
 

Abstract 

 We propose a joint albedo–normal approach to non-line-

of-sight (NLOS) surface reconstruction using the directional 

light-cone transform (D-LCT). While current NLOS imaging 

methods reconstruct either the albedo or surface normals of 

the hidden scene, the two quantities provide complementary 

information of the scene, so an efficient method to estimate 

both simultaneously is desirable. We formulate the recovery 

of the two quantities as a vector deconvolution problem, and 

solve it using the Cholesky–Wiener decomposition. We show 

that surfaces fitted non-parametrically using our recovered 

normals are more accurate than those produced with NLOS 

surface reconstruction methods recently proposed, and are 

1,000× faster to compute than using inverse rendering. 

1. Introduction 

 Non-line-of-sight (NLOS) imaging deals with the capture 

and rendering of a scene that is not in the direct line of sight 

from the sensor. In recent years, NLOS imaging has emerged 

as an important vision problem, with applications in remote 

sensing, defense, robotic vision and autonomous driving. A 

common imaging setup is to “look around the corner” using 

the confocal configuration depicted in Figure 1. Typically, a 

light source, such as a laser beam, indirectly illuminates the 

scene by reflecting onto a surface that can be seen from both 

the sensor and the scene. The sensor then captures the scene 

reflections from the same surface location, and records them 

as a time-resolved sequence of two-dimensional images (or 

transients), from which one can computationally reconstruct 

the scene. Apart from transient-based imaging, other NLOS 

imaging modalities include those based on speckle [1–3], or  

incoherent intensity measurements [4, 5], as well as passive 

sensing [6–9] and acoustic imaging [10] techniques. 

 Here, we will consider exclusively NLOS imaging based 

on transients [11–19], from which the hidden NLOS scene is 

typically rendered as a spatial, three-dimensional volume of 

albedo (volumetric albedo), or as a set of object surfaces. In 

the volumetric albedo paradigm, the objective is to estimate 

albedo values for scene voxels [11–16], while in the surface 

reconstruction paradigm, one seeks more directly to recover 

object surfaces in the three-dimensional scene by estimating 

their surface normals [17–19]. While surface-based methods 

have the potential to reconstruct object geometry with finer 

detail than the albedo ones, current approaches to estimating 

surface normals are sensitive to noise, limited to scenes with 

simpler object geometry [18], sensitive to initialization [19] 

or entail a high computational complexity [13], all of which 

motivate our present work. Embedded in transients is a mix 

of surface normal and albedo information, so that explicitly 

accounting for the presence of both in transients can present 

new opportunities for recovering both quantities robustly. 
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 (a) Our albedo (b) Our normals (c) Fitted surface 

Figure 1. NLOS surface reconstruction via the D-LCT: Existing 

NLOS imaging methods typically recover only the albedo of the 

hidden scene. The Directional LCT recovers both the albedo (a) 

and the surface normals (b) of the scene, allowing us to reconstruct 

the hidden object surface with finer detail (c).  
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  In this work, we propose a joint albedo–normal approach 

to NLOS scene reconstruction based on the directional light-

cone transform (D-LCT), which is a vectorial generalization 

of the (scalar) light-cone transform (LCT) recently proposed 

by O’Toole et al. [12]. We formulate the recovery of normals 

and albedos as a vector deconvolution problem, and having 

found the two quantities, we fit a surface onto the recovered 

normals. By solving this vectorial deconvolution problem in 

the joint albedo–normal space, we recover the two quantities 

robustly and efficiently, allowing us to obtain a better surface 

reconstruction. In particular, our approach is many orders of 

magnitude faster than recent work [13], which can similarly 

estimate albedos and surface normals in a joint manner. Our 

proposed approach also works with existing confocal NLOS 

imaging hardware. We illustrate our overall method pipeline 

in Figure 2. To summarize, our main contributions are: 

• Directional LCT: We express non-line-of-sight surface 

normal recovery as a vector deconvolution problem on 

time-resolved measurements, via the Directional Light-

cone Transform (D-LCT). 

• Cholesky–Wiener Solver: We solve the above vector- 

deconvolution problem efficiently in the Fourier 

domain to recover the surface normals. 

• Surface Fitting: We reconstruct highly-accurate object 

surface descriptions by fitting surface parameters on the 

recovered normals.  

2. Related Work 

 Transient imaging was first conceptualized by Kirmani et 

al. [4], who believed that we can look around the corner by 

probing a wall with an ultrafast laser and detector. Later, the 

idea was demonstrated in practice by Velten et al. [11] using 

a femtosecond laser and a streak camera. Owing to the cost 

of such imaging hardware, researchers have also used other 

sensing technologies such as time-of-flight cameras [20, 21] 

or even regular consumer cameras [9, 22]. However, single-

photon avalanche diodes (SPADs) [23–27] have been shown 

to be particularly versatile for sensing, allowing us to image 

under ambient lighting, at fast rates [28], or at long distances 

[29]. Altmann et al. [30] provide a comprehensive review of 

SPADs as well as their applications. 

 Having captured the transient data, the NLOS scene can 

be reconstructed as a volume of albedo [11–16], or surfaces 

of objects [17–19]. Generally speaking, estimation of albedo 

can be posed as an inverse-filtering problem whereas that of 

surfaces is often posed as an inverse-rendering problem. We 

now provide a brief review of the two inverse approaches. 

2.1. Inverse Filtering Approaches 

 Velten et al. [11] are the first to pose the recovery of the 

albedo volume as an inverse problem. Relating the transient 

measurements to some NLOS scene using higher-order light 

transport, they formulated scene reconstruction as a (linear) 

least-squares problem and solved the resulting dense system 

of equations with filtered back-projection (FBP). While FBP 

produces promising results, it only approximately solves the 

original least-squares problem, and the reconstructed scenes 

can lack fine details. Since the computational complexity of 

FBP is still high at 𝑂(𝑉 5) in the number 𝑉 3 of voxels, later 

authors sought to refine FBP by improving the quality of the 

iterative solvers [16, 31] or their speed on GPUs [26]. 

 In the confocal case, O’Toole et al. [12] note that higher- 

order light transport can be expressed as a convolution with 

a change of variables. Their overall transformation, referred 

to as the light-cone transform (LCT), expresses the problem 

of Velten et al. [11] as a three-dimensional signal deblurring 

problem. In contrast to the FBP, the LCT solves the inverse 

problem exactly, and has a low computational complexity of 

𝑂(𝑉 3 log 𝑉 ) in the number 𝑉 3 of voxels, thanks to the use 

of the Fourier transform. Recently, Ahn et al. [32] proposed 

an approximate convolutional imaging transform similar to 

the LCT for the non-confocal setting. 

 In contrast with deconvolution, which we can ultimately 

relate to the diffusion equation, Lindell et al. [14] suggest to 

𝑦 

 (a) Transient volume 𝜏  (b) Normals 𝜐 from 𝜏   (c) Surface fitted onto 𝜐 (d) Ground-truth surface 

Figure 2. Method overview: A 1m × 1m × 2ns volume 𝜏  of transients (a) is filtered using the directional light-cone transform to obtain the 

surface normals (b). We integrate the surface normals to obtain the final reconstructed surface (c), which is similar to the ground-truth (d). 
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solve the transient imaging problem by modeling high-order 

light transport as wave propagation in the three-dimensional 

space, and solve the resulting inverse problem efficiently in 

the Fourier domain using “𝑓–𝑘” migration. This method also 

has a 𝑂(𝑉 3 log 𝑉 ) computational complexity due to the use 

of the Fourier transform. Methods based on diffractive wave 

propagation, e.g. phasor fields [33], aim further to overcome 

the limitations in the imaging model due to assumptions such 

as single scattering, and the lack of occlusions in the hidden 

scene. If the confocal setup is used, the phasor field method 

can be implemented in terms of the LCT for a 𝑂(𝑉 3 log 𝑉 ) 
computational complexity. 

 Whereas both the LCT and the 𝑓–𝑘 migration approaches 

are extremely efficient, they do not innately have the ability 

to estimate the surface normals of scene objects. To find the 

surface normals along with the albedo volume, Heide et al. 

[13] pose the transient imaging problem as an optimization 

in the albedo and the surface normal variables. Although the 

reported results are promising, one major limitation of such 

a method is the 𝑂(𝑉 5) complexity in both computation and 

memory, as well as the nonconvexity of the overall problem 

formulation. The D-LCT helps us to solve a similar albedo–

normal estimation problem with the same low complexity of 

the LCT and 𝑓–𝑘 migration. Given the shared Fourier roots 

across the LCT, 𝑓–𝑘 and phasor fields, it may be possible to 

apply our directional approach to 𝑓–𝑘 migration and phasor 

fields as well, although we do not attempt this in our work. 

2.2. Inverse Rendering Approaches 

 In contrast with the inverse filtering approaches, inverse 

rendering (analysis-by-synthesis) methods, e.g. [19], search 

for values of the NLOS surface parameters (e.g. BRDFs and 

surface normals) that would produce the observed transients 

if the NLOS surface were to be rendered. Since a full search 

in the surface parameter space would be intractable, inverse 

rendering is typically performed via differentiable rendering 

(i.e., an energy minimization in surface parameters). Surface 

parameters recoverable in this way include surface locations 

and normals [34], and illumination effects such as scattering 

[35–38] and interreflections [39, 40]. 

2.3. Surface Fitting Methods 

 Object surface can be fit on the obtained surface normals 

either parametrically or non-parametrically. Non-parametric 

fitting is commonly used for stereo-based 3D reconstruction 

[41–43] whereas parametric approaches are more suited for 

mesh refinement [44–47]. Surface fitting may be seen as an 

inverse problem where the goal is to interpolate a smooth 

manifold without violating the given normal conditions. We 

can naturally formulate surface fitting as diffusion processes 

or energy minimization methods, both of which seek to find 

the right trade-off between regularity (smoothness) and data 

fidelity (surface orthogonality to the given normals). We use 

the energy-minimization approach of [48] to fit a surface on 

our recovered normals.  

3. Mathematical Framework 

 After briefly reviewing the volumetric albedo model and 

discussing its limitations, we develop our directional albedo 

model, and propose efficient ways for solving the associated 

inverse problem of estimating the surface normals.  

3.1. The Volumetric Albedo Model 

 In transient imaging approaches, a time-resolved detector 

is used to measure the incident flux of photons as a function 

of emitted light impulses. Each of these time measurements 

records the impulse response of the NLOS scene at positions 

on a visible surface to produce a volume of transients. 

 Let us denote the three-dimensional scene coordinates by 

(𝑥, 𝑦, 𝑧), and assume the visible surface is positioned along 

𝑧 = 0. We denote by (𝑥′, 𝑦′, 𝑧 = 0) positions on this visible 

surface; see Figure 1. A common transient imaging model is 

the confocal volumetric albedo model 

 𝜏(𝑥′, 𝑦′, 𝑡) = ∭d𝑥 d𝑦 d𝑧  𝜌(𝑥, 𝑦, 𝑧)

𝑟4
Ω

 

(1) 

 ⋅ 𝛿(2√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 − 𝑡𝑐), 

in which 𝜌 denotes a three-dimensional albedo volume with 

finite support Ω, and 𝛿(⋅) relates the round-trip time of flight 

of light with twice the distance 𝑟 between the scene (𝑥, 𝑦, 𝑧) 
and the sensing (𝑥′, 𝑦′, 𝑧 = 0) locations. Here, 𝑐 ≈ 3 × 108 

denotes the speed of light while 1 𝑟4⁄ = (2 𝑡𝑐⁄ )4 models the 

radiometric fall-off due to distance. The scaling 1 𝑟4⁄  can be 

removed from (1) if we prescale 𝜏  by (2 𝑡𝑐⁄ )4 in advance. In 

the case of retro-reflective surfaces, a fall-off factor of 1/𝑟2 

is more commonly assumed. 

 To discretize model (1), we sample Ω using 𝑁 , 𝑁  and 𝑀  

points on the 𝑥-, 𝑦- and 𝑧-axes, respectively. Assuming that 

the transient 𝜏  has been pre-scaled by (2 𝑡𝑐⁄ )4, we can write 

the discretized model compactly using matrix notation as 

 𝛕 = 𝐊𝛒, (2) 

in which 𝛕, 𝛒 ∈ ℝ(2)  and 𝐊 is a binary matrix with values 

obtained by sampling 𝛿(⋅). Since 𝐊 is a low-pass operator of 

high condition number, the task of finding 𝛒 from given 𝛕 is 

an ill-posed problem [49]. Rather than compute the solution 

directly as 𝛒opt = 𝐊−1𝛕, we should find it as the solution of 

the regularized least-squares problem 

 minimize 𝑓(𝛒) = ‖𝐊𝛒 − 𝛕‖2
2 + 𝜆‖𝛒‖2

2, (3) 

in which 𝜆 represents the trade-off between data fidelity and 

regularity (smoothness) of the solution. 

 O’Toole et al. [12] note that problem (3) can be solved in 

an efficient manner with their so-called light-cone transform 

(LCT). If we denote their resampling operator by 𝐓, we can 
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express problem (3) equivalently in terms of the resampled 

albedo �̅� = 𝐓∗𝛒 and transients �̅� = 𝐓∗𝛕 as 

 minimize 𝑓(�̅�) = ‖𝐇�̅� − �̅�‖2
2 + 𝜆‖�̅�‖2

2, (4) 

in which 𝐇 = 𝐓∗𝐊𝐓 is a three-dimensional filter (that is, a 

linear space-invariant operator), whose impulse response is 

shown in Figure 3 (a). Section 1 of the supplement provides 

the details of the resampling operator 𝐓∗. 

 Since 𝐇 is a three-dimensional filter, we can compute the 

solution �̅�opt = (𝐇∗𝐇 + 𝜆𝐈)−1𝐇∗�̅� of (4) efficiently in the 

Fourier domain using Wiener deconvolution. The regularity 

parameter 𝜆 can be interpreted as the noise-to-signal ratio in 

this filtering context. The solution of our original problem 

(3) is obtained by resampling the deconvolved solution using 

the adjoint resampling operator, that is, 𝛒opt = 𝐓�̅�opt. 

3.2. The Directional Albedo Model 

 In the case of isotropic point emitters, (1) is an adequate 

model for higher-order light transport. However, for typical 

diffuse or Lambertian object surfaces, such a model ignores 

the radiometric fall-off due to Lambert’s cosine law, i.e., the 

fall-off due to the angle between the incident light rays and 

the surface normals; see [50]. Incorporating cosine terms in 

(1) not only yields a more accurate forward model, but more 

importantly, it enables recovery of surface normals from the 

transients via the inverse model. 

 Denoting the two spatial coordinates by 𝐬 = (𝑥, 𝑦, 𝑧) and 

𝐬′ = (𝑥′, 𝑦′, 𝑧 = 0) for brevity, we update model (1) as  

 𝜏(𝑥′, 𝑦′, 𝑡) = ∭ d𝐬  ⟨𝜌(𝐬) 𝐧(𝐬)
𝑟4

,
𝐬′ − 𝐬

‖𝐬′ − 𝐬‖⟩
Ω

   
(5) 

 ⋅ 𝛿(2√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 − 𝑡𝑐), 

in which 𝐧(𝐬) = (𝑛-, 𝑛., 𝑛/)(𝐬) ∈ ℝ3 is the surface normal 

at 𝐬. Our model can be seen as a first-order approximation of 

the physically based one in [19], allowing us to reformulate 

normal estimation as a linear least-squares problem. Model 

(5) is also identical to the one in [13] save for the absence of 

occlusion terms. Section 3 of our paper supplement derives 

the relationship between (5) and the physical one. Assuming 

further that the projections 

 ⟨𝐧(𝐬), 𝐬′ − 𝐬
‖𝐬′ − 𝐬‖⟩ = cos 𝜃 = 1, ∀ 𝐬′, 𝐬, (6) 

model (5) reduces to the volumetric albedo model (1). 

 Note in (5) that albedo 𝜌(𝐬) ∈ ℝ is a scalar quantity, and 

surface normal 𝐧(𝐬) ∈ ℝ3 is a unit-norm vector. Rather than 

represent the two quantities using separate variables, we can 

combine them into a single directional-albedo vector 

 𝛖(𝐬) = (𝜐-, 𝜐., 𝜐/)(𝐬) = 𝜌(𝐬) 𝐧(𝐬) ∈ ℝ3, (7) 

such that the direction and the magnitude of 𝛖(𝐬) encode its 

surface normal and albedo, respectively. Substituting (7) in 

model (5) and using 𝑟 = ‖𝐬′ − 𝐬‖, we obtain the directional 

albedo model 

 𝜏(𝑥′, 𝑦′, 𝑡) = ∭ d𝐬 〈𝛖(𝐬), 𝐬′ − 𝐬〉
𝑟5

Ω

   

(8) 

 ⋅ 𝛿(2√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 − 𝑡𝑐), 

relating the directional albedo 𝛖 to the transients 𝜏 . Figure 4 

illustrates and summarizes the directional albedo model. 

 (a) LCT filter kernel  (b) Directional LCT filter kernels (𝑥-, 𝑦- and 𝑧-directions) 

Figure 3. Constructing the D-LCT filter kernels: The light-cone transform produces a three-dimensional, shift-invariant kernel (a). The D-

LCT (b) consists of three shift-invariant kernels that relate directional albedo (albedo + normal) to the transients. The 𝑧-directional D-LCT 

kernel (b, far right) is identical to the LCT kernel (a). 

𝑥 𝑦 

𝑧 

𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 

Figure 4. Directional albedo model: At location 𝐬 = (𝑥, 𝑦, 𝑧) on 

the object, directional albedo 𝛖(𝐬) has direction and magnitude of 

the normal 𝐧(𝐬) and the albedo 𝜌(𝐬), respectively. Contribution of 

albedo 𝜌(𝐬) to the surface at 𝐬′ = (𝑥′, 𝑦′, 𝑧 = 0) decreases, in the 

first order, as the cosine of the angle 𝜃 between 𝛖(𝐬) and 𝐬′ − 𝐬. 
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 To discretize our directional albedo model, we sample Ω 

similarly to (2). This produces the system of linear equations 

in our directional albedos 𝛖 = (𝛖-
∗ , 𝛖.

∗ , 𝛖/
∗)∗: 

 𝛕 = 𝐊𝐒𝛖 (9) 

in which 𝐊 is the matrix from (2), and we obtain the entries 

of 𝐒 = (𝐒-, 𝐒., 𝐒/) by sampling (𝐬′ − 𝐬) on Ω. Recovering 

the directional albedo 𝛖 given the transients 𝛕 is ill-posed in 

that it requires us to find the values of 3𝑁2𝑀  variables with 

only 𝑁2𝑀  equations. Such a rank-deficient problem can be 

solved by formulating (9) as the least-squares problem 

 minimize 𝑓(𝛖) = ‖𝐊𝐒𝛖 − 𝛕‖2
2 + 𝜆‖𝛖‖2

2 (10) 

similarly to the regularized approach in (3). While we could 

alternatively optimize the TV-L1 version of problem (10) to 

obtain a better solution, we focus on our L2 variant for now 

to solve (10) efficiently as a vector deconvolution problem. 

3.3. Directional Light-cone Transform 

 Whereas our least-squares optimization problem (10) has 

the simple, closed-form solution 

 𝛖opt = (𝐒∗𝐊∗𝐊𝐒 + 𝜆𝐈)−1𝐒∗𝐊∗𝛕, (11) 

this solution is too expensive to compute naively for typical 

problems with 𝑉 3 = 𝑁2𝑀 ≈ 108  voxels. Computing 𝛖opt 

directly with numerical methods such as Cholesky and LDL 

decompositions would incur a 𝑂(𝑉 9) cost whereas iterative 

ones (e.g. conjugate gradients), a 𝑂(𝑉 6) cost. These general 

methods are therefore unsuited to practical problem sizes. 

  To solve problem (10) efficiently, we generalize the LCT 

technique used in (4) to the vectorial problem. We can write 

problem (10) equivalently as 

 minimize 𝑓(�̅̅̅̅�) = ∥𝐇(𝐒-, 𝐒., 𝐈)�̅̅̅̅� − �̅�∥2
2 + 𝜆‖�̅̅̅̅�‖2

2, (12) 

in which 

 ⎣⎢
⎡�̅̅̅̅�-�̅̅̅̅�.�̅̅̅̅�/⎦⎥

⎤
⏟

2̅̅̅̅

=

⎣⎢
⎡𝐓-

∗   

 𝐓.
∗  

  𝐓/
∗⎦⎥
⎤

⏟⏟⏟⏟⏟
6

"

∗

⎣⎢
⎡𝛖-𝛖.𝛖/⎦⎥

⎤
⏟

2

 
(13) 

is the resampled variable, and �̅� = 𝐓∗𝛕 as before. From the 

solution �̅̅̅̅�opt of (12), we recover the solution of the original 

problem (10) as 𝛖opt = 𝐓7 �̅̅̅̅�opt. Section 2 of the supplement 

derives the resampler 𝐓7
∗  and its relationship to 𝐓∗ in (4). 

 Note in (12) that 𝐒-, 𝐒. and 𝐈 are shift-invariant, so they 

can be composed with the light-cone filter 𝐇 to produce the 

directional light-cone filters 𝐇𝐒-, 𝐇𝐒. and 𝐇𝐈. Their filter 

kernels are shown in Figure 3 (b). Since all the operators in 

problem (12) are filters, one can interpret (12) as a vectorial 

deconvolution problem, with a fixed noise-to-signal ratio 𝜆 

across the vector frequencies. One can solve (12) efficiently 

using our vector extension of Wiener deconvolution. 

3.4. Cholesky–Wiener Deconvolution 

 Denoting the matrices in (12) as 𝐇- = 𝐇𝐒-, 𝐇. = 𝐇𝐒. 

and 𝐇/ = 𝐇𝐈 for simplicity, we write the normal equations 

S
p
h
er

es
 

      

B
u
n
n
y
 

      

S
er

ap
is

 

      

 (a) Hidden object (b) LCT volume (c) D-LCT normal volumes (𝑥-, 𝑦- and 𝑧-components) (d) D-LCT surface 

Figure 5. Transient imaging using the D-LCT:  D-LCT (c) captures fine details of object surfaces (a) not captured by the LCT (b). Volumes 

(b)–(c) are rendered using maximum intensity projection. D-LCT surfaces (d) are fit directly onto the D-LCT normals (c). For (d), we used 

known background masks to first remove the background points. All hidden objects have diffuse surfaces. 
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associated with the least-squares problem (12) as 

 ⎣
⎢⎡

𝐇-
2 + 𝜆𝐈 𝐇-

∗ 𝐇. 𝐇-
∗ 𝐇/

𝐇.
∗ 𝐇- 𝐇.

2 + 𝜆𝐈 𝐇.
∗ 𝐇/

𝐇/
∗𝐇- 𝐇/

∗𝐇. 𝐇/
2 + 𝜆𝐈⎦

⎥⎤
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

8∗8+9:

⎣
⎢⎡

�̅̅̅̅�-

�̅̅̅̅�.

�̅̅̅̅�/⎦
⎥⎤

⏟
2̅̅̅̅

=

⎣
⎢⎡

𝐇-
∗ �̅�

𝐇.
∗ �̅�

𝐇/
∗�̅�⎦

⎥⎤
⏟

8∗ ;̅̅̅̅

 
(14) 

that is, a 3 × 3 block system of equations, where each block 

element is a filter or a filter signal. The structure of (14) thus 

suggests that we solve the 3 × 3 system using the Cholesky 

decomposition, performing the two associated forward- and 

back-substitutions using filtering operations. The right-hand 

side vector 𝐇∗�̅� can be computed in the Fourier domain, as 

each 𝐇-
∗ , 𝐇.

∗  and 𝐇/
∗  is a filter. 

 Using the LDL variant of the Cholesky factorization, we 

factor the matrix 𝐀 = 𝐇∗𝐇 + 𝜆𝐈 as 𝐀 = 𝐋𝐃𝐋∗, where 

 𝐋 =

⎣⎢
⎡𝐈  

𝐋.- 𝐈  

𝐋/- 𝐋/. 𝐈⎦⎥
⎤ , 𝐃 =

⎣⎢
⎡𝐃--   

 𝐃..  

  𝐃//⎦⎥
⎤, (15) 

and the elements of 𝐋 and 𝐃 are given by 

 𝐃<< = 𝐇<
∗𝐇< + 𝜆𝐈 − ∑ 𝐋<=𝐃==𝐋<=

∗<−1

==1
  

(16) 
 𝐋><  = 𝐃<<

−1(𝐇>
∗𝐇< − ∑ 𝐋<=𝐃==𝐋<=

∗<−1

==1
),  

using the convention 1 = 𝑥, 2 = 𝑦, 3 = 𝑧 in both sums. We 

can readily verify the dynamic programming procedure (16) 

by applying the elimination steps of the Cholesky algorithm 

[51] to the block elements of matrix 𝐀. 

 Finally, the triangularized system 𝐋𝐃𝐋∗𝛖 = 𝐇∗𝛕 can be 

solved using forward- and back-substitutions 

 𝛎 = 𝐋−1𝐇∗𝛕,  𝛖 = 𝐋−∗𝐃−1𝛎, (17) 

both of which can be performed as a series of filtering steps 

in the Fourier domain. For example, the block-elements of 𝛎 

can be obtained using  𝛎1 = 𝐇-
∗ �̅�, 𝛎2 = 𝐇.

∗ �̅� − 𝐋.-𝛎1 and 

𝛎3 = 𝐇.
∗ �̅� − 𝐋/-𝛎1 − 𝐋/.𝛎2. Observe here 𝐋.-𝛎1, 𝐋/-𝛎1 

and 𝐋/.𝛎2 may be computed in the Fourier domain, as each 

matrix 𝐋.-, 𝐋/- and 𝐋/. represents a 3D filter. We compute 

the elements of 𝛖 can be computed in a similar manner. 

 For large problems where storing the Fourier coefficients 

of the block elements of 𝐋 and 𝐃 is not feasible, we can use 

an iterative solver like conjugate gradients, and compute the 

forward mapping 𝐱 ↦ (𝐇∗𝐇 + 𝜆𝐈)𝐱 using, again, filtering 

operations in the Fourier domain. 

3.5. Surface Reconstruction 

 Having obtained the field 𝛖 of directional albedo, we use 

the method of [52] to fit a nonparametric surface. Fitting the 

surface amounts to recovering an indicator function 𝝌 of the 

scene object so that the gradient of 𝝌 equals 𝛖. Expressed as 

an optimization problem, we have 

 minimize 𝑓(𝝌) = ‖𝐆∗𝐆𝝌 − 𝐆∗𝛖‖2
2 + 𝜆‖𝝌‖2

2, (18) 

in which 𝐆 denotes a discretization of the three-dimensional 

gradient operator. In practice, however, the zero-level-set of 

the solution 𝝌opt of (18) may deviate from the surface of the 

true scene object due to the noise in 𝛖 and the discretization 

Figure 7. Impact of regularity parameter on depth and surface normals: The D-LCT produces accurate depth (left plots) and normals 

(right plots) over a wide range of values of 𝜆, demonstrating its usefulness for cases where the SNR is not known exactly. The LCT normal 

errors are for the normal vectors obtained using [53] with the LCT depth as the input. Points of minimum error marked with dots. 
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Figure 6. Accuracy of D-LCT and LCT: The LCT and D-LCT depths (left plots) have the RMSE of 5.97 and 4.96cm, and the MAE of 1.87 

and 1.59cm, respectively. The LCT and D-LCT surface normals (right plots) have end-point RMSE 0.91 and 0.52cm, and MAE of 0.61 and 

0.38cm, respectively. The LCT does not natively produce surface normals, so we obtain them using [54] with the LCT depth as the input. 
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of the problem. To mitigate such issues, we follow again the 

approach of [52] to extract an isosurface of 𝝌opt instead. 

4. Experimental Results 

 Since our directional LCT approach recovers both albedo 

and surface normals, it can be used in the traditional context 

of two-dimensional NLOS imaging as well as to reconstruct 

surfaces in three dimensions. We demonstrate our approach 

for both use-cases, also comparing it to methods specialized 

to each one. We use ZNLOS [53] and Stanford [14] datasets 

for experimental validation. The ZNLOS dataset consists of 

multiple-bounce transients of synthetic objects 0.50m away 

from a 1m × 1m visible surface. The dataset has a temporal 

resolution of 512 pixels with bins of width 10ps, and spatial 

resolutions of 256 × 256 pixels. The Stanford set consists of 

transients measured on a 2m × 2m surface of natural hidden 

objects 1m away, with ambient light and noise. This dataset 

has a spatial resolution of 512 × 512 or 64 × 64 pixels, and 

a temporal resolution of 512 with bins of width 32ps. 

4.1. NLOS Imaging Experiments 

Directional Transient Imaging. Figure 5 shows the normal 

images obtained using the D-LCT. These images contain the 

fine variations in object surfaces such the smooth surface of 

the spheres and the fur of the bunny. These details would be 

difficult to recover post-hoc from albedo-only images using 

detail-enhancement techniques, for example. The results for 

the LCT resemble the 𝑧-component of the D-LCT ones with 

subtle differences that can be expected from the simplifying 

assumption (6). We render directional albedo volumes using 

maximum intensity projection: for each point (𝑥′, 𝑦′, 𝑧 = 0) 
on the image plane, we find along the 𝑧-axis the directional-

albedo with maximum 𝑧-component values. We reconstruct 

the surfaces by first masking out the background pixels with 

ground-truth masks, and performing Poisson reconstruction 

on the foreground points and the directional albedo. We use 

𝜆 = 23 for all scenes.  

Accuracy of Depth and Surface Normals. Figure 6 shows 

the error maps for the recovered depth and surface normals 

of the “Bunny”. The recovered LCT and D-LCT depth maps 

have root-mean-squared errors (RMSE) 5.97cm and 4.96cm 
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 (a) Fermat flow (b) Tsai et al. [19] (c) D-LCT normal volumes (𝑥-, 𝑦- and 𝑧-components) (d) D-LCT surface 

Figure 8. Surface reconstruction using captured data: SU has a spatial resolution of 64 × 64 pixels (1min exposure), and the remaining 

scenes, 512 × 512 (180min exposure). We use 𝜆 = 20, 23 and 23 for SU, Discobolus and Dragon, respectively. Insets in the left-most column 

show the scene objects. Fermat flow [18] and the method of Tsai et al. [19] only partially reconstruct the surfaces. 

 Methods 64 × 64 128 × 128 256 × 256 512 × 512 

A
lb

ed
o
 FBP 0.6s 2.0s 8.3s 32.4s 

Phasor Fields 0.9s 3.1s 12.6s 49.3s 

𝑓–𝑘 migration 1.5s 6.6s 20.9s 72.6s 

LCT 0.5s 2.4s 8.5s 30.4s 

N
o
rm

al
s Fermat flow 1.6s 5.6s 21.3s 86.5s 

Heide et al. >10h  N/A  N/A  N/A 

Tsai et al. 7h  N/A  N/A  N/A 

D-LCT (Ours) 5.2s 21.9s 89.5s 370.0s 

Table 1. Running times of various methods: Measured using an 

8-core, 2.70GHz CPU for the Bunny, all at temporal resolutions of 

512 pixels. The methods of Heide et al. [13] and Tsai et al. [19] do 

not scale to resolutions higher than 64 × 64.  
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and the mean absolute errors (MAE) of 1.87cm and 1.59cm 

respectively, across foreground pixels. The surface normals 

estimated using the LCT and the D-LCT have the end-point 

RMSE of 0.91cm and 0.52cm, MAE of 0.61cm and 0.38cm 

respectively. Note, the LCT does not, by itself, produce any 

surface normals, so we obtain the normals using the method 

[54] with the LCT depth as the input (we use 6 neighboring 

points to produce the optimum results). In Figure 7, we plot 

the influence of regularization parameter 𝜆 on the depth and 

surface normal errors, illustrating that the D-LCT performs 

stable over a wide range of 𝜆. This can be useful in practical 

imaging scenarios in which the signal-to-noise ratio 𝜆 of the 

captured transient data is not known exactly. 

Surface Reconstruction with Captured Data. To show the 

robustness of the D-LCT against different types of noise that 

are present in real capture environments, we perform surface 

reconstruction with the Stanford dataset. Figure 8 shows the 

directional albedo and surfaces of recovered SU, Discobolus 

and the Dragon objects. We reconstruct the surfaces by first 

thresholding the norm of directional albedo vectors to mask 

out the background points, then performing Poisson surface 

reconstructions on the remaining foreground points. We use 

𝜆 = 20, 23 and 23 for the three scenes. In the SU scene, the 

normal volumes reveal the orientation of the letters S and U 

(S points to the upper-left, U points to the upper-right). The 

left part of U is partially occluded, so the different methods 

produce different maximal intensity projections along the 𝑧-

axis. For these reconstruction tasks with noisy transients, the 

method of Tsai et al. [19] and Fermat flow [18] reconstruct 

only the rough shapes of the objects. We initialize [19] using 

the LCT, but other initializations are also possible. We used 

the --density flag in the Poisson reconstruction software 

[48] to avoid the fusion of nearby surface segments. 

Computational Efficiency. While the D-LCT has the same 

computational complexity as the LCT, we perform 9× more 

computations per voxel due to the outer Cholesky factoring 

required. The D-LCT is 1000× faster compared with similar 

methods that are capable of recovering the surface normals 

of objects with a complex geometry. While Fermat flow [18] 

is 4× faster than our approach, it is applicable mostly to the 

reconstruction of surfaces of objects with simpler geometry 

such as a bowl or a sphere (see Section 3 of the supplement 

for the reconstructions). Table 1 provides the running times 

of different methods on an 8-core, 2.70GHz CPU. 

5. Discussion 

 Our work proposes an efficient method to jointly estimate 

the albedo and the surface normals of NLOS objects using a 

deconvolution approach. Our Directional LCT has the same 

low computational complexity as albedo-only methods, e.g. 

𝑓–𝑘 migration and the LCT, but is capable of reconstructing 

high-quality surfaces.  

Limitations. Our forward model (8) assumes the scene has 

mostly non-specular surfaces. Fortunately, our least-squares 

inverse method provides some degree of robustness against 

specularities by treating them as outliers (see e.g. the Dragon 

reconstruction, Figure 8). Similarly, we treat occlusions in 

the scene as outliers to our least-squares formulation. Using 

an 𝐿1-based data fidelity term instead of our 𝐿2-based one 

(10) could further improve the robustness of our method, at 

the cost of increased computation times. The 𝐿1-based data-

term also enforces sparsity, which may remove the need for 

masking out background pixels. 

 Our forward model also linearizes the cosine fall-off due 

to the interaction between surface normals and the two light 

rays (incident and reflected). Our linearized fall-off model is 

an under-estimator of the true fall-off, and surface locations 

that make larger angles on average with the visible wall are 

estimated to be at positions closer to the visible wall, where 

the fall-off is indeed less. This causes rounder surfaces to be 

estimated slightly flatter than they should be (see the arms of 

the Discobolus, Figure 8), but not as flat as the estimates of 

the LCT, which assumes zero cosine fall-off. This issue can 

be overcome by iteratively reweighting the first term of (10) 

using the ratio of the true fall-off to the linear one, based on  

the normals last estimated; see Section 3 of the supplement. 

Future Work. To improve reconstruction times, we plan to 

implement the D-LCT procedure on a GPU. Similarly to the 

original LCT, the D-LCT is highly parallelizable and can be 

significantly accelerated using a GPU implementation. Like 

the GPU implementation of the LCT, we expect GPU-based 

D-LCT to require milliseconds of processing time for lower 

spatial resolutions, e.g. 32 × 32 or 64 × 64 pixels. We plan 

also to consider 𝐿1 or TV regularizers to better preserve the 

discontinuities in the reconstructed surfaces. 

6. Conclusion 

 NLOS imaging approaches have typically been classified 

as recovering either the albedo or the surface normals of the 

hidden objects. In this work, we showed that it is possible to 

recover both quantities jointly. In closing, reconstruction of 

surfaces of hidden 3D objects can be regarded as the next 

frontier for NLOS imaging because it allows us to represent 

better the 3D environment we ultimately live in. We believe 

the D-LCT is a big step towards pushing beyond volumetric 

albedo approaches, providing a practical way to estimate the 

hidden surface normals needed for surface reconstruction. 

Acknowledgements. We thank M. J. Galindo for help with 

dataset [53] and I. Gkioulekas for the code of [18, 19]. D.L. 

was supported by a Stanford Graduate Fellowship. G.W. was 

supported by an NSF CAREER Award (IIS 1553333), a 

Sloan Fellowship, by the KAUST Office of Sponsored Re-

search through the Visual Computing Center CCF grant, the 

DARPA REVEAL program, and a PECASE by the ARL. 

1414



 

References 

 [1] Jacopo Bertolotti, Elbert G. van Putten, Christian Blum, Ad 

Lagendijk, Willem L. Vos, and Allard P. Mosk. Non-invasive 

imaging through opaque scattering layers. Nature, 

491(7423):232–234, 2012. 

 [2] Ori Katz, Eran Small, and Yaron Silberberg. Looking around 

corners and through thin turbid layers in real time with 

scattered incoherent light. Nat. Photonics, 6(8):549–553, 

2012. 

 [3] Brandon M. Smith, Matthew O’Toole, and Mohit Gupta. 

Tracking multiple objects outside the line of sight using 

speckle imaging. In CVPR, 2018. 

 [4] Ahmed Kirmani, Tyler Hutchison, James Davis, and Ramesh 

Raskar. Looking around the corner using transient imaging. 

In ICCV, 2009. 

 [5] Christos Thrampoulidis et al. Exploiting occlusion in non-

line-of-sight active imaging. IEEE Trans. Comput. Imaging, 

4(3):419–431, 2018. 

 [6] Katherine L. Bouman et al. Turning corners into cameras: 

Principles and methods. In ICCV, 2017. 

 [7] Manel Baradad et al. Inferring light fields from shadows. In 

CVPR, 2018. 

 [8] Mahed Batarseh, Sergey Sukhov, Zhean Shen, Heath Gemar, 

Roxana Rezvani, and Aristide Dogariu. Passive sensing 

around the corner using spatial coherence. Nat. Commun., 

9(1):1–6, 2018. 

 [9] Charles Saunders, John Murray-Bruce, and Vivek K. Goyal. 

Computational periscopy with an ordinary digital camera. 

Nature, 565(7740):472–475, 2019. 

 [10] David B. Lindell, Gordon Wetzstein, and Vladlen Koltun. 

Acoustic non-line-of-sight imaging. In CVPR, 2019. 

 [11] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok 

Veeraraghavan, Moungi G. Bawendi, and Ramesh Raskar. 

Recovering three-dimensional shape around a corner using 

ultrafast time-of-flight imaging. Nat. Commun., 3:745, 2012. 

 [12] Matthew O’Toole, David B. Lindell, and Gordon Wetzstein. 

Confocal non-line-of-sight imaging based on the light-cone 

transform. Nature, 555(7696):338–341, 2018. 

 [13] Felix Heide, Matthew O’Toole, Kai Zang, David B. Lindell, 

Steven Diamond, and Gordon Wetzstein. Non-line-of-sight 

imaging with partial occluders and surface normals. ACM 

Trans Graph, 38(3):22:1–22:10, 2019. 

 [14] David B. Lindell, Gordon Wetzstein, and Matthew O’Toole. 

Wave-based non-line-of-sight imaging using fast f-k 

migration. ACM Trans. Graph. TOG, 38(4):116, 2019. 

 [15] Christopher A. Metzler, David B. Lindell, and Gordon 

Wetzstein. Keyhole imaging: non-line-of-sight imaging and 

tracking of moving objects along a single optical path at long 

standoff distances. ArXiv191206727 Cs Eess, 2019. 

 [16] Marco La Manna, Fiona Kine, Eric Breitbach, Jonathan 

Jackson, Talha Sultan, and Andreas Velten. Error 

backprojection algorithms for non-line-of-sight imaging. 

IEEE Trans. Pattern Anal. Mach. Intell., 41(7):1615–1626, 

2019. 

 [17] Chia-Yin Tsai, Kiriakos N. Kutulakos, Srinivasa G. 

Narasimhan, and Ashwin C. Sankaranarayanan. The 

geometry of first-returning photons for non-line-of-sight 

imaging. In CVPR, 2017. 

 [18] Shumian Xin, Sotiris Nousias, Kiriakos N. Kutulakos, Aswin 

C. Sankaranarayanan, Srinivasa G. Narasimhan, and Ioannis 

Gkioulekas. A theory of Fermat paths for non-line-of-sight 

shape reconstruction. In CVPR, 2019. 

 [19] Chia-Yin Tsai, Aswin C. Sankaranarayanan, and Ioannis 

Gkioulekas. Beyond volumetric albedo—a surface 

optimization framework for non-line-of-sight imaging. In 

CVPR, 2019. 

 [20] Felix Heide, Lei Xiao, Wolfgang Heidrich, and Matthias B. 

Hullin. Diffuse mirrors: 3D reconstruction from diffuse 

indirect illumination using inexpensive time-of-flight 

sensors. In CVPR, 2014. 

 [21] Achuta Kadambi, Hang Zhao, Boxin Shi, and Ramesh 

Raskar. Occluded imaging with time-of-flight sensors. ACM 

Trans Graph, 35(2):15:1–15:12, 2016. 

 [22] Jonathan Klein, Christoph Peters, Jaime Martín, Martin 

Laurenzis, and Matthias B. Hullin. Tracking objects outside 

the line of sight using 2D intensity images. Sci. Rep., 

6:32491, 2016. 

 [23] Mauro Buttafava, Jessica Zeman, Alberto Tosi, Kevin 

Eliceiri, and Andreas Velten. Non-line-of-sight imaging 

using a time-gated single photon avalanche diode. Opt. 

Express, 23(16):20997–21011, 2015. 

 [24] Genevieve Gariepy et al. Single-photon sensitive light-in-

fight imaging. Nat. Commun., 6:6021, 2015. 

 [25] Feihu Xu et al. Revealing hidden scenes by photon-efficient 

occlusion-based opportunistic active imaging. Opt. Express, 

26(8):9945–9962, 2018. 

 [26] Victor Arellano, Diego Gutierrez, and Adrian Jarabo. Fast 

back-projection for non-line of sight reconstruction. Opt. 

Express, 25(10):11574–11583, 2017. 

 [27] Matthew O’Toole, Felix Heide, David B. Lindell, Kai Zang, 

Steven Diamond, and Gordon Wetzstein. Reconstructing 

Transient Images From Single-Photon Sensors. In CVPR, 

2017. 

 [28] Matthew O’Toole, David B. Lindell, and Gordon Wetzstein. 

Real-time Non-line-of-sight Imaging. In ACM SIGGRAPH 

2018 Emerging Technologies, 2018. 

 [29] Susan Chan, Ryan E. Warburton, Genevieve Gariepy, 

Jonathan Leach, and Daniele Faccio. Non-line-of-sight 

tracking of people at long range. Opt. Express, 25(9):10109–

10117, 2017. 

 [30] Yoann Altmann, Stephen McLaughlin, Miles J. Padgett, 

Vivek K. Goyal, Alfred O. Hero, and Daniele Faccio. 

Quantum-inspired computational imaging. Science, 

361(6403):eaat2298, 2018. 

 [31] Otkrist Gupta, Thomas Willwacher, Andreas Velten, Ashok 

Veeraraghavan, and Ramesh Raskar. Reconstruction of 

hidden 3D shapes using diffuse reflections. Opt. Express, 

20(17):19096–19108, 2012. 

 [32] Byeongjoo Ahn, Akshat Dave, Ashok Veeraraghavan, 

Ioannis Gkioulekas, and Aswin C. Sankaranarayanan. 

Convolutional Approximations to the General Non-Line-of-

Sight Imaging Operator. In ICCV, 2019. 

 [33] Xiaochun Liu et al. Non-line-of-sight imaging using phasor-

field virtual wave optics. Nature, :1–4, 2019. 

 [34] Matthew M. Loper and Michael J. Black. OpenDR: An 

1415



 

Approximate Differentiable Renderer. In ECCV, 2014. 

 [35] Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita 

Bala, and Steve Marschner. Matching real fabrics with micro-

appearance models. ACM Trans Graph, 35(1):1:1–1:26, 

2015. 

 [36] Ioannis Gkioulekas, Anat Levin, and Todd Zickler. An 

evaluation of computational imaging techniques for 

heterogeneous inverse scattering. In ECCV, 2016. 

 [37] Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi 

Ramamoorthi. Downsampling scattering parameters for 

rendering anisotropic media. ACM Trans Graph, 

35(6):166:1–166:11, 2016. 

 [38] Adam Geva, Yoav Y. Schechner, Yonatan Chernyak, and 

Rajiv Gupta. X-ray computed tomography through scatter. In 

ECCV, 2018. 

 [39] Stephen Robert Marschner. Inverse Rendering for Computer 

Graphics, PhD Thesis, Cornell University, 1998. 

 [40] Gustavo Patow and Xavier Pueyo. A survey of inverse 

surface design from light transport behavior specification. 

Comput. Graph. Forum, 22:663–687, 2003. 

 [41] Ben Appleton and Hugues Talbot. Globally minimal surfaces 

by continuous maximal flows. IEEE Trans. Pattern Anal. 

Mach. Intell., 28(1):106–118, 2006. 

 [42] Olivier Faugeras and Renaud Keriven. Complete dense 

stereovision using level set methods. In ECCV, 1998. 

 [43] Amaël Delaunoy and Emmanuel Prados. Gradient flows for 

optimizing triangular mesh-based surfaces: applications to 3d 

reconstruction problems dealing with visibility. Int. J. 

Comput. Vis., 95(2):100–123, 2011. 

 [44] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. 

Barr. Implicit fairing of irregular meshes using diffusion and 

curvature flow. In SIGGRAPH, 1999. 

 [45] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. 

Barr. Discrete Differential-Geometry Operators for 

Triangulated 2-Manifolds. In Visualization and Mathematics 

III, 2003. 

 [46] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, 

and H.-P. Seidel. Laplacian Surface Editing. In Proceedings 

of the 2004 Eurographics/ACM SIGGRAPH Symposium on 

Geometry Processing, 2004. 

 [47] Ilya Eckstein, Jean-Philippe Pons, Yiying Tong, C.-C. Jay 

Kuo, and Mathieu Desbrun. Generalized surface flows for 

mesh processing. In Proceedings of the Fifth Eurographics 

Symposium on Geometry Processing, 2007. 

 [48] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 

Poisson surface reconstruction. In Proceedings of the Fourth 

Eurographics Symposium on Geometry Processing, 2006. 

 [49] Per Christian Hansen. Discrete Inverse Problems: Insight and 

Algorithms. SIAM, 2010. 

 [50] Di Wu et al. Frequency Analysis of Transient Light Transport 

with Applications in Bare Sensor Imaging. In Computer 

Vision – ECCV 2012, 2012. 

 [51] Lloyd N. Trefethen and David Bau, III. Numerical Linear 

Algebra. SIAM, 1997. 

 [52] Michael Kazhdan and Hugues Hoppe. Screened Poisson 

Surface Reconstruction. ACM Trans Graph, 32(3):29:1–

29:13, 2013. 

 [53] Graphics and Imaging Lab. Z-NLOS Dataset, Graphics and 

Imaging Lab. [Online]. Available: 

http://graphics.unizar.es/nlos_dataset. [Accessed: 13-Sep-

2019]. 

 [54] Hugues Hoppe, Tony DeRose, Tom Duchamp, John 

McDonald, and Werner Stuetzle. Surface Reconstruction 

from Unorganized Points. In SIGGRAPH, 1992. 

 

1416


