
Contextual Residual Aggregation for Ultra High-Resolution Image Inpainting

Zili Yi Qiang Tang Shekoofeh Azizi Daesik Jang Zhan Xu

Huawei Technologies Canada Co. Ltd.

{zili.yi, qiang.tang, shekoofeh.azizi, daesik.jang, zhan.xu}@huawei.com

Figure 1: Inpainting results on ultra high-resolution images.

Abstract

Recently data-driven image inpainting methods have

made inspiring progress, impacting fundamental image

editing tasks such as object removal and damaged image

repairing. These methods are more effective than classic

approaches, however, due to memory limitations they can

only handle low-resolution inputs, typically smaller than

1K. Meanwhile, the resolution of photos captured with

mobile devices increases up to 8K. Naive up-sampling

of the low-resolution inpainted result can merely yield a

large yet blurry result. Whereas, adding a high-frequency

residual image onto the large blurry image can generate

a sharp result, rich in details and textures. Motivated by

this, we propose a Contextual Residual Aggregation (CRA)

mechanism that can produce high-frequency residuals for

missing contents by weighted aggregating residuals from

contextual patches, thus only requiring a low-resolution

prediction from the network. Since convolutional layers of

the neural network only need to operate on low-resolution

inputs and outputs, the cost of memory and computing

power is thus well suppressed. Moreover, the need for

high-resolution training datasets is alleviated. In our

experiments, we train the proposed model on small images

with resolutions 512 × 512 and perform inference on

high-resolution images, achieving compelling inpainting

quality. Our model can inpaint images as large as 8K with

considerable hole sizes, which is intractable with previous

learning-based approaches. We further elaborate on the

light-weight design of the network architecture, achieving

real-time performance on 2K images on a GTX 1080

Ti GPU. Codes are available at: https://github.

com/Ascend-Huawei/Ascend-Canada/tree/

master/Models/Research_HiFIll_Model

1. Introduction
Smartphone users are interested to manipulate their pho-

tographs in any form of altering object positions, remov-

17508

ing unwanted visual elements, or repairing damaged im-

ages. These tasks require automated image inpainting,

which aims at restoring lost or deteriorated parts of an im-

age given a corresponding mask. Inpainting has been an

active research area for the past few decades, however, due

to its inherent ambiguity and the complexity of natural im-

ages, general image inpainting remains challenging. High-

quality inpainting usually requires generating visually real-

istic and semantically coherent content to fill the hole re-

gions. Existing methods for image hole filling can be cat-

egorized into three groups. The first category which we

call “fill through copying” attempts to explicitly borrow

contents or textures from surroundings to fill the missing re-

gions. An example is diffusion-based [1, 3] methods which

propagate local image appearance surrounding the target

holes based on the isophote direction field. Another stream

is relying on texture synthesis techniques, which fills the

hole by both extending and borrowing textures from sur-

rounding regions [6, 9, 13, 29, 31]. Patch-based algorithms

like [9, 10, 11, 29] progressively fill pixels in the hole by

searching the image patches from background regions that

are the most similar to the pixels along the hole boundaries.

The second group attempts to “fill through modeling”

and hallucinates missing pixels in a data-driven manner

with the use of large external databases. These approaches

learn to model the distribution of the training images and

assume that regions surrounded by similar contexts likely

to possess similar contents [15, 18, 20, 21, 30, 33]. For in-

stance, PixelRNN [20] uses a two-dimensional Recurrent

Neural Network (RNN) to model the pixel-level dependen-

cies along two spatial dimensions. More general idea [15,

33] is to train an encoder-decoder convolutional network to

model the 2-dimensional spatial contents. Rather than mod-

eling the raw pixels, [18, 30] train a convolutional network

to model image-wide edge structure or foreground object

contours, thus enabling auto-completion of the edge or con-

tours. These techniques are effective when they find an ex-

ample image with sufficient visual similarity to the query,

but will easily fail if the database does not have similar ex-

amples. To overcome the limitation of copying-based or

modeling-based methods, the third group of approaches at-

tempts to combine the two [19, 24, 32, 35, 36, 37]. These

methods learn to model the image distribution in a data-

driven manner, and in the meantime, they develop mech-

anisms to explicitly borrow patches/features from back-

ground regions. [36] introduces a novel contextual attention

layer that enables borrowing features from distant spatial lo-

cations. [37] further extends the contextual attention mecha-

nism to multiple scales and all the way from feature-level to

image-level. [24] employs the patch-swap layer that propa-

gates the high-frequency texture details from the boundaries

to hole regions.

Most learning-based approaches belong to the second or

third group. Compared to traditional methods, these tech-

niques have strong ability to learn adaptive and high-level

features of disparate semantics and thus are more adept in

hallucinating visually plausible contents especially when

inpainting structured images like faces [15, 20, 24, 35, 36,

37], objects [18, 21, 30, 33], and natural scenes [15, 24,

35, 36]. Since existing methods employ convolutional lay-

ers directly on the original input, the memory usage could

become extremely high and intractable when the input size

is up to 8K. Another issue is that the quality deteriorates

rapidly when hole size increases with image size. Even

if the training is feasible, access to large amounts of high-

resolution training data would be tedious and expensive.

To resolve these issues, we propose a novel Contex-

tual Residual Aggregation (CRA) mechanism to enable the

completion of ultra high-resolution images with limited re-

sources. In specific, we use a neural network to predict a

low-resolution inpainted result and up-sample it to yield a

large blurry image. Then we produce the high-frequency

residuals for in-hole patches by aggregating weighted high-

frequency residuals from contextual patches. Finally, we

add the aggregated residuals to the large blurry image to

obtain a sharp result. Since the network only operates on

low-resolution images, the cost of memory and computing

time is significantly reduced. Moreover, as the model can

be trained with low-resolution images, the need for high-

resolution training datasets is alleviated. Furthermore, we

introduce other techniques including slim and deep layer

configuration, attention score sharing, multi-scale attention

transfer, and Light-Weight Gated Convolutions (LWGC)

to improve the inpainting quality, computation, and speed.

Our method can inpaint images as large as 8K with satis-

fying quality, which cannot be handled by prior learning-

based approaches. Exemplar results are shown in Figure 1.

The contributions of the paper are summarized as follows:
– We design a novel and efficient Contextual Resid-

ual Aggregation (CRA) mechanism that enables ultra

high-resolution inpainting with satisfying quality. The

mechanism enables large images (up to 8K) with con-

siderable hole sizes (up to 25%) to be inpainted with

limited memory and computing resources, which is

intractable for prior methods. Also, the model can

be trained on small images and applied on large im-

ages, which significantly alleviates the requirements

for high-resolution training datasets.
– We develop a light-weight model for irregular hole-

filling that can perform real-time inference on images

of 2K resolutions on a NVIDIA GTX 1080 Ti GPU,

using techniques including slim and deep layer con-

figuration, attention score sharing, and Light Weight

Gated Convolution (LWGC).
– We use attention transfer at multiple abstraction levels

which enables filling holes by weighted copying fea-

tures from contexts at multiple scales, improving the

7509

inpainting quality over existing methods by a certain

margin even when tested on low-resolution images.

2. Related Works

2.1. Irregular Hole­filling & Modified Convolutions

Vanilla convolutions are intrinsically troublesome for ir-

regular hole-filling because convolutional filters treat all

pixels the same as valid ones, causing visual artifacts such

as color inconsistency, blurriness, and boundary artifacts.

Partial convolution [19] is proposed to handle irregular

holes, where the convolution is masked and re-normalized

to be conditioned on valid pixels. Gated convolution [35]

generalizes the partial convolution idea by providing a

learnable dynamic feature selection mechanism for each

channel and at each spatial location, achieving better visual

performance. Here, we further improve the gated convolu-

tion through a lightweight design to improve efficiency.

2.2. Contextual Attention

Contextual attention [36] is proposed to allow long-range

spatial dependencies during inpainting, which enables bor-

rowing pixels from distant locations to fill missing regions.

The contextual attention layer has two phases: “match” and

“attend”. In the “match” phase, the attention scores are

computed by obtaining region affinity between patches in-

side and those outside the holes. In the “attend” phase,

holes are filled by copying and aggregating patches from

weighted contexts by the attention scores. [37] extends this

idea by using a pyramid of contextual attention at multiple

layers. In contrast to [37], we only compute the attention

scores once and reuse them at multiple abstraction levels,

which leads to fewer parameters and less computation.

2.3. Image Residuals

The difference between an image and the blurred version

of itself represents the high-frequency image [4, 7]. Early

works use the difference obtained by Gaussian blurring for

low-level image processing tasks like edge detection, im-

age quality assessment, and feature extraction [8, 23, 26].

We employ this concept to decompose the input image into

low-frequency and high-frequency components. The low-

frequency component is obtained through averaging neigh-

boring pixels, whereas the high-frequency component (i.e.

image residuals) is obtained by subtracting the original im-

age with its low-frequency component.

3. Method

3.1. The Overall Pipeline

Figure 2 illustrates the overall pipeline of the proposed

CRA mechanism where the generator is the only trainable

component in the framework. Given a high-resolution input

image, we first down-sample the image to 512 × 512 and

then up-sample it to obtain a blurry large image of the same

size as the raw input (Section 4.1). The height and width of

the image are not necessary to be equal but must be multi-

ples of 512. The generator takes the low-resolution image

and fills the holes. Meanwhile, the attention scores are cal-

culated by the Attention Computing Module (ACM) of the

generator (Section 3.2.1). Also, the contextual residuals are

computed by subtracting the large blurry image from the

raw input, and the aggregated residuals in the mask region

are then calculated from the contextual residuals and atten-

tion scores through an Attention Transfer Module (ATM)

(Section 3.2.2). Finally, adding the aggregated residuals to

the up-sampled inpainted result generates a large sharp out-

put in the mask region while the area outside mask is simply

a copy of the original raw input.

3.2. Contextual Residual Aggregation (CRA)

Filling the missing region by using contextual informa-

tion [24, 32, 34], and contextual attention mechanism [36]

has been proposed previously. Similarly, we deploy the

CRA mechanism to borrow information from contextual re-

gions. However, the CRA mechanism borrows from con-

texts not only features but also residuals. In particular, we

adopt the idea of contextual attention [36] in calculating at-

tention scores by obtaining region affinity between patches

inside/outside missing regions. Thus contextually relevant

features and residuals outside can be transferred into the

hole. Our mechanism involves two key modules: Attention

Computing Module and Attention Transfer Module.

3.2.1 Attention Computing Module (ACM)

The attention scores are calculated based on region affinity

from a high-level feature map (denoted as P in Figure 2). P
is divided into patches and ACM calculates the cosine sim-

ilarity between patches inside and outside missing regions:

ci,j =
〈 pi
‖pi‖

,
pj
‖pj‖

〉

(1)

where pi is the ith patch extracted from P outside mask,

pj is the jth patch extracted from P inside the mask. Then

softmax is applied on the similarity scores to obtain the at-

tention scores for each patch:

si,j =
eci,j

ΣN
i=1

eci,j
(2)

where N is the number of patches outside the missing hole.

In our framework, each patch size is 3 × 3 and P is 32 ×
32, thus a total number of 1024 patches can be extracted.

In practice, the number of in-hole patches could vary for

different hole sizes. We uniformly use a matrix of 1024 ×
1024 to save affinity scores between any possible pair of

patches, though only a fraction of them are useful.

3.2.2 Attention Transfer Module (ATM)

After obtaining the attention scores from P , the correspond-

ing holes in the lower-level feature maps (P l) can be filled

with contextual patches weighted by the attention scores:

plj = ΣN
i=1

si,jp
l
i (3)

7510

Figure 2: The overall pipeline of the method: (top) CRA mechanism, (bottom) the architecture of the generator.

where l ∈ 1, 2, 3 is the layer number and pli is the ith patch

extracted from P l outside masked regions, and plj is the jth

patch to be filled inside masked regions. N indicates the

number of contextual patches (background). After calculat-

ing all in-hole patches, we can finally obtain a filled feature

P l. As the size of feature maps varies by layer, the size of

patches should vary accordingly. Assuming the size of the

feature map is 1282 and the attention scores are computed

from 322 patches, then the patch sizes should be greater or

equal to (128/32)2 = 42 so that all pixels can be covered.

If the patch sizes are greater than 4 × 4, then certain pixels

are overlapped, which is fine as the following layers of the

network can learn to adapt.

Multi-scale attention transfer and score sharing. In our

framework, we apply attention transfer multiple times with

the same set of attention scores (Figure 2). The sharing of

attention scores leads to fewer parameters and better effi-

ciency in terms of memory and speed.

3.2.3 Residual Aggregation

The target of Residual Aggregation is to calculate residu-

als for the hole region so that sharp details of the missing

contents could be recovered. The residuals for the miss-

ing contents can be calculated by aggregating the weighted

contextual residuals obtained from previous steps:

Rj = ΣN
i=1

si,jRi (4)

where R is the residual image and Ri is the ith patch ex-

tracted from contextual residual image outside the mask,

and Rj is jth patch to be filled inside the mask. The patch

sizes are properly chosen to exactly cover all pixels without

overlapping, to ensure the filled residuals being consistent

with surrounding regions. Once the aggregated residual im-

age is obtained, we add it to the up-sampled blurry image

of the generator, and obtain a sharp result (Figure 2).

3.3. Architecture of Generator

The network architecture of the generator is shown in

Figure 2. We use a two-stage coarse-to-fine network archi-

tecture where the coarse network hallucinates rough miss-

ing contents, and the refine network predicts finer results.

The generator takes an image and a binary mask indicating

the hole regions as input and predicts a completed image.

The input and output sizes are expected to be 512× 512. In

order to enlarge the perceptive fields and reduce computa-

tion, inputs are down-sampled to 256×256 before convolu-

tion in the coarse network, different from the refine network

who operates on 512×512. The prediction of the coarse net-

work is naively blended with the input image by replacing

the hole region of the latter with that of the former as the

input to the refine network. Refine network computes con-

textual attention scores with a high-level feature map and

performs attention transfer on multiple lower-level feature

maps, thus distant contextual information can be borrowed

at multiple abstraction levels. We also adopt dilated convo-

lutions [15] in both coarse and refine networks to further ex-

pand the size of the receptive fields. To improve the compu-

tational efficiency, our inpainting network is designed in a

slim and deep fashion, and the LWGC is applied for all lay-

ers of the generator. Other implementation considerations

7511

include: (1) using ‘same’ padding and ELUs [5] as activa-

tion for all convolution layers, (2) removing batch normal-

ization layer as they deteriorate color coherency [15].

3.4. Light Weight Gated Convolution

Gated Convolutions (GC) [35] leverages the art of ir-

regular hole inpainting. However, GC almost doubles the

number of parameters and processing time in comparison

to vanilla convolution. In our network, we proposed three

modified versions of GC called Light Weight Gated Con-

volutions (LWGC), which reduces the number of param-

eters and processing time while maintaining the effective-

ness. The output of the original GC can be expressed as:

G = conv(Wg, I)

F = conv(Wf , I)

O = σ(G)⊙ ψ(F)

(5)

where σ is Sigmoid function thus the output values are

within [0, 1]. ψ is an activation function which are set

to ELU in our experiments. wg and wf are two differ-

ent set of convolutional filters, which are used to com-

pute the gates and features respectively. GC enables the

network to learn a dynamic feature selection mechanism.

The three variations of LWGC that we propose are named

as: depth-separable LWGC (LWGCds), pixelwise LWGC

(LWGCpw), and single-channel LWGC (LWGCsc). They

differ by the computation of the gate branch, G:

G = convdepth−separable(Wg, I) (6)

G = convpixelwise(Wg, I) (7)

G = conv(Wg, I), G is single-channel (8)

The depth-separable LWGC employs a depth-wise con-

volution followed by a 1× 1 convolution to compute gates.

The pixelwise LWGC uses a pixelwise or 1× 1 convolution

to compute the gates. The single-channel LWGC outputs a

single-channel mask that is broadcast to all feature channels

during multiplication. The single-channel mask is similar

to partial convolution, whereas the mask of partial convolu-

tions is hard-wired and untrainable, and generates a binary

mask instead of a soft mask. Given that the height (Hk)

and width (Wk) of kernels, and numbers of input channels

(Cin) and output channels (Cout), we compare the number

of parameters needed to calculate gates in Table 1. We used

the single-channel LWGC for all layers of the coarse net-

work and depth-separable or pixelwise LWGC for all layers

of the refine network, which has been proved to be equally

effective as regular GC but more efficient (Section 4.2).

3.5. Training of the network

3.5.1 Training Losses

Without the degradation of performance, we also signifi-

cantly simplify the training objectives as two terms: the

adversarial loss and the reconstruction loss. We use the

Table 1: Number of parameters needed to compute gates

Method Parameters Calculation Hk,Wk = 3
Cin, Cout = 32

GC [35] Hk ×Wk × Cin × Cout 9216

LWGCds Hk ×Wk × Cin + Cin × Cout 1312

LWGCpw Cin × Cout 1024

LWGCsc Hk ×Wk × Cin × 1 288

WGAN-GP loss as our adversarial loss [12], which enforces

global consistency in the second-stage refinement network.

The discriminator and generator are alternatively trained

with the losses defined in Equation 9 and Equation 10:

Ld = Ex̃∈Pg
[D(x̃)]− Ex∈Pr

[D(x)]+

σEx̂∈P
x̂
[‖ ▽x̂ D(x̂)‖2 − 1]2

(9)

where D(.) is the discriminator output and G(.) is the gen-

erator output. x, x̃, x̂, are real images, generated images,

and interpolations between them, respectively. Pg , Pr, Px̂

are the corresponding distributions of them respectively.

Ladv = −Ex̃∈Pg
[D(x̃)] (10)

We also add the L1 loss to force the consistency of the

prediction with the original image. In contrast to [36], we

avoid the computationally expensive spatially-discounted

reconstruction loss. For simplicity, we just assign a smaller

constant weight for the reconstruction loss of all in-hole pix-

els. The reconstruction loss is thus written as:

Lin−hole = |G(x,m)− x| ⊙m (11)

Lcontext = |G(x,m)− x| ⊙ (1−m) (12)

Lrec = α1Lin−hole + α2Lcontext (13)

where α1 and α2 are coefficients for the in-hole term and

contextual term (α1 = 1, and α2 = 1.2). The coarse net-

work is trained with the reconstruction loss explicitly, while

the refinement network is trained with a weighted sum of

the reconstruction and GAN losses. The coarse network

and refine network are trained simultaneously with merged

losses as shown in Equation 14.

Lg = Lrec + βLadv (14)

where β is the coefficient for adversarial loss (β = 10−4).

3.5.2 Random Mask Generation

To diversify the inpainting masks, we use two methods to

generate irregular masks on-the-fly during training. The

first one is [19], which simulates tears, scratches, spots

or manual erasing with brushes. The second approach

generates masks by randomly manipulating the real object

shape templates, accounting for the object removal sce-

nario. These shape templates are obtained from object seg-

mentation masks and including a wide range of categories

such as single, multiple or crowded objects. We also ran-

domly rotate, flip and scale the templates with a random

scale ratio. In practice, the aforementioned two methods

can be combined or separated, depending on specific needs.

7512

Figure 3: Comparing down-sampling and up-sampling operators: (top) using Bilinear up-sampling along with Averaging

down-sampling generates more coherent textures with the surroundings. (bottom) using the Averaging down-sampling along

with Nearest Neighbor produces tiling artifacts while Bilinear and Bicubic up-sampling perform equally well.

Figure 4: Comparisons of different Gated Convolutions configurations. For example, the notation of LWGCsc+LWGCds

means: the coarse network uses single-channel LWGC and the refine network uses depth-separable LWGC.

3.5.3 Training Procedure

During training, color values of all images are linearly

scaled to [−1, 1] in all experiments, and the mask uses 1

to indicate the hole region and 0 to indicate background.

The masked image is constructed as x⊙ (1−m), where x

is the input image and m is the binary mask, and ⊙ repre-

sents dot product. Inpainting generator G takes concatena-

tion of the masked image and mask as input, and predicts

y = G(x,m) of the same size as the input image. The

entire training procedure is illustrated in Algorithm 1.

Algorithm 1: Training of our proposed network

initialization;

while G has not converged do

for i = 1,...,5 do
Sampling batch images x from training data;

Generating random masks m for x;

Getting inpainted y← G(x,m);
Pasting back x̃← y ⊙m+ x⊙ (1−m);
Sampling a random number α ∈ U [0, 1];
Getting interpolation x̂← (1− α)x+ αx̃;

Updating the discriminator D with loss Ld;

end

Sampling batch images x from training data;

Generating random masks m for x;

Getting Inpainted y← G(x,m);
Pasting back x̃← y ⊙m+ x⊙ (1−m);
Updating generator G with loss Lg;

end

4. Experimental Results
We evaluate the proposed method on three datasets in-

cluding Places2 [38], CelebA-HQ [16], and DIV2K [25].

Our model is trained on two NVIDIA 1080 Ti GPUs with

images of resolution 512 × 512 with batch size of 8.

For DIV2K and CelebA-HQ, images are down-sampled to

512 × 512. For Places2, images are randomly cropped to

512× 512. After training, we test the models on images of

various resolutions of 512 to 8K on a GPU. The final model

has a total of 2.7M parameters and implemented on Tensor-

Flow v1.13 with CUDNN v7.6 and CUDA v10.0.

4.1. Analysis of CRA Design

As shown in Figure 2, the CRA mechanism involves

one down-sampling and two up-sampling operations out-

side of the generator. Choosing different methods for down-

sampling and up-sampling may affect the final results. To

explore this, we experimented with four down-sampling

methods: Nearest-Neighbor, Bilinear, Bicubic, and Aver-

aging. Averaging evenly splits the input into target patches

and average all pixels in each patch to obtain a 512×512 im-

age. We also explored three up-sampling methods includ-

ing Nearest-Neighbor, Bilinear or Bicubic. Note that the

two up-sampling operations must be consistent, so we do

not consider inconsistent combinations. Experimental re-

sults on an HD dataset indicate that Averaging performs the

best for down-sampling and Bilinear or Bicubic performs

equally well for up-sampling (Figure 3). For simplicity, we

use Averaging down-sampling and Bilinear up-sampling.

7513

Figure 5: Qualitative comparisons using 512× 512 (top) and 1024× 1024 (bottom) images from Places2 validation dataset.

Table 2: Quantitative evaluation results on Places2 validation set. Note that certain models cause Out-Of-Memory (OOM)

error when tested on 2K or 4K images, thus the corresponding cells are left empty.

Image Size 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096

Metrics L1 MS-SSIM FID IS Time L1 MS-SSIM FID IS Time L1 MS-SSIM FID IS Time L1 MS-SSIM FID IS Time

DeepFillV1[36] 6.733 0.8442 7.541 17.56 62ms 7.270 0.8424 10.21 17.69 663ms – – – – – – – – – –

DeepFillV2[35] 6.050 0.8848 4.939 18.20 78ms 6.942 0.8784 8.347 17.04 696ms – – – – – – – – – –

PEN-Net[37] 9.732 0.8280 14.13 14.51 35ms 10.42 0.8128 19.36 12.51 289ms – – – – – – – – – –

PartialConv[19] 8.197 0.8399 29.32 13.13 35ms 11.19 0.8381 32.20 13.53 110ms 16.19 0.8373 41.23 11.17 920ms – – – – –

Global-local[15] 8.617 0.8469 21.27 13.48 53ms 9.232 0.8392 26.23 13.05 219ms 9.308 0.8347 27.09 12.61 219ms – – – – –

Ours 5.439 0.8840 4.898 17.72 25ms 5.439 0.8840 4.899 17.72 31ms 5.492 0.8840 4.893 17.85 37ms 5.503 0.8840 4.895 17.81 87.3ms

4.2. Analysis of Light Weight Gated Convolutions

We propose three types of LWGC, which are faster than

the original GC. We experimented how they affect inpaint-

ing quality and efficiency on the CelebA-HQ dataset to ex-

plore the influence of LWGC on the results, by replacing the

original GCs with LWGCs for the coarse/refine networks.

As shown in Figure 4, the LWGCsc+LWGCsc configura-

tion brings visible artifacts while the other five configura-

tions perform equally well in terms of quality. Consider-

ing LWGCsc+LWGCpw requires fewer parameters than the

other four, we adopt the LWGCsc+LWGCpw configuration

in the generator.

4.3. Comparisons With Learning­based Methods

We compared our method with other state-of-the-art

learning-based inpainting methods including Global-local

GAN [15], DeepFillV1 [36], DeepFillV2 [35], PEN-

Net [37] and Partial Convolution [19]. To make fair compar-

isons, we attempted to use the same settings for all experi-

ments, though not fully guaranteed. The official pre-trained

DeepFillV1 [36] model was trained for 100M iterations

with the batch size of 16 and the global-local GAN [15]

was trained for 300K iterations with the batch size of 24.

Both of them were trained on 256×256 images with rectan-

gular holes of maximum size 128×128. All the other mod-

els were trained for 300K iterations with the batch size of

8 on 512×512 images with irregular holes up to 25% area

of the whole image. The original DeepFillV2 [35] model

attached a sketch channel to the input to facilitate image

manipulation, we simply removed the sketch channel and

re-trained the model. For all these methods, no specific

post-processing steps are performed other than pasting the

filled contents back to the original image.
Qualitative comparisons Figure 5 shows our model per-

forms equally good or slightly better than previous methods

on 512 × 512 images. Partial convolution [19] and global-

local GAN [15] performs well when the mask is small and

narrow but exert severe artifacts when the hole size becomes

bigger. Global-local GAN [15] is problematic in maintain-

ing the color consistency of filled contents with surround-

ings. DeepFillV1 [36] generates plausible results, but occa-

sionally the artifacts inside the hole region are visible, im-

plying its vulnerability to irregular masks. DeepFillV2 [35]

generates incoherent textures when the hole size goes up.

Nevertheless, when tested on larger images with bigger hole

sizes, our model performs consistently good while the in-

painting results of other methods deteriorate dramatically

(e.g. severe hole-shaped artifacts in Figure 5).

7514

Figure 6: Comparisons of different super-resolution methods: the red squares area are zoomed-in for more details.

Figure 7: Comparisons of our method with Inpaint (software), Photoshop content-aware fill and an open-source PatchMatch

implementation [28]. The masks for Photoshop and Inpaint are manually drawn, thus not guaranteed to be the same.

Quantitative comparisons Table 2 reports our quantita-

tive evaluation results in terms of mean L1 error, MS-

SSIM [27], Inception Score (IS) [22], and Frechet Inception

Distance (FID) [14]. It also shows the average inference

time per image on a NVIDIA GTX 1080 Ti GPU. These

metrics are calculated over all 36,500 images of the Places2

validation set. Each image is assigned a randomly generated

irregular mask. To examine the performance on various im-

age sizes, we linearly scale images and masks to various di-

mensions. Table 2 shows that our proposed model achieves

the lowest L1 loss and FID on 512×512 images. When the

input images are greater than or equal to 1024×1024, our

proposed model achieves the best results on all metrics. In

addition, the proposed approach significantly outperforms

other learning-based methods in terms of speed. In specific,

it is 28.6% faster for 512×512 images, 3.5 times faster for

1024×1024 images, and 5.9 times faster for 2048×2048

images than the second-fastest method. Furthermore, the

proposed model can inpaint 4096×4096 images in 87.3

milliseconds which is intractable with other learning-based

methods due to limits of GPU memory.
4.4. Comparisons of CRA with Super­resolution

Figure 6, compares the high-resolution results of our

CRA with those obtained via various super-resolution tech-

niques. After obtaining a 512×512 inpainted result, we up-

sample the output to the original size using different up-

sampling methods including SRGAN [17], Nearest Neigh-

bor, and Bicubic, then, we paste the filled contents to the

original image. SRGAN [17] is a learning-based method

that can perform 4× super-resolution and the official pre-

trained model was trained on DIV2K. We can observe from

that the hole region generated by CRA is generally sharper

and visually more consistent with surrounding areas.

4.5. Comparisons With Traditional Methods

Moreover, we compare our method with two commer-

cial products based on PatchMatch [2] (Photoshop, Inpaint)

and an open-source PatchMatch implementation for image

inpainting [28] (Figure 7). We discover that PatchMatch-

based methods are able to generate clear textures but with

distorted structures incoherent with surrounding regions.

5. Conclusion

We presented a novel Contextual Residual Aggregated

technique that enables more efficient and high-quality in-

painting of ultra high-resolution images. Unlike other data-

driven methods, the increase of resolutions and hole size

does not deteriorate the inpainting quality and does not con-

siderably increase the processing time in our framework.

When tested on high-resolution images between 1K and 2K,

our model is extremely efficient where it is 3x∼6x faster

than the state-of-the-art on images of the same size. Also, it

achieves better quality by reducing FID by 82% compared

to the state-of-the-art. We also compared our method with

commercial products that showed significant superiority in

certain scenarios. So far, our method is the only learning-

based technique that can enable end-to-end inpainting on

the ultra-high-resolution image (4K∼8K). In the future, we

will explore similar mechanisms for other tasks such as im-

age expansion, video inpainting and image blending.

Acknowledgment

We want to acknowledge Peng Deng, Shao Hua Chen,

Xinjiang Sun, Chunhua Tian and other colleagues in

Huawei Technologies for their support in the project.

7515

References

[1] Coloma Ballester, Marcelo Bertalmio, Vicent Caselles,

Guillermo Sapiro, and Joan Verdera. Filling-in by joint inter-

polation of vector fields and gray levels. IEEE transactions

on image processing, 10(8):1200–1211, 2001.

[2] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and

Dan B Goldman. Patchmatch: A randomized correspon-

dence algorithm for structural image editing. In ACM Trans-

actions on Graphics (ToG), volume 28, page 24. ACM, 2009.

[3] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and

Coloma Ballester. Image inpainting. In Proceedings of

the 27th annual conference on Computer graphics and in-

teractive techniques, pages 417–424. ACM Press/Addison-

Wesley Publishing Co., 2000.

[4] Peter Burt and Edward Adelson. The laplacian pyramid as

a compact image code. IEEE Transactions on communica-

tions, 31(4):532–540, 1983.

[5] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential

linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[6] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama.

Region filling and object removal by exemplar-based im-

age inpainting. IEEE Transactions on image processing,

13(9):1200–1212, 2004.

[7] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep

generative image models using laplacian pyramid of adver-

sarial networks. In Advances in neural information process-

ing systems, pages 1486–1494, 2015.

[8] Manjusha Deshmukh and Udhav Bhosale. Image fusion and

image quality assessment of fused images. International

Journal of Image Processing (IJIP), 4(5):484, 2010.

[9] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun.

Fragment-based image completion. In ACM Transactions on

graphics (TOG), volume 22.3, pages 303–312. ACM, 2003.

[10] Alexei A Efros and William T Freeman. Image quilting for

texture synthesis and transfer. In Proceedings of the 28th an-

nual conference on Computer graphics and interactive tech-

niques, pages 341–346. ACM, 2001.

[11] Alexei A Efros and Thomas K Leung. Texture synthesis

by non-parametric sampling. In Proceedings of the sev-

enth IEEE international conference on computer vision, vol-

ume 2, pages 1033–1038. IEEE, 1999.

[12] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in neural information pro-

cessing systems, pages 5767–5777, 2017.

[13] Kaiming He and Jian Sun. Statistics of patch offsets for im-

age completion. In European Conference on Computer Vi-

sion, pages 16–29. Springer, 2012.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in Neural Information Processing Sys-

tems, pages 6626–6637, 2017.

[15] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.

Globally and locally consistent image completion. ACM

Transactions on Graphics (ToG), 36(4):107, 2017.

[16] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. arXiv preprint arXiv:1710.10196, 2017.

[17] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690,

2017.

[18] Liang Liao, Ruimin Hu, Jing Xiao, and Zhongyuan Wang.

Edge-aware context encoder for image inpainting. In 2018

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3156–3160. IEEE, 2018.

[19] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,

Andrew Tao, and Bryan Catanzaro. Image inpainting for

irregular holes using partial convolutions. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 85–100, 2018.

[20] Aaron van den Oord, Nal Kalchbrenner, and Koray

Kavukcuoglu. Pixel recurrent neural networks. arXiv

preprint arXiv:1601.06759, 2016.

[21] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2536–2544, 2016.

[22] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In Advances in neural information pro-

cessing systems, pages 2234–2242, 2016.

[23] Mohsen Sharifi, Mahmood Fathy, and Maryam Tayefeh

Mahmoudi. A classified and comparative study of edge de-

tection algorithms. In Proceedings. International conference

on information technology: Coding and computing, pages

117–120. IEEE, 2002.

[24] Yuhang Song, Chao Yang, Zhe Lin, Xiaofeng Liu, Qin

Huang, Hao Li, and C-C Jay Kuo. Contextual-based im-

age inpainting: Infer, match, and translate. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 3–19, 2018.

[25] Radu Timofte, Shuhang Gu, Jiqing Wu, Luc Van Gool, Lei

Zhang, Ming-Hsuan Yang, Muhammad Haris, et al. Ntire

2018 challenge on single image super-resolution: Methods

and results. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, June 2018.

[26] Alexander Toet. Image fusion by a ratio of low-pass pyramid.

Pattern Recognition Letters, 9(4):245–253, 1989.

[27] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-

scale structural similarity for image quality assessment. In

The Thrity-Seventh Asilomar Conference on Signals, Sys-

tems & Computers, 2003, volume 2, pages 1398–1402. Ieee,

2003.

[28] Zubeyr Furkan Eryilmaz Wen-Fu Lee, Yuan-Ting Hsieh.

mage completion using patchmatch algorithm.

https://github.com/YuanTingHsieh/Image_

Completion. Accessed: 2019-10-26.

7516

[29] Marta Wilczkowiak, Gabriel J Brostow, Ben Tordoff, and

Roberto Cipolla. Hole filling through photomontage. In

BMVC 2005-Proceedings of the British Machine Vision Con-

ference 2005, 2005.

[30] Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu, Con-

nelly Barnes, and Jiebo Luo. Foreground-aware image in-

painting. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5840–5848,

2019.

[31] Zongben Xu and Jian Sun. Image inpainting by patch prop-

agation using patch sparsity. IEEE transactions on image

processing, 19(5):1153–1165, 2010.

[32] Zhaoyi Yan, Xiaoming Li, Mu Li, Wangmeng Zuo, and

Shiguang Shan. Shift-net: Image inpainting via deep feature

rearrangement. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 1–17, 2018.

[33] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang,

and Hao Li. High-resolution image inpainting using multi-

scale neural patch synthesis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 6721–6729, 2017.

[34] Fisher Yu and Vladlen Koltun. Multi-scale context

aggregation by dilated convolutions. arXiv preprint

arXiv:1511.07122, 2015.

[35] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas S Huang. Free-form image inpainting with gated

convolution. arXiv preprint arXiv:1806.03589, 2018.

[36] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas S Huang. Generative image inpainting with con-

textual attention. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5505–

5514, 2018.

[37] Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Baining

Guo. Learning pyramid-context encoder network for high-

quality image inpainting. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1486–1494, 2019.

[38] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. IEEE transactions on pattern analysis

and machine intelligence, 40(6):1452–1464, 2017.

7517

