjk ← e
−β(‖Fx̃j

−Fyk
‖2

2
−α)

, (5)

where Fx̃j
and Fyk

are the features for points x̃j ∈ X̃i and

yk ∈ Y, respectively. Replacing spatial coordinates with

learned features allows our algorithm to consider additional

sources of information, e.g. local geometric characteristics,

during the computation of the assignments to avoid getting

stuck in wrong local minima.

In our work, F(·) is a hybrid feature containing informa-

tion on both the point’s spatial coordinates and local geom-

etry. For a point xc in either point cloud, we first define a

local neighborhood N (xc) containing points within a dis-

tance of τrad from it. Its feature Fxc
is then given by:

Fxc
= fθ(xc, {∆xc,i}, {PPF(xc,xi)}), (6)

where fθ is a deep network parameterized by θ, and xi ∈
N (xc). ∆xc,i denotes the neighboring points translated

into a local frame by subtracting away the coordinates of

the centroid point [24]:

∆xc,i = xi − xc. (7)

PPF(xc,xi) are 4D point pair features (PPF) [26, 7] that

describe the surface between the centroid point xc and each

neighboring point xi in a rotation invariant manner:

PPF(xc,xi) = (∠(nc,∆xc,i),∠(ni,∆xc,i),

∠(nc,ni), ‖∆xc,i‖2),
(8)

where nc and ni are the normals of points xc and xi.

The above two inputs describe the local geometry, but do

not contain information about the absolute positions of the

points. In this work, we also include the absolute position

of the centroid point xc. This gives our network the ability

to refine the registration iteratively as in the original RPM.

We implement fθ using a PointNet [23] which is able to

pool an arbitrary number of orderless points into a single

descriptor. Specifically, to obtain the feature for xc, we first

concatenate the raw features of each neighboring point xi ∈
N (xc) into a 10-D input vector [xc,∆xc,i, PPF(xc,xi)].
We then feed them into a series of shared dense layers, a

max-pooling and additional dense layers, followed by ℓ2

normalization to obtain a single feature vector Fxc
.

5.2. Parameter Prediction Network

In the original RPM algorithm, the value of the outlier

parameter α and the annealing schedule for β (Eq. 5) are

manually set for each dataset. These parameters are dataset

dependent and have to be tuned for each dataset. In our

RPM-Net, these parameters are difficult to set manually

since they are dependent on the learned features. We argue

that a fixed annealing schedule is unnecessary as the param-

eters can be chosen based on the current state of alignment

instead of the iteration count. Correspondingly, we use a

secondary network that takes both point clouds as input and

predicts the parameters for the current iteration. In particu-

lar, we concatenate the two point clouds to form a (J+K, 3)
matrix, augment it with a fourth column containing 0 or 1

depending on which point cloud the point originates from,

and feed it into a PointNet that outputs α and β. To ensure

that the predicted α and β are positive, we use a softplus

activation for the final layer.

5.3. Estimating the Rigid Transformation

Once the soft assignments are estimated, the final step is

to estimate the rigid transformation. For each point xj in

X, we compute the corresponding coordinate in Y:

ŷj =
1

∑K

k mjk

K
∑

k

mjk · yk. (9)

11827

Source𝐗

Reference𝐘

Previous transform {𝐑𝒊−𝟏, 𝐭𝒊−𝟏}
Transformed

source ෩𝐗𝑖 Hybrid features𝐹෩𝐗
Match matrix𝐌𝒊

Corresponding

ref. points෡𝐘
Feature

extraction

Rigid

Transform

Compute

Match Matrix

Weighted

SVD𝑈, 𝑆, 𝑉 = SVD 𝐻𝑅 = 𝑉𝑈𝑇
Parameter

Prediction

Iteration 𝒊
(a)

∑
Hybrid features𝐹𝐘Feature

extraction

Current transform {𝐑𝒊, 𝐭𝒊}
Source 𝐗

𝛼, 𝛽

𝐹෤𝐱

S
in

k
h

o
rn

n
o

rm
a

li
za

ti
o

n

Compute

initial 𝐌𝒊
(Eq. 5)𝐹𝐘 𝐌𝒊

Compute Match Matrix

𝛼, 𝛽
(d)

Shared MLP

Shared MLP

Shared MLP

M
LP…

𝛼, 𝛽𝐗
𝒀concat

S
o

ft
p

lu
s

M
a

x
P

o
o

l

(b)

Parameter Prediction

Shared MLP

Shared MLP

M
LP…

M
a

x
P

o
o

l

Δ𝐱𝑐,1𝐱𝑐 PPF(𝐱𝑐 , 𝐱1)
Shared MLP 𝐹𝐗
Feature Extraction

Δ𝐱𝑐,2𝐱𝑐 PPF(𝐱𝑐 , 𝐱2)
Δ𝐱𝑐,𝑘𝐱𝑐 PPF(𝐱𝑐 , 𝐱𝑘)

Neighborhood of 𝐱𝑐𝒩 𝐱𝑐 = {𝐱1, … , 𝐱𝒌} (c)

ℓ2 norm
a

li
ze

…

Figure 2. (a) Overview of our RPM-Net, (b) feature extraction network, (c) parameters prediction network, and (d) computation of match

matrix M. Superscripts denote the iteration count.

We then follow [19, 35] and use the SVD to solve for the

rigid transformation, which has been shown to be differen-

tiable in [22]. Since not every point xj might have a cor-

respondence, we weigh each correspondence (xj , ŷj) by

wj =
∑K

k mjk when computing the rigid transformation.

5.4. Loss Functions

Our primary loss function is the ℓ1 distance between the

source point cloud X transformed using the groundtruth

transformation {Rgt, tgt} and the predicted transformation

{Rpred, tpred} [19]:

Lreg =
1

J

J
∑

j

|(Rgtxj + tgt)− (Rpredxj + tpred)|

(10)

We notice empirically that the network has the tendency to

label most points as outliers with only the above registration

loss. To alleviate this issue, we add a secondary loss on the

computed match matrix M to encourage inliers:

Linlier = −
1

J

J
∑

j

K
∑

k

mjk −
1

K

K
∑

k

J
∑

j

mjk. (11)

The overall loss is the weighted sum of the two losses:

Ltotal = Lreg + λLinlier, (12)

where we use λ = 0.01 in all our experiments. We compute

the loss for every iteration i, but weigh the losses by 1
2

(Ni−i)

to give later iterations higher weights, where Ni is the total

number of iterations during training.

5.5. Implementation Details

The overall network is implemented as a recurrent neural

network with an inner loop for the Sinkhorn normalization.

We follow [29] in our implementation of the Sinkhorn nor-

malization by unrolling it for a fixed number of steps (set

to 5). Although gradients can flow from one iteration to

the other, in practice, that does not improve performance

and causes training instability. We adopt a simple solution

of stopping the {R, t} gradients at the start of each itera-

tion. This means every iteration becomes independent and

we can just execute one iteration during training. Neverthe-

less, we run Ni = 2 iterations of alignment during training

since this allows the network to see data with smaller mis-

alignments more often and consequently learn how to refine

the registration in subsequent iterations. During test time,

we use Ni = 5 iterations to achieve more precise registra-

tion. For both feature extraction and parameter prediction

networks, we use ReLU activation with group normaliza-

tion [38] on all layers except the last. Our feature extraction

network considers a neighborhood of τrad = 0.3, and out-

puts features of dimension 96. We train the network using

ADAM optimizer [15] with a learning rate of 0.0001.

6. Experiments

6.1. ModelNet40 Dataset

We evaluate our algorithm on the ModelNet40 [39]

dataset, which contains CAD models from 40 man-made

object categories. We make use of the processed data from

11828

[23], which contains 2,048 points sampled randomly from

the mesh faces and normalized into a unit sphere. The

dataset contains official train/test splits for each category.

To evaluate the ability of our network to generalize to differ-

ent object categories, we use the train and test splits for the

first 20 categories for training and validation respectively,

and the test split of the remaining categories for testing.

This results in 5,112 train, 1,202 validation, and 1,266 test

models. Following [35], we sample rotations by sampling

three Euler angle rotations in the range [0, 45◦] and trans-

lations in the range [−0.5, 0.5] on each axis during training

and testing. We transform the source point cloud X using

the sampled rigid transform and the task is to register it to

the unperturbed reference point cloud Y.

6.2. Evaluation Metrics

We evaluate the registration by computing the mean

isotropic rotation and translation errors:

Error(R) = ∠(R−1
GT R̂), Error(t) = ‖tGT − t̂‖2, (13)

where {RGT , tGT } and {R̂, t̂} denote the groundtruth

and estimated transformation, respectively. ∠(X) =

arccos(tr(X)−1
2) returns the angle of rotation matrix X in

degrees. For consistency with previous work [35], we also

provide the mean absolute errors over euler angles and

translation vectors. Note however that these metrics are

anisotropic.

The above metrics unfairly penalizes the alignment to

an alternative solution in the case of symmetry commonly

found in ModelNet40 models, so we also propose a mod-

ified Chamfer distance metric between the transformed

source point cloud X and the reference point cloud Y:

C̃D(X,Y) =
1

|X|

∑

x∈X

min
y∈Yclean

‖x− y‖22+

1

|Y|

∑

y∈Y

min
x∈Xclean

‖x− y‖22,
(14)

where we modified the Chamfer distance to compare with

the clean and complete versions of the other point cloud.

6.3. Baseline Algorithms

We compare the performance of our RPM-Net with

the following handcrafted registration algorithms: ICP [3],

FGR [43], and RPM [12], as well as recent deep learning

based registration works: PointNetLK [1] and Deep Closest

Point (DCP-v2) [35]. We use the implementations of ICP

and FGR in Intel Open3D [44], and our own implemen-

tation of RPM. For PointNetLK and Deep Closest Point,

we use the implementation provided by the authors but re-

trained the networks since both works do not provide the

Method Anisotropic err. Isotropic err. C̃D

(Rot.) (Trans.) (Rot.) (Trans.)

ICP 3.114 0.02328 6.407 0.0506 0.002975

RPM 1.121 0.00636 2.426 0.0141 0.000360

FGR 0.010 0.00011 0.022 0.0002 0.000012

PointNetLK 0.418 0.00241 0.847 0.0054 0.000138

DCP-v2 2.074 0.01431 3.992 0.0292 0.001777

Ours 0.028 0.00016 0.056 0.0003 0.000003

Table 1. Performance on Clean Data. Bold and italics denote best

and second best performing measures. Note: DCP-v2’s results

are based on our trained model and are marginally worse than its

reported [35] performance of an anisotropic error of 2.007◦ (rot)

and 0.0037 (trans).

required pretrained models2.

6.4. Clean Data

We follow the protocol in [35] and evaluate the registra-

tion performance on the clean data. We randomly sample

the same 1,024 points for the source and reference point

clouds from the 2,048 points in ModelNet40 dataset, and

then apply a random rigid transformation on the source

point cloud and shuffle the point order. Under this set-

ting, each point in the source point cloud X has a exact

correspondence in the reference point cloud Y. All learned

models including ours are trained on the clean data. Ta-

ble 1 shows the performance of the various algorithms on

clean data. Our method achieves very accurate registration

and ranks first or second in all measures. It outperforms all

learned and handcrafted methods except FGR. However, as

we will see in subsequent sections, FGR is highly suscep-

tible to noise. A qualitative comparison of the registration

results can be found in Figure 3(a).

6.5. Gaussian Noise

In this experiment, we evaluate the performance in the

presence of noise and sampling differences, which are

present in real world point clouds. We randomly sample

1,024 points from the models, but independently for the

source and reference point clouds. After applying the ran-

dom rigid transform to the source point cloud, we randomly

jitter the points in both point clouds by noises sampled from

N (0, 0.01) and clipped to [-0.05, 0.05] on each axis. This

experiment is significantly more challenging due to noise

and non one-to-one correspondences. We train all learned

models on the noisy data with the exception of PointNetLK,

which we reuse the model from the previous section since

that gives better performance. The results are shown in Ta-

ble 2. Our network outperforms all handcrafted and learned

methods as we explicitly handle for points with no corre-

spondences. On the other hand, Deep Closest Point requires

2Deep Closest Point provides pretrained models but not for matching

of unseen categories and noisy data.

11829

Method Anisotropic err. Isotropic err. C̃D

(Rot.) (Trans.) (Rot.) (Trans.)

ICP 3.414 0.0242 6.999 0.0514 0.00308

RPM 1.441 0.0094 2.994 0.0202 0.00083

FGR 1.724 0.0120 2.991 0.0252 0.00130

PointNetLK 1.528 0.0128 2.926 0.0262 0.00128

DCP-v2 4.528 0.0345 8.922 0.0707 0.00420

Ours 0.343 0.0030 0.664 0.0062 0.00063

Table 2. Performance on data with Gaussian noise. The Chamfer

distance using groundtruth transformations is 0.00055.

every point to have a correspondence and does not perform

well when this condition is violated. A qualitative example

of registration on noisy data can be found in Figure 3(b).

6.6. Partial Visibility

We evaluate the performance on partially visible point

clouds, where the two point clouds do not fully overlap in

extent. Depending on the acquisition method, real world

point cloud data are often partial, e.g. RGD-D scans contain

only points that are visible to the camera. Consequently,

handling partial point clouds is an important requirement

for many applications. We simulate partial visibility in the

following manner. For each point cloud, we sample a half-

space with a random direction∈ S2 and shift it such that ap-

proximately 70% of the points are retained. Similar to the

previous section, points are jittered and sampled indepen-

dently. For this experiment, we downsample to 717 points

instead of 1,024 to maintain a similar point density as the

previous sections. We train DCP-v2 and our method on the

partially visible data. For PointNetLK, we adopt similar

procedure suggested by the authors to sample visible points

in the other point cloud. However, we sample visible points

from the points with a respective nearest point in the other

point cloud within a distance of τ = 0.02 during each iter-

ation since only the partial point cloud is available for both

point clouds in our setting. This procedure improves in-

ference performance but did not work well during training.

Consequently, we continue to use the clean model of Point-

NetLK in this experiment. Table 3 shows the performance

on partially visible data. Our approach significantly outper-

forms all baseline methods. Interestingly, despite our best

efforts at tuning the parameters in RPM, it also performs

poorly. Since both RPM and our approach share a similar

scheme for rejecting outliers, this highlights the benefit of

our learned feature distances. Example results on partially

visible data are shown in Figures 1 and 3(c-e).

6.7. Ablation Studies

We perform ablation studies to better understand how

various choices affect the performance of the algorithm. All

studies in this section are evaluated on the partial visibility

Method Anisotropic err. Isotropic err. C̃D

(Rot.) (Trans.) (Rot.) (Trans.)

ICP 13.719 0.132 27.250 0.280 0.0153

RPM 9.771 0.092 19.551 0.212 0.0081

FGR 19.266 0.090 30.839 0.192 0.0119

PointNetLK 15.931 0.142 29.725 0.297 0.0235

DCP-v2 6.380 0.083 12.607 0.169 0.0113

Ours 0.893 0.0087 1.712 0.018 0.00085

Table 3. Performance on partially visible data with noise. The

Chamfer distance using groundtruth transformations is 0.00055.

x ∆x PPF Anneal Isotropic err. C̃D

(Rot.) (Trans.)

X X X 3.302 0.0350 0.00153

X X X 2.781 0.0273 0.00123

X X X 5.501 0.0496 0.00351

X X X 2.220 0.0238 0.00103

X X X X 1.712 0.0183 0.00085

Table 4. Effects of each component on the registration perfor-

mance. x and ∆x denote the absolute centroid center coordinates

and the local coordinates of the neighboring points respectively.

setting, and we only show the isotropic and Chamfer dis-

tance metrics for conciseness.

Effects of different components. Comparing rows 1-3

and 5 of Table 4, we observe that all of x, ∆x and PPF

are required to achieve the highest performance. Exclud-

ing the absolute positions of the points (row 3) results in a

significant drop in performance. This indicates the impor-

tance of considering point positions at each iteration when

performing iterative refinement. It is also noteworthy that

even without PPF features (row 1), the algorithm still out-

performs DCP-v2. This is despite DCP-v2 using a more so-

phisticated Dynamic Graph CNN [37] architecture and an

attention [34] network. We attribute this to our outlier han-

dling and iterative registration scheme. To understand the

importance of our parameter prediction network, we lastly

compare with a variant of our network in Table 4 (row 4)

where we replace our parameter prediction network with

two learnable parameters for α and β. These parameters

are trained with the network weights, and the same values

are used for each iteration. We can see that the learned an-

nealing schedule from the parameter prediction network im-

proves registration performance.

How many iterations are needed? Figure 4 shows the

average Chamfer distance after each iteration. Most perfor-

mance gains are in the first two iterations, and the registra-

tion mostly converges after 5 iterations (which we use for

all experiments).

11830

(a)

(b)

(c)

(e)

(d)

Input ICP FGR PointNetLK DCP-v2 OursRPM

Figure 3. Qualitative registration examples on (a) Clean data, (b) Noisy data, and (c, d, e) Partially visible data.

1 2 3 4 5 6 7 8
Iterations

0.8

1

1.2

1.4

1.6

C
ha

m
fe

r d
is

ta
nc

e

10 -3

Figure 4. Chamfer distance over registration iterations. The initial

average Chamfer distance of the inputs is 0.1899, which is not

shown in graph for clarity.

6.8. Computational Efficiency

We compare the inference time of various algorithms in

Table 5, averaged over the entire test set. We perform this

experiment on a 3.0GHz Intel i7-6950X and a Nvidia Titan

RTX. For our algorithm, we provide the timings for 5 iter-

ations as used in previous experiments. Note that ICP and

FGR are executed on CPU and the remaining algorithms

on a GPU. Our algorithm is significantly faster than RPM

which requires a large number of iterations. It is however

slower than ICP as well as the non-iterative DCP-v2.

points ICP RPM FGR PointNetLK DCP-v2 Ours

512 8 66 22 161 5 25

1024 18 144 84 176 9 52

2048 28 447 148 209 21 178

Table 5. Average time required for registering a point cloud pair of

various sizes (in milliseconds).

7. Conclusion

We present the RPM-Net for rigid point cloud registra-

tion. Our approach is a deep learning-based RPM that de-

sensitizes initialization and improves convergence behav-

ior with learned fusion features. Furthermore, the use of

the differentiable Sinkhorn normalization with slack vari-

ables to enforce partial doubly stochastic constraints allows

our method to explicitly handle outliers. We also propose

a secondary network to predict optimal annealing parame-

ters that further improves performance. Experimental re-

sults show our method yields state-of-the-art performance

on the ModelNet40 dataset over various evaluation criteria.

Acknowledgement. This work was partially supported

by the Singapore MOE Tier 1 grant R-252-000-A65-114.

11831

References

[1] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivat-

san, and Simon Lucey. PointNetLK: Robust & efficient

point cloud registration using pointnet. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

7163–7172, 2019. 3, 6

[2] Simon Baker and Iain Matthews. Lucas-kanade 20 years on:

A unifying framework. International Journal of Computer

Vision, 56(3):221–255, 2004. 3

[3] Paul J. Besl and Neil D. McKay. A method for registration

of 3-d shapes. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 14(2):239–256, 1992. 1, 2, 6

[4] Hui Chen and Bir Bhanu. 3D free-form object recognition in

range images using local surface patches. Pattern Recogni-

tion Letters, 28(10):1252–1262, 2007. 2

[5] Y. Chen and G. Medioni. Object modeling by registration of

multiple range images. In IEEE International Conference on

Robotics and Automation (ICRA), pages 2724–2729 vol.3,

1991. 2

[6] Haili Chui and Anand Rangarajan. A feature registra-

tion framework using mixture models. In IEEE Workshop

on Mathematical Methods in Biomedical Image Analysis.

MMBIA-2000 (Cat. No. PR00737), pages 190–197. IEEE,

2000. 2, 3

[7] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet:

Global context aware local features for robust 3D point

matching. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2018. 2, 4

[8] Zhen Dong, Bisheng Yang, Yuan Liu, Fuxun Liang, Bijun Li,

and Yufu Zang. A novel binary shape context for 3D local

surface description. ISPRS Journal of Photogrammetry and

Remote Sensing, 130:431 – 452, 2017. 3

[9] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow,

and Jitendra Malik. Recognizing objects in range data us-

ing regional point descriptors. In European Conference on

Computer Vision (ECCV), pages 224–237. Springer, 2004. 2

[10] Natasha Gelfand, Leslie Ikemoto, Szymon Rusinkiewicz,

and Marc Levoy. Geometrically stable sampling for the icp

algorithm. In International Conference on 3-D Digital Imag-

ing and Modeling (3DIM), pages 260–267. IEEE, 2003. 2

[11] Guy Godin, Marc Rioux, and Rejean Baribeau. Three-

dimensional registration using range and intensity informa-

tion. In Sabry F. El-Hakim, editor, Videometrics III, volume

2350, pages 279 – 290. International Society for Optics and

Photonics, SPIE, 1994. 2

[12] Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna

Pappu, and Eric Mjolsness. New algorithms for 2D and 3D

point matching: pose estimation and correspondence. Pat-

tern Recognition, 31(8):1019 – 1031, 1998. 1, 2, 3, 6

[13] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min

Lu, Jianwei Wan, and Ngai Ming Kwok. A comprehen-

sive performance evaluation of 3D local feature descrip-

tors. International Journal of Computer Vision, 116(1):66–

89, 2016. 2

[14] Andrew E. Johnson and Martial Hebert. Using spin images

for efficient object recognition in cluttered 3D scenes. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 21(5):433–449, 1999. 2

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[16] Scott Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by

simulated annealing. Science (New York, N.Y.), 220:671–80,

06 1983. 3

[17] Hongdong Li and Richard Hartley. The 3D-3D registration

problem revisited. In International Conference on Computer

Vision (ICCV), pages 1–8. IEEE, 2007. 1

[18] Jiaxin Li and Gim Hee Lee. USIP: Unsupervised stable in-

terest point detection from 3d point clouds. In International

Conference on Computer Vision (ICCV), 2019. 2

[19] Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei

Yuan, and Shiyu Song. DeepICP: An end-to-end deep neu-

ral network for 3D point cloud registration. In International

Conference on Computer Vision (ICCV), 2019. 4, 5

[20] Bruce D. Lucas and Takeo Kanade. An iterative image reg-

istration technique with an application to stereo vision. In

Proceedings of the 7th International Joint Conference on Ar-

tificial Intelligence - Volume 2, IJCAI’81, pages 674–679,

1981. 3

[21] Y. Pan, B. Yang, F. Liang, and Z. Dong. Iterative global simi-

larity points: A robust coarse-to-fine integration solution for

pairwise 3d point cloud registration. In International Con-

ference on 3D Vision (3DV), pages 180–189, Sep. 2018. 3

[22] Théodore Papadopoulo and Manolis IA Lourakis. Estimat-

ing the jacobian of the singular value decomposition: Theory

and applications. In European Conference on Computer Vi-

sion (ECCV), pages 554–570. Springer, 2000. 5

[23] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3D classification

and segmentation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 77–85, 2017. 2, 3,

4, 6

[24] Charles R. Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. In Advances in Neural Information Processing

Systems, pages 5099–5108, 2017. 2, 4

[25] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of

the icp algorithm. In International Conference on 3-D Dig-

ital Imaging and Modeling (3DIM), pages 145–152. IEEE,

2001. 2

[26] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast

point feature histograms (FPFH) for 3D registration. In

IEEE International Conference on Robotics and Automation

(ICRA), pages 3212–3217, 2009. 2, 4

[27] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and

Michael Beetz. Aligning point cloud views using persistent

feature histograms. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 3384–3391,

2008. 2

[28] Samuele Salti, Federico Tombari, and Luigi Di Stefano.

Shot: Unique signatures of histograms for surface and tex-

ture description. Computer Vision and Image Understand-

ing, 125:251–264, 2014. 2

11832

[29] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and

Stephen Gould. DeepPermNet: Visual permutation learning.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 3949–3957, 2017. 5

[30] Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki,

Rangaprasad Arun Srivatsan, Simon Lucey, and Howie

Choset. PCRNet: Point cloud registration network using

pointnet encoding. In International Conference on Computer

Vision (ICCV), 2019. 2, 3

[31] Richard Sinkhorn. A relationship between arbitrary positive

matrices and doubly stochastic matrices. The annals of math-

ematical statistics, 35(2):876–879, 1964. 2, 3

[32] Federico Tombari, Samuele Salti, and Luigi Di Stefano.

Unique shape context for 3D data description. In ACM Work-

shop on 3D Object Retrieval, 3DOR ’10, pages 57–62. ACM,

2010. 2

[33] Yanghai Tsin and Takeo Kanade. A correlation-based ap-

proach to robust point set registration. In European Confer-

ence on Computer Vision (ECCV), pages 558–569. Springer,

2004. 2, 3

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017. 3,

7

[35] Yue Wang and Justin M. Solomon. Deep closest point:

Learning representations for point cloud registration. In In-

ternational Conference on Computer Vision (ICCV), 2019.

2, 3, 4, 5, 6

[36] Yue Wang and Justin M Solomon. Prnet: Self-supervised

learning for partial-to-partial registration. In Advances in

Neural Information Processing Systems 32, pages 8814–

8826. Curran Associates, Inc., 2019. 3

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph CNN for learning on point clouds. ACM Transactions

on Graphics (TOG), 2019. 7

[38] Yuxin Wu and Kaiming He. Group normalization. In Euro-

pean Conference on Computer Vision (ECCV), pages 3–19.

Springer, 2018. 5

[39] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shapes. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1912–1920, 2015. 5

[40] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde

Jia. Go-ICP: A globally optimal solution to 3D ICP point-

set registration. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 38(11):2241–2254, 2015. 2

[41] Zi Jian Yew and Gim Hee Lee. 3DFeat-Net: Weakly super-

vised local 3D features for point cloud registration. In Eu-

ropean Conference on Computer Vision (ECCV). Springer,

2018. 2

[42] Andy Zeng, Shuran Song, Matthias Nießner, Matthew

Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:

Learning local geometric descriptors from RGB-D recon-

structions. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 199–208, 2017. 2

[43] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global

registration. In European Conference on Computer Vision,

pages 766–782. Springer, 2016. 6

[44] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A

modern library for 3D data processing. arXiv:1801.09847,

2018. 6

11833

