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Abstract

Blind or no-reference (NR) perceptual picture quality

prediction is a difficult, unsolved problem of great conse-

quence to the social and streaming media industries that

impacts billions of viewers daily. Unfortunately, popu-

lar NR prediction models perform poorly on real-world

distorted pictures. To advance progress on this problem,

we introduce the largest (by far) subjective picture qual-

ity database, containing about 40, 000 real-world distorted

pictures and 120, 000 patches, on which we collected about

4M human judgments of picture quality. Using these pic-

ture and patch quality labels, we built deep region-based

architectures that learn to produce state-of-the-art global

picture quality predictions as well as useful local pic-

ture quality maps. Our innovations include picture quality

prediction architectures that produce global-to-local infer-

ences as well as local-to-global inferences (via feedback).

The dataset and source code are available at https:

//live.ece.utexas.edu/research.php.

1. Introduction

Digital pictures, often of questionable quality, have be-

come ubiquitous. Several hundred billion photos are up-

loaded and shared annually on social media sites like Face-

book, Instagram, and Tumblr. Streaming services like Net-

flix, Amazon Prime Video, and YouTube account for 60%
of all downstream internet traffic [1]. Being able to under-

stand and predict the perceptual quality of digital pictures,

given resource constraints and increasing display sizes, is a

high-stakes problem.

It is a common misconception that if two pictures are

impaired by the same amount of a distortion (e.g., blur),

they will have similar perceived qualities. However, this

is far from true because of the way the vision system pro-

cesses picture impairments. For example, Figs. 1(a) and

∗†Equal contribution

(a) (b) (c)
Fig. 1: Challenges in distortion perception: Quality of a (distorted) im-

age as perceived by human observers is perceptual quality. Distortion

perception is highly content-dependent. Pictures (a) and (b) were JPEG

compressed using identical encode parameters, but present very different

degrees of perceptual distortion. The spatially uniform noise in (c) varies

in visibility over the picture content, because of contrast masking [2].

(a) (b)
Fig. 2: Aesthetics vs. perceptual quality (a) is blurrier than (b), but likely

more aesthetically pleasing to most viewers.

1(b) have identical amounts of JPEG compression applied,

but Fig. 1(a) appears relatively unimpaired perceptually,

while Fig. 1(b) is unacceptable. On the other hand, Fig. 1(c)

has had spatially uniform white noise applied to it, but its

perceived distortion severity varies across the picture. The

complex interplay between picture content and distortions

(largely determined by masking phenomena [2]), and the

way distortion artifacts are visually processed, play an im-

portant role in how visible or annoying visual distortions

may present themselves. Perceived quality correlates poorly

with simple quantities like resolution and bit rate [7]. Gen-

erally, predicting perceptual picture quality is a hard, long-

standing research problem [8, 2, 7, 9, 10], despite its decep-

tive simplicity (we sense distortion easily with little, if any,

thought).
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Table 1: Summary of popular IQA datasets. In the legacy datasets, pictures were synthetically distorted with different types of single distortions. “In-the-wild” databases

contain pictures impaired by complex mixtures of highly diverse distortions, each as unique as the pictures they afflict.

Database
# Unique

contents
# Distortions # Picture contents # Patch contents Distortion type

Subjective study

framework
# Annotators # Annotations

LIVE IQA (2003) [3] 29 5 780 0 single, synthetic in-lab

TID-2008 [4] 25 17 1700 0 single, synthetic in-lab

TID-2013 [4] 25 24 3000 0 single, synthetic in-lab

CLIVE (2016) [5] 1200 - 1200 0 in-the-wild crowdsourced 8000 350K

KonIQ (2018) [6] 10K - 10K 0 in-the-wild crowdsourced 1400 1.2M

Proposed database 39, 810 - 39, 810 119, 430 in-the-wild crowdsourced 7865 3, 931, 710

It is important to distinguish between the concepts of pic-

ture quality [2] and picture aesthetics [11]. Picture quality

is specific to perceptual distortion, while aesthetics also re-

lates to aspects like subject placement, mood, artistic value,

and so on. For instance, Fig. 2(a) is noticeably blurred and

of lower perceptual quality than Fig. 2(b), which is less dis-

torted. Yet, Fig. 2(a) is more aesthetically pleasing than

the unsettling Fig. 2(b). While distortion can detract from

aesthetics, it can also contribute to it, as when intentionally

adding film grain [12] or blur (bokeh) [13] to achieve photo-

graphic effects. While both concepts are important, picture

quality prediction is a critical, high-impact problem affect-

ing several high-volume industries, and is the focus of this

work. Robust picture quality predictors can significantly

improve the visual experiences of social media, streaming

TV and home cinema, video surveillance, medical visual-

ization, scientific imaging, and more.

In many such applications, it is greatly desired to be

able to assess picture quality at the point of ingestion,

to better guide decisions regarding retention, inspection,

culling, and all further processing and display steps. Unfor-

tunately, measuring picture quality without a pristine ref-

erence picture is very hard. This is the case at the out-

put of any camera, and at the point of content ingestion

by any social media platform that accepts user-generated

content (UGC). No-reference (NR) or blind picture quality

prediction is largely unsolved, though popular models exist

[14, 15, 16, 17, 18, 19, 20]. While these are often predicated

on solid principles of visual neuroscience, they are also sim-

ple and computationally shallow, and fall short when tested

on recent databases containing difficult, complex mixtures

of real-world picture distortions [5, 6]. Solving this prob-

lem could affect the way billions of pictures uploaded daily

are culled, processed, compressed, and displayed.

Towards advancing progress on this high-impact un-

solved problem, we make several new contributions.

• We built the largest picture quality database in exis-

tence. We sampled hundreds of thousands of open source

digital pictures to match the feature distributions of the

largest use-case: pictures shared on social media. The

final collection includes about 40, 000 real-world, unpro-

cessed (by us) pictures of diverse sizes, contents, and dis-

tortions, and about 120, 000 cropped image patches of

various scales and aspect ratios (Sec. 3.1, 3.2).

• We conducted the largest subjective picture quality

study to date. We used Amazon Mechanical Turk to col-

lect about 4M human perceptual quality judgments from

almost 8, 000 subjects on the collected content, about four

times more than any prior image quality study (Sec. 3.3).

• We collected both picture and patch quality labels

to relate local and global picture quality. The new

database includes about 1M human picture quality judg-

ments and 3M human quality labels on patches drawn

from the same pictures. Local picture quality is deeply

related to global quality, although this relationship is not

well understood [21], [22]. This data is helping us to

learn these relationships and to better model global pic-

ture quality.

• We created a series of state-of-the-art deep blind pic-

ture quality predictors, that builds on existing deep neu-

ral network architectures. Using a modified ResNet [23]

as a baseline, we (a) use patch and picture quality labels to

train a region proposal network [24], [25] to predict both

global picture quality and local patch quality. This model

is able to produce better global picture quality predictions

by learning relationships between global and local picture

quality (Sec. 4.2). We then further modify this model to

(b) predict spatial maps of picture quality, useful for local-

izing picture distortions (Sec. 4.3). Finally, we (c) inno-

vate a local-to-global feedback architecture that produces

further improved whole picture quality predictions using

local patch predictions (Sec. 4.4). This series of models

obtains state-of-the art picture quality performance on the

new database, and transfer well – without finetuning – on

smaller “in-the-wild” databases such as LIVE Challenge

(CLIVE) [5] and KonIQ-10K [6] (Sec. 4.5).

2. Background

Image Quality Datasets: Most picture quality models have

been designed and evaluated on three “legacy” databases:

LIVE IQA [3], TID-2008 [4], and TID-2013 [26]. These

datasets contain small numbers of unique, pristine images

(∼ 30) synthetically distorted by diverse types and amounts

of single distortions (JPEG, Gaussian blur, etc.). They con-

tain limited content and distortion diversity, and do not cap-

ture complex mixtures of distortions that often occur in

real-world images. Recently, “in-the-wild” datasets such as

CLIVE [5] and KonIQ-10K [6], have been introduced to at-

tempt to address these shortcomings (Table 1).
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Fig. 3: Exemplar pictures from the new database, each resized to fit. Actual

pictures are of highly diverse sizes and shapes.

Full-Reference models: Many full-reference (FR) per-

ceptual picture quality predictors, which make compar-

isons against high-quality reference pictures, are avail-

able [9, 10], [27, 28, 29, 30, 31, 32, 33]. Although some FR

algorithms (e.g. SSIM [9], [34], VIF [10], [35, 36]) have

achieved remarkable commercial success (e.g. for monitor-

ing streaming content), they are limited by their requirement

of pristine reference pictures.

Current NR models arent general enough: No-reference

or blind algorithms predict picture content without the ben-

efit of a reference signal. Popular blind picture quality algo-

rithms usually measure distortion-induced deviations from

perceptually relevant, highly regular bandpass models of

picture statistics [2], [37, 38, 39, 40]. Examples include

BRISQUE [14], NIQE [15], CORNIA [17], FRIQUEE

[16], which use “handcrafted” statistical features to drive

shallow learners (SVM, etc.). These models produce ac-

curate quality predictions on legacy datasets having single,

synthetic distortions [3, 4, 26, 41], but struggle on recent

in-the-wild [5, 6] databases.

Several deep NR models [42, 43, 44, 45, 46] have

also been created that yield state-of-the-art performance

on legacy synthetic distortion databases [3, 4, 26, 41], by

pretraining deep nets [47, 48, 49] on ImageNet [50], then

fine tuning, or by training on proxy labels generated by an

FR model [45]. However, most deep models struggle on

CLIVE [5], because it is too difficult, yet too small to suf-

ficiently span the perceptual space of picture quality to al-

low very deep models to map it. The authors of [51], the

code of which is not made available, reported high results,

but we have been unable to reproduce their numbers, even

with more efficient networks. The authors of [52] use a pre-

trained ResNet-101 and report high performance on [5, 6],

but later disclosed [53] that they are unable to reproduce

their results in [52].

3. Large-Scale Dataset and Human Study

Next we explain the details of the new picture quality

dataset we constructed, and the crowd-sourced subjective

quality study we conducted on it. The database has about

40, 000 pictures and 120, 000 patches, on which we col-

lected 4M human judgments from nearly 8, 000 unique sub-

jects (after subject rejection). It is significantly larger than

commonly used “legacy” databases [3, 4, 26, 41] and more

recent “in-the-wild” crowd-sourced datasets [5, 6].

3.1. UGC­like picture sampling

Data collection began by sampling about 40K highly di-

verse contents of diverse sizes and aspect ratios from hun-

dreds of thousands of pictures drawn from public databases,

including AVA [11], VOC [54], EMOTIC [55], and Blur

Detection Dataset [56]. Because we were interested in the

role of local quality perception as it relates to global qual-

ity, we also cropped three patches from each picture, yield-

ing about 120K patches. While internally debating the con-

cept of “representative,” we settled on a method of sampling

a large image collection so that it would be substantially

“UGC-like.” We did this because billions of pictures are

uploaded, shared, displayed, and viewed on social media,

far more than anywhere else.

We sampled picture contents using a mixed integer pro-

gramming method [57] similar to [6], to match a specific

set of UGC feature histograms. Our sampling strategy was

different in several ways: firstly, unlike KonIQ [6], no pic-

tures were down sampled, since this intervention can sub-

stantially modify picture quality. Moreover, including pic-

tures of diverse sizes better reflects actual practice. Second,

instead of uniformly sampling feature values, we designed

a picture collection whose feature histograms match those

of 15M that were randomly selected from unprocessed in-

ternal uploads to Facebook. This in turn resulted in a much

more realistic and difficult database to predict features on,

as we will describe later. Lastly, we did not use a pre-trained

IQA algorithm to aid the picture sampling, as that could in-

troduce algorithmic bias into the data collection process.

To sample and match feature histograms, we computed

the following diverse, objective features on both our picture

collection and the 15M UGC pictures:

• absolute brightness L = R+G+B.

• colorfulness using the popular model in [58].

• RMS brightness contrast [59].

• Spatial Information(SI), the global standard deviation of

Sobel gradients [60], a measure of complexity.

• pixel count, a measure of picture size.

• number of detected faces using [61].

In the end, we arrived at about 40K pictures. Fig. 3 shows

16 randomly selected pictures and Fig. 4 highlights the di-

verse sizes and aspect ratios of pictures in the new database.
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Fig. 4: Scatter plot of picture width versus picture height with marker size indi-

cating the number of pictures for a given dimension in the new database.

3.2. Patch cropping

We applied the following criteria when randomly crop-

ping out patches: (a) aspect ratio: patches have the same

aspect ratios as the pictures they were drawn from. (b) di-

mension: the linear dimensions of the patches are 40%,

30%, and 20% of the picture dimensions. (c) location: ev-

ery patch is entirely contained within the picture, but no

patch overlaps the area of another patch cropped from the

same image by more than 25%. Fig. 5 shows two exemplar

pictures, and three patches obtained from each.

Fig. 5: Sample pictures and 3 randomly positioned crops (20%, 30%, 40%).

3.3. Crowdsourcing pipeline for subjective study

Subjective picture quality ratings are true psychometric

measurements on human subjects, requiring 10-20 times as

much time for scrutiny (per photo) as for example, object la-

belling [50]. We used the Amazon Mechanical Turk (AMT)

crowdsourcing system, well-documented for this purpose

[5, 6, 62, 63], to gather human picture quality labels.

We divided the study into two separate tasks: picture

quality evaluation and patch quality evaluation. Most sub-

jects (7141 out of 7865 workers) only participated in one of

these, to avoid biases incurred by viewing both, even on dif-

ferent dates. Either way, the crowdsource workflow was the

same, as depicted in Fig. 6. Each worker was given instruc-

tions, followed by a training phase, where they were shown

several contents to learn the rating task. They then viewed

and quality-rated N contents to complete their human intel-

ligent task (HIT), concluding with a survey regarding their

experience. At first, we set N = 60, but as the study accel-

erated and we found the workers to be delivering consistent

scores, we set N = 210. We found that workers performed

as well when viewing the larger number of pictures.

Fig. 6: AMT task: Workflow experienced by crowd-sourced workers when rating

either pictures or patches.

3.4. Processing subjective scores

Subject rejection: We took the recommended steps [5, 63]

to ensure the quality of the collected human data.

• We only accepted workers with acceptance rates > 75%.

• Repeated images: 5 of the N contents were repeated ran-

domly per session to determine whether the subjects were

giving consistent ratings.

• “Gold” images: 5 out of N contents were “gold” ones

sampled from a collection of 15 pictures and 76 patches

that were separately rated in a controlled lab study by 18
reliable subjects. The “gold” images are not part of the

new database.

We accepted or rejected each raters scores within a HIT

based on two factors: the difference of the repeated con-

tent scores compared with overall standard deviation, and

whether more than 50% of their scores were identical. Since

we desired to capture many ratings, workers could partici-

pate in multiple HITs. Each content received at least 35
quality ratings, with some receiving as many as 50.

The labels supplied by each subject were converted into

normalized Z scores [3], [5], averaged (by content), then

scaled to [0, 100] yielding Mean Opinion Scores (MOS).

The total number of human subjective labels collected after

subject rejection was 3, 931, 710 (950, 574 on images, and

2, 981, 136 on patches).

Inter-subject consistency: A standard way to test the con-

sistency of subjective data [3], [5], is to randomly divide

subjects into two disjoint equal sets, compute two MOS on

each picture (one from each group), then compute the Pear-

son linear correlation (LCC) between the MOS values of

the two groups. When repeated over 25 random splits, the

average LCC between the two groups MOS was 0.48, in-

dicating the difficulty of the quality prediction problem on

this realistic picture dataset. Fig. 7 (left) shows a scatter plot

of the two halves of human labels for one split, showing a

linear relationship and fairly broad spread. We applied the

same process to the patch scores, obtaining a higher LCC of

0.65. This is understandable: smaller patches contain less

spatial diversity; hence they receive more consistent scores.

We also found that nearly all the non-rejected subjects had

a positive Spearman rank ordered correlation (SRCC) with

the golden pictures, validating the data collection process.

Relationships between picture and patch quality: Fig. 7

(right) is a scatter plot of the entire database of picture MOS

against the MOS of the largest patches cropped from them.
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Fig. 7: Scatter plots descriptive of the new subjective quality database. Left:

Inter-subject scatter plot of a random 50% divisions of the human labels of all 40K+

pictures into disjoint subject sets. Right: Scatter plot of picture MOS vs MOS of

largest patch (40% of linear dimension) cropped from each same picture.

The linear correlation coefficient (LCC) between them is

0.43, which is strong, given that each patch represents only

16% of the picture area. The scatter plots of the picture

MOS against that of the smaller (30% and 20%) patches

are quite similar, with somewhat reduced LCC of 0.36 and

0.28, respectively (supplementary material).

An outcome of creating highly realistic “in-the-wild”

data is that it is much more difficult to train successful

models on. Most pictures uploaded to social media are of

reasonably good quality, largely owing to improved mo-

bile cameras. Hence, the distribution of MOS in the new

database is narrower and peakier as compared to those of

the two previous “in the wild” picture quality databases [5],

[6]. This is important, since it is desirable to be able to pre-

dict small changes in MOS, which can be significant regard-

ing, for example, compression parameter selection [64]. As

we show in Sec. 4, the new database, which we refer to as

the LIVE-FB Large-Scale Social Picture Quality Database,

is very challenging, even for deep models.

Fig. 8: MOS (Z-score) histograms of three “in-the-wild” databases. Left: CLIVE

[5]. Middle: KoniIQ-10K [6]. Right: The LIVE-FB database introduced here.

4. Learning Blind Picture Quality Predictors

With the availability of the new dataset comprising pic-

tures and patches associated with human labels (Sec. 3),

we created a series of deep quality prediction models, we

collectively refer to as PaQ-2-PiQ, that exploit its unique

characteristics. We conducted four picture quality learning

experiments, evolving from a simple network into models

of increasing sophistication and perceptual relevance which

we describe next.

4.1. P2P­BM: A baseline picture­only model

To start with, we created a simple model that only pro-

cesses pictures and the associated human quality labels.

We will refer to this hereafter as the PaQ-2-PiQ Baseline

Model, or P2P-BM for short. The basic network that we

used is the well-documented pre-trained ResNet-18 [23],

which we modified (described next) and fine-tuned to con-

duct the quality prediction task.

Input image pre-processing: Because picture quality pre-

diction (whether by human or machine) is a psychometric

prediction, it is crucial to not modify the pictures being fed

into the network. While most visual recognition learners

augment input images by cropping, resizing, flipping, etc.,

doing the same when training a perceptual quality predictor

would be a psychometric error. Such input pre-processing

would result in perceptual quality scores being associated

with different pictures than they were recorded on.

The new dataset contains thousands of unique combina-

tions of picture sizes and aspect ratios (see Fig. 4). While

this is a core strength of the dataset and reflects its realism,

it also poses additional challenges when training deep net-

works. We attempted several ways of training the ResNet

on raw multi-sized pictures, but the training and validation

losses were not stable, because of the fixed sized pooling

and fully connected layers.

In order to tackle this aspect, we white padded each train-

ing picture to size 640× 640, centering the content in each

instance. Pictures having one or both dimensions larger

than 640 were moved to the test set. This approach has

the following advantages: (a) it allows supplying constant-

sized pictures to the network, causing it to stably converge

well, (b) it allows large batch sizes which improves train-

ing, (c) it agrees with the experiences of the picture raters,

since AMT renders white borders around pictures that do

not occupy the full webpage’s width.

Training setup: We divided the picture dataset (and asso-

ciated patches and scores) into training, validation and test-

ing sets. Of the collected 39, 810 pictures (and 119, 430
patches), we used about 75% for training (30K pictures,

along with their 90K patches), 19% for validation (7.7K

pictures, 23.1K patches), and the remaining for testing

(1.8K pictures, 5.4K patches). When testing on the valida-

tion set, the pictures fed to the trained networks were also

white bordered to size 640 × 640. As mentioned earlier,

the test set is entirely composed of pictures having at least

one linear dimension exceeding 640. Being able to perform

well on larger pictures of diverse aspect ratios was deemed

as an additional challenge to the models.

Implementation Details: We used the PyTorch implemen-

tation of ResNet-18 [66] pre-trained on ImageNet and re-

tained only the CNN backbone during fine-tuning. To this,

we added two pooling layers (adaptive average pooling and

adaptive max pooling), followed by two fully-connected

(FC) layers, such that the final FC layer outputs a single

score. We used a batch size of 120 and employed the MSE

loss when regressing the single output quality score. We

employed the Adam optimizer with β1 = .9 and β2 = .99, a
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Table 2: Patch quality predictions: Results on (a) the largest patches (40% of linear dimensions), (b) middle-size patches (30% of linear dimensions) and

(c) smallest patches (20% of linear dimensions) in the validation and test sets. Same protocol as used in Table 3.

(a) (b) (c)

Validation Test Validation Test Validation Test

Model SRCC LCC SRCC LCC SRCC LCC SRCC LCC SRCC LCC SRCC LCC

NIQE [15] 0.109 0.106 0.251 0.271 0.029 0.011 0.217 0.109 0.052 0.027 0.154 0.031

BRISQUE [14] 0.384 0.467 0.433 0.498 0.442 0.503 0.524 0.556 0.495 0.494 0.532 0.526

CNNIQA [65] 0.438 0.400 0.445 0.373 0.522 0.449 0.562 0.440 0.580 0.481 0.592 0.475

NIMA [46] 0.587 0.637 0.688 0.691 0.547 0.560 0.681 0.670 0.395 0.411 0.526 0.524

P2P-BM (Sec. 4.1) 0.561 0.617 0.662 0.701 0.577 0.603 0.685 0.704 0.563 0.541 0.633 0.630

P2P-RM (Sec. 4.2) 0.641 0.731 0.724 0.782 0.686 0.752 0.759 0.808 0.733 0.760 0.769 0.792

P2P-FM (Sec. 4.4) 0.658 0.744 0.726 0.783 0.698 0.762 0.770 0.819 0.756 0.783 0.786 0.808

weight decay of .01, and do a full fine-tuning for 10 epochs.

We followed a discriminative learning approach [67], using

a lower learning rate of 3e−4, but a higher learning rate of

3e−3 for the head layers. These settings apply to all the

models we describe in the following.

Evaluation setup: Although the P2P Baseline Model was

trained on whole pictures, we tested it on both pictures and

patches. For comparison with popular shallow methods, we

also trained and tested BRISQUE [14] and the “completely

blind” NIQE [15], which does not involve any training. We

reimplemented two deep picture quality methods - NIMA

[46] which uses a Mobilenet-v2 [68] (except we replaced

the output layer to regress a single quality score), and CN-

NIQA [65], following the details provided by the authors.

All of the compared models were trained over the same

number of epochs on the LIVE-FB training set. As is the

common practice in the field of picture quality assessment,

we report two metrics: Spearman Rank Correlation Coeffi-

cient (SRCC) and Linear Correlation Coefficient (LCC).

Results: From Table 3, the first thing to notice is the

level of performance attained by popular shallow mod-

els (NIQE [15] and BRISQUE [14]), which have the

same feature sets. The unsupervised NIQE algorithm per-

formed poorly, while BRISQUE did better, yet the re-

ported correlations are far below desired levels. Despite

being CNN-based, CNNIQA [65] performed worse than

BRISQUE [14]. Our Baseline Model outperformed most

methods and competed very well with NIMA [46]. The

other entries in the table (the RoIPool and Feedback Mod-

Table 3: Picture quality predictions: Performance of picture quality mod-

els on the full-size validation and test pictures in the LIVE-FB database. A

higher value indicates superior performance. NIQE is not trained.

Validation Set Testing Set

Model SRCC LCC SRCC LCC

NIQE [15] 0.094 0.131 0.211 0.288

BRISQUE [14] 0.303 0.341 0.288 0.373

CNNIQA [65] 0.259 0.242 0.266 0.223

NIMA [46] 0.521 0.609 0.583 0.639

P2P-BM (Sec. 4.1) 0.525 0.599 0.571 0.623

P2P-RM (Sec. 4.2) 0.541 0.618 0.576 0.655

P2P-FM (Sec. 4.4) 0.562 0.649 0.601 0.685

els) are described later.

Table 2 shows the performances of the same trained, un-

modified models on the associated picture patches of three

reduced sizes (40%, 30% and 20% of linear image dimen-

sions). The P2P Baseline Model maintained or slightly im-

proved performance across patch sizes, while NIQE con-

tinued to lag, despite the greater subject agreement on

reduced-size patches (Sec. 3.4). The performance of NIMA

suffered as patch size decreased. Conversely, BRISQUE

and CNNIQA improved as patch size decreased, although

they were trained on whole pictures.

4.2. P2P­RM: A picture + patches model

Next, we developed a new type of picture quality model

that leverages both picture and patch quality information.

Our “RoIPool Model”, or P2P-RM, is designed in the same

spirit as Fast/Faster R-CNN [24, 25], which was originally

designed for object detection. As in Fast-RCNN, our model

has an RoIPool layer which allows the flexibility to aggre-

gate at both patch and picture-sized scales. However, it dif-

fers from Fast-RCNN [24] in three important ways. First,

instead of regressing for detecting bounding boxes, we pre-

dict full-picture and patch quality. Second, Fast-RCNN

performs multi-task learning with two separate heads, one

for image classification and another for detection. Our

model instead shares a single head between patches and im-

ages. This was done to allow sharing of the “quality-aware”

weights between pictures and patches. Third, while both

heads of Fast-RCNN operate solely on features from RoI-

pooled region proposals, our model pools over the entire

picture to conduct global picture quality prediction.

Implementation details: As in Sec. 4.1, we added an

RoIPool layer followed by two fully-connected layers to the

pre-trained CNN backbone of ResNet-18. The output size

of the RoIPool unit was fixed at 2 × 2. All of the hyper-

parameters are the same as detailed in Sec. 4.1.

Train and test setup: Recall that we sampled 3 patches

per image and obtained picture and patch subjective scores

(Sec. 3). During training, the model receives the following

input: (a) image, (b) location coordinates (left, top,

right, bottom) of all 3 patches and, (c) ground truth
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Fig. 9: Illustrating the different deep quality prediction models we stud-

ied. (a) P2P Baseline Model: ResNet-18 with a modified head trained

on pictures (Sec. 4.1). (b) P2P RoIPool Model: trained on both picture

and patch qualities (Sec. 4.2). (c) P2P Feedback Model: where the lo-

cal quality predictions are fed back to improve global quality predictions

(Sec. 4.4).

quality scores of the image and patches. At test time, the

RoIPool Model can process both pictures and patches of any

size. Thus, it offers the advantage of predicting the qualities

of patches of any number and specified locations, in parallel

with the picture predictions.

Results: As shown in Table 3, the RoIPool Model yields

better results than the Baseline Model and NIMA on whole

pictures on both validation and test datasets. When the same

trained RoIPool Model was evaluated on patches, the per-

formance improvement was more significant. Unlike the

Baseline Model, the performance of the RoIPool Model in-

creased as the patch sizes were reduced. This suggests that:

(i) the RoIPool Model is more scalable than the Baseline

Model, hence better able to predict the qualities of pictures

of varying sizes, (ii) accurate patch predictions can help

guide global picture prediction, as we show in Sec. 4.4,

(iii) this novel picture quality prediction architecture allows

computing local quality maps, which we explore next.

4.3. Predicting perceptual quality maps

Next, we used the P2P RoIPool Model to produce patch-

wise quality maps on each image, since it is flexible enough

to make predictions on any specified number of patches.

This unique picture quality map predictor is the first deep

model that is learned from true human-generated picture

and patch labels, rather than from proxy labels delivered

by an algorithm, as in [45]. We generated picture quality

maps in the following manner: (a) we partitioned each pic-

ture into a 32 × 32 grid of non-overlapping blocks, thus

preserving aspect ratio (this step can be easily extended to

process denser, overlapping, or smaller blocks) (b) Each

block’s boundary coordinates were provided as input to

the RoIPool to guide learning of patch quality scores (c)

For visualization, we applied bi-linear interpolation to the

block predictions, and represented the results as magma

color maps. We α-blended the quality maps with the orig-

inal pictures (α = 0.8). From Fig. 10, we observe that

the RoIPool Model is able to accurately distinguish regions

that are blurred, washed-out, or poorly exposed, from high-

quality regions. Such spatially localized quality maps have

great potential to support applications like image compres-

sion, image retargeting, and so on.

4.4. P2P­FM: A local­to­global feedback model

As noted in Sec. 4.3, local patch quality has a significant

influence on global picture quality. Given this, how do we

effectively leverage local quality predictions to further im-

prove global picture quality? To address this question, we

developed a novel architecture referred to as the PaQ-2-PiQ

Feedback Model, or P2P-FM (Fig. 9(c)). In this framework,

the pre-trained backbone has two branches: (i) an RoIPool

layer followed by an FC-layer for local patch and image

quality prediction (Head0) and (ii) a global image pooling

layer. The predictions from Head0 are concatenated with

the pooled image features from the second branch and fed

to a new FC layer (Head1), which makes whole-picture

predictions.

Fig. 10: Spatial quality maps generated using P2P-RM (Sec. 4.2). Left:

Original Images. Right: Quality maps blended with the originals using

magma color.
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From Tables 2 and 3, we observe that the performance of

the P2P Feedback Model on both pictures and patches is im-

proved even further by the unique local-to-global feedback

architecture. This model consistently outperformed all shal-

low and deep quality models. The largest improvement is

made on the whole-picture predictions, which was the main

goal. The improvement afforded by the Feedback Model is

understandable from a perceptual perspective, since, while

quality perception by a human is a low-level task involv-

ing low-level processes, it also involves a viewer casting

their foveal gaze at discrete localized patches of the picture

being viewed. The overall picture quality is likely an inte-

grated combination of quality information gathered around

each fixation point, similar to the Feedback Model.

Failure cases: While our model attains good performance

on the new database, it does make errors in prediction.

Fig 11(a) shows a picture that was considered of a very poor

quality by the human raters (MOS=18), while the Feedback

Model predicted an overrated score of 57, which is moder-

ate. This may have been because the subjects were less for-

giving of the blurred moving object, which may have drawn

their attention. Conversely, Fig 11(b) is a picture that was

underrated by our model, receiving a predicted score of 68
against the subject rating of 82. It may have been that the

subjects discounted the haze in the background in favor of

the clearly visible waterplane. These cases further reinforce

the difficulty of perceptual picture quality prediction and

highlight the strength of our new dataset.

4.5. Cross­database comparisons

Finally, we evaluated the P2P Baseline (Sec. 4.1),

RoIPool (Sec. 4.2), and Feedback (Sec. 4.4) Models, and

other baselines – all trained on the proposed dataset – on

two other smaller “in-the-wild” databases CLIVE [5] and

KonIQ-10k [6] without any fine-tuning. From Table 4, we

may observe that all our three models, trained on the pro-

posed dataset, transfer well to other databases. The Base-

line, RoIPool, and Feedback Models all outperformed the

shallow and other deep models [46, 65] on both datasets.

This is a powerful result that highlights the representative-

ness of our new dataset and the efficacy of our models.

The best reported numbers on both databases [69] uses a

Predicted = 56.9, Ground-truth MOS = 17.9 Predicted = 68.1, Ground-truth MOS = 82.1

(a) (b)

Fig. 11: Failure cases: Examples where the Feedback Model’s predictions

differed the most from the ground truth predictions.

Table 4: Cross-database comparisons: Results when models trained on

the LIVE-FB database are applied on CLIVE [5] and KonIQ [6] without

fine-tuning.

Validation Set

CLIVE [5] KonIQ [6]

Model SRCC LCC SRCC LCC

NIQE [15] 0.503 0.528 0.534 0.509

BRISQUE [14] 0.660 0.621 0.641 0.596

CNNIQA [65] 0.559 0.459 0.596 0.403

NIMA [46] 0.712 0.705 0.666 0.721

P2P-BM (Sec. 4.1) 0.740 0.725 0.753 0.764

P2P-RM (Sec. 4.2) 0.762 0.775 0.776 0.794

P2P-FM (Sec. 4.4) 0.784 0.754 0.788 0.808

Siamese ResNet-34 backbone by training and testing on

the same datasets (along with 5 other datasets). While this

model reportedly attains 0.851 SRCC on CLIVE and 0.894
on KonIQ-10K, we achieved the above results by directly

applying pre-trained models, thereby not allowing them to

adapt to the distortions of the test data. When we also

trained and tested on these datasets, our picture-based P2P

Baseline Model also performed at a similar level, obtaining

an SRCC of 0.844 on CLIVE and 0.890 on KonIQ-10K.

5. Concluding Remarks

Problems involving perceptual picture quality prediction

are long-standing and fundamental to perception, optics,

image processing, and computational vision. Once viewed

as a basic vision science modelling problem to improve

on weak Mean Squared Error (MSE) based ways of as-

sessing television systems and cameras, the picture quality

problem has evolved into one that demands the large-scale

tools of data science and computational vision. Towards

this end we have created a database that is not only sub-

stantially larger and harder than previous ones, but contains

data that enables global-to-local and local-to-global quality

inferences. We also developed a model that produces lo-

cal quality inferences, uses them to compute picture quality

maps, and global image quality. We believe that the pro-

posed new dataset and models have the potential to enable

quality-based monitoring, ingestion, and control of billions

of social-media pictures and videos.

Finally, examples in Fig. 11 of competing local vs.

global quality percepts highlight the fundamental difficul-

ties of the problem of no-reference perceptual picture qual-

ity assessment: its subjective nature, the complicated in-

teractions between content and myriad possible combina-

tions of distortions, and the effects of perceptual phenomena

like masking. More complex architectures might mitigate

some of these issues. Additionally, mid-level semantic side-

information about objects in a picture (e.g., faces, animals,

babies) or scenes (e.g., outdoor vs. indoor) may also help

capture the role of higher-level processes in picture quality

assessment.
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