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Abstract

Text recognition is a major computer vision task with a

big set of associated challenges. One of those traditional

challenges is the coupled nature of text recognition and seg-

mentation. This problem has been progressively solved over

the past decades, going from segmentation based recogni-

tion to segmentation free approaches, which proved more

accurate and much cheaper to annotate data for. We take a

step from segmentation-free single line recognition towards

segmentation-free multi-line / full page recognition. We pro-

pose a novel and simple neural network module, termed

OrigamiNet, that can augment any CTC-trained, fully con-

volutional single line text recognizer, to convert it into a

multi-line version by providing the model with enough spa-

tial capacity to be able to properly collapse a 2D input sig-

nal into 1D without losing information. Such modified net-

works can be trained using exactly their same simple origi-

nal procedure, and using only unsegmented image and text

pairs. We carry out a set of interpretability experiments

that show that our trained models learn an accurate im-

plicit line segmentation. We achieve state-of-the-art char-

acter error rate on both IAM & ICDAR 2017 HTR bench-

marks for handwriting recognition, surpassing all other

methods in the literature. On IAM we even surpass sin-

gle line methods that use accurate localization information

during training. Our code is available online at https:

//github.com/IntuitionMachines/OrigamiNet.

1. Introduction

The ubiquity of text has made the automation of the pro-

cessing of its various visual forms, an ever-increasing ne-

cessity. Over the years, one of the main driving themes for

error rate reduction in text recognition systems has been re-

ducing explicit segmentation proposals in favor of increas-

ing full sequence recognition. In full sequence models, the

recognition system learns to both simultaneously segment

/ align and recognize / classify an image representing a se-

Requirement [4] [3] [30] [7, 33, 19] Ours

Full-page image ✓ ✓ ✓ ✓ ✓

Full-page text GT ✓ ✓ ✓ ✓ ✓

Seg. line images ✗ ✗ ✗ ✓ ✗

Seg. transcription ✗ ✗ ✗ ✓ ✗

Pre-train on seg. data ✓ ✓ ✓ ✗ ✗

Special curriculum ✓ ✓ ✗ ✗ ✗

# Iterations / image 500 10 10 10 1

Table 1: Comparison of what data is required to train a full

page recognizer between various prior works and our pro-

posed method. We can see that our method is the only that

truly works at page level without requiring any segmented

data at any stage. # Iterations / image is the average number

of iterations required to transcribe a full paragraph image

from the IAM dataset; we can note that while all other meth-

ods require multiple iterations per image (to recognize each

segmented character or line), our method performs only one

pass over the input full paragraph image.

quence of observations (i.e. characters). This trend pro-

gressed from the first systems that tried to segment each

character alone then classify the character’s image [6], to

segmentation free approaches that tried to recognize all the

characters in a word, without requiring / performing any ex-

plicit segmentation [21]. Today, state-of-the-art text recog-

nition systems work on a whole input line image without

requiring any prior explicit character / word segmentation

[35, 18]. This removes the requirement for providing char-

acter localization annotations as part of ground-truth tran-

scription. Also the recognition accuracy relies only on au-

tomatic line segmentation, a much easier process than auto-

matic character segmentation.

However, line segmentation is still an error-prone pro-

cess and can cause great deterioration in the performance

of today’s text recognition systems. This is especially true

for documents with hard to segment text-lines such as hand-

written documents [10, 24], with warped lines, uneven in-

terline spacing, touching lines, and torn pages.
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The main previous works that tried to address the prob-

lem of weakly supervised multi-line recognition were [3, 4,

30]. Besides these methods, other methods that work on

full page recognition require the localization ground-truth

of text lines during training. A detailed comparison between

the training data required by our proposed method vs. other

methods in literature is presented in Table 1.

In this work, we present a simple and novel neural net-

work sub-module, termed OrigamiNet, that can be added to

any existing convolutional neural network (CNN) text-line

recognizer to convert it to a full page recognizer. It can tran-

scribe full text pages in a weakly supervised manner with-

out being given any localization ground-truth (either visual

in the images or textual in the transcriptions) during train-

ing, and without performing any explicit segmentation. In

contrast to previous work, this is done very efficiently using

feed-forward connections only (no recurrent connections),

essentially, in a single network forward pass.

Our main intuition in this work is, instead of the tradi-

tional two-step framework that first segments then recog-

nizes extracted segments, to propose a novel integrated ap-

proach for learning to simultaneously implicitly segment

and recognize. This works by learning a representation

transformation that transforms the input into a representa-

tion where both segmentation and recognition is trivial.

We implicitly unfold an input multi-line image into a sin-

gle line image (i.e. from a 2D arrangement of characters to

1D), where all lines in the original image are stitched to-

gether into one long line, so no text-line segmentation is ac-

tually needed. Both segmentation and recognition are done

in the same single step (single network forward pass) in-

stead of being carried out iteratively (on each line), and

thus all computations are shared between recognition and

implicit segmentation, and the whole process is a lot faster.

The main ingredients to achieving this are: Using the

idea of a spatial bottleneck followed by up-sampling, used

widely in pixel-wise prediction tasks (e.g. [16, 23]); and

using the CTC loss function [11] which strongly induces /

encourages a linear 1D target. We construct a simple neu-

ral network sub-module that applies these novel ideas, and

demonstrate both its effectiveness and generality by attach-

ing it to a number of state-of-the-art text recognition neu-

ral network architectures. We show that it can successfully

convert them from single line into multi-line text recogniz-

ers with exactly the same training procedure (i.e. without

resorting to complex and fragile training recipes, like a spe-

cial training curriculum or special pre-training strategies).

On the challenging ICDAR 2017 HTR [24] full page

benchmark we achieve state-of-the-art Character Error Rate

(CER) without any localization data. On full paragraphs

of the IAM [17] dataset, we were able to achieve state-of-

the-art CER surpassing models that work on carefully pre-

segmented text-lines, without using any localization infor-

mation during training or testing.

To summarize, we address the problem of weakly super-

vised full-page text recognition. In particular, we make the

following contributions:

• We conceptually propose a new approach for weakly-

supervised simultaneous object segmentation and

recognition, and apply it to text.

• We propose a simple and generic neural network sub-

module that can be added to any CNN-based text line

recognizer to convert it into a multi-line recognizer that

utilizes the same simple training procedure.

• We carry an extensive set of experiments on a num-

ber of state-of-the-art text recognizers that demonstrate

our claims. The resultant architectures demonstrate

state-of-the art performance on ICDAR2017 HTR and

the full paragraph IAM datasets.

2. Related Work

There is not much prior work in the literature regarding

full page recognition. Segmentation-free multi-line recog-

nition has been mainly considered in [3, 4]. The idea of

both is using selective attention to focus only on a specific

part of the input image, either characters in [4] or lines in

[3]. These works have two major drawbacks. First, both

are difficult to train, and need to pre-train their encoder sub-

network on single-line images before training on multi-line

versions, which defeats the objective of the task. Second,

though [3] is much faster than [4], both are very slow com-

pared to current methods that work on segmented text lines.

Besides these two segmentation-free methods, other

methods that work on full page recognition either require

the localization ground-truth of text lines for all [5, 7, 19]

or part [33] of the training data to train either a separate net-

work or a sub-module (of a large, multi-task network) for

text-line localization. Also, all these methods require line

breaks to be annotated on all the provided textual ground-

truth transcriptions (i.e. text lines must be segmented both

visually in the image and textually in the transcription). [30]

presented the idea of adapting [33] in a weakly supervised

manner without requiring line breaks in the transcription by

setting the alignment between the predicted line transcrip-

tions and the ground truth as a combinatorial optimization

problem, and greedily solving it. However [30] still requires

the same pre-training as [33] and performs worse.

3. Methodology

Figure 1 presents the core idea of our proposed

OrigamiNet module, and how it can be attached to any fully

convolutional text recognizer. Both before and after ver-

sions are shown for easy comparison.

The Connectionist Temporal Classification (CTC) loss

function allows the training of neural text recognizers on

14711



unsegmented inputs by considering all possible alignments

between two 1D sequences. The sequence of predictions

produced by the network is denoted P , and the sequence

of labels associated with the input image L, where |L| <
|P |. The strict requirement of having P as a 1D sequence,

introduces a problem, given that the original input signal

(the image I) is a 2D signal. This problem has typically

been dealt with by unfolding the 2D signal into 1D, using a

simple reduction operation (e.g. summation) along one of

the dimensions (usually the vertical one), giving:

Pi =
H
∑

j=1

F (Ii,j) (1)

Where F is a learned 2D representation transformation.

This is the paradigm shown in Fig. 1a. As noted in [3, 4]

this simple, blind collapse from 2D to 1D gives equal im-

portance / contribution (and therefore gradients) to all the

rows of the 2D input feature-map F (I), and thus prevents

the recognition of any 2D arrangement of characters in the

input image. If two characters cover the same columns, only

one can be possibly recognized after the collapse operation.

To tackle this problem, i.e. satisfy the 1D input require-

ment of CTC without sacrificing the ability of recogniz-

ing 2D arrangements of characters, we propose the idea of

learning the proper 2D→1D unfolding through a CNN, mo-

tivated by the success of CNNs in pixel-wise prediction and

image-to-image translation tasks.

The main idea of our work (presented in Fig. 1b) is aug-

menting the traditional paradigm with a series of up-scaling

operations that transforms the input feature-map into the

shape of a single line, that is long enough to hold all the

lines (2D character arrangements) from the input image.

Up-scaling operations are followed by convolutional com-

putational blocks as our learned resize operations (as done

by many researchers, e.g. [8]). The changed direction of

up-scaling encourages each line of the input image to be

mapped into a distinct part of the output vertical dimension.

After such changes, we proceed with the traditional

paradigm as-is, perform the simple sum reduction (Eq. 1)

along the vertical dimension w of the resulting line (which

is perpendicular to the original input multi-line image’s ver-

tical dimension). The model is trained with CTC.

Moreover, we argue that the main bottleneck preventing

all previous works from learning proper 2D→1D mappings

directly as we do, is spatial constraints (i.e. not overall ca-

pacity or architectural constraints). Providing enough spa-

tial capacity to the model allows it to easily learn such trans-

formations (even for simple limited capacity models, as we

will show in the experiments section). Given the spatial

capacity and the strong linear prior induced by CTC, the

model is able to learn strong 2D→1D unfolding function

with the same simple training procedure used for training

single line recognizers, and without any special pre-training

or curriculum applied to any sub-module of the network

(both of which are used exclusively in the literature).

One natural question here is how to choose the final line

length L2 (see definition in Fig. 1b)? To gather space for

the whole paragraph / page, L2 must be at least as long as

the largest number of characters in any transcription in the

training set. Longer still is better, given that (i) CTC needs

to insert blanks to separate repeated labels; (ii) characters

vary greatly in spatial extent, and mapping each to multi-

ple target frames in the final vector is an easier task than

transforming to exactly one frame.

4. Experiments

We carry out an extensive set of experiments to answer

the following set of questions:

• Does the module actually work as expected?

• Is it tied to a specific CNN architecture?

• Is it tied to a specific model capacity?

• How does final spatial size affect model performance?

4.1. Implementation Details

All experiments use an initial learning rate of 0.01, ex-

ponentially decayed to 0.001 over 9× 104 batches. We im-

plement in PyTorch [20], with the Adam [15] optimizer.

4.2. Datasets

IAM [17] (modern English) is a famous offline handwrit-

ing benchmark dataset. It is composed of 1539 scanned text

pages handwritten by 657 different writers, corresponding

to English texts extracted from the LOB corpus [14]. IAM

has 747 documents (6,482 lines) in the training set, 116 doc-

uments (976 lines) in the validation set and 336 documents

(2,915 lines) in the test set.

The ICDAR2017 full page HTR competition [24] con-

sists of two training sets. The first contains 50 fully anno-

tated images with line-level localization and transcription

ground-truth. The second set contains 10,000 images with

only transcriptions (with annotated line breaks). Most of the

dataset was taken from the Alfred Escher Letter Collection

(AEC) which is written in German but it also has pages in

French and Italian. In all our experiments on this dataset,

we don’t make any use of either the 50-page training set or

the annotated line-breaks on the 10,000-page training set

4.3. CNN Backbones

To emphasize the generality of our proposed module, we

evaluate it on a number of popular CNN architectures that

achieved strong performance in the text recognition litera-

ture. Inspired by the benchmark work [2], we evaluate VGG

and ResNet-26 (the specific variants explored in [2]), as

well as deeper and much more expressive variants (ResNet-

66 and ResNet-74). We also evaluate a newly proposed

14712



64

W

H

conv2 x

128

W
2

H
2

conv3 x

256

W

4

H
4

conv4 x

512

W

8

H
8

conv5 x

512
W
1
6

H
16

conv6 x

C
W
1
6

H
16

conv8

C
W
1
61

pool

1 1
1

CTC

(a) A generic four stage fully convolutional single line recognizer, input is a singe line image, training is done using the CTC loss function.

Backbone CNN can be any of the ones presented in Table 2. Input gets progressively down-sampled, then converted into 1D by average

pooling along the vertical dimension right before the loss calculation. (Figures created via PlotNeuralNet [13])
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(b) Here we convert the fully convolutional single-line recognizer into an OrigamiNet multi-line recognizer; comparing the two figures

shows that the main change introduced is up-scaling vertically in two stages, and at the same time, down-scaling horizontally. We obtain a

feature-map that is tall and narrow (the shape of one very long vertical line, length L2). After that we proceed exactly as above, average

pooling over the short dimension, w (of the new line not the original image) then using the CTC loss function to drive the training process.

Figure 1: Converting a fully-convolutional single line recognizer into a multi-line recognizer using our OrigamiNet module.

gated, fully convolutional architecture for text recognition

[35], named Gated Text Recognizer (GTR). The detailed

structure of the CNN backbones we evaluate our proposed

model on is presented in Table 2. More details on the basic

building blocks of these architectures can be found in their

respective papers, VGG [25], ResNet [12], and GTR [35].

4.4. Final Length, L2

For IAM, the final length should be at least 625, since

the longest paragraph in the training set contains 624 char-

acters. We have two questions here: what value can balance

running time and recognition accuracy? And how does the

relation between L1 and L2 affect the final CER?

Table 3 presents some experiments on this. First, we can

see that generally, even a very simple model like VGG can

successfully learn to recognise multiple lines (at a relatively

bad CER = 30%) at various configurations, yet, the deeper

ResNet-26 achieves a much better performance on the task

reaching 7.2%. Second, it is evident that wider generally

gives better performance (but at diminishing returns), which

is evident for VGG more than ResNet-26. We see that for

reasonable values (>800) the network is fairly robust to the

choice of L2. We can also note that both L1 and L2 should

be relatively close to each other.
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part layer name output size ResNet-26 ResNet-66 ResNet-74 VGG GTR-8 GTR-12

E
n

co
d

er
Input H ×W

ln1 H ×W static layer normalization

conv1 H ×W 7×7, 64 13×13, 16

conv2_x H
2
× W

2

[

3×3, 64

3×3, 64

]

×1

[

3×3, 64

3×3, 64

]

×1

[

3×3, 64

3×3, 64

]

×1
[

3×3, 64
]

×1 [GateBlock(512)]×1 [GateBlock(512)]×1

2×2 max pool, stride 2

conv3_x H
4
× W

4

[

3×3, 128

3×3, 128

]

×2

[

3×3, 128

3×3, 128

]

×2

[

3×3, 128

3×3, 128

]

×6
[

3×3, 128
]

×1 [GateBlock(512)]×1 [GateBlock(512)]×1

2×2 max pool, stride 2

conv4_x H
8
× W

8

[

3×3, 256

3×3, 256

]

×5

[

3×3, 256

3×3, 256

]

×25

[

3×3, 256

3×3, 256

]

×25

[

3×3, 256

3×3, 256

]

×1 [GateBlock(512)]×1 [GateBlock(512)]×2

2×2 max pool, stride 2

conv5_x H
8
× W

16

[

3×3, 512

3×3, 512

]

×3

[

3×3, 512

3×3, 512

]

×3

[

3×3, 512

3×3, 512

]

×3

[

3×3, 512

3×3, 512

]

×1 [GateBlock(1024)]×1 [GateBlock(1024)]×3

2×2 max pool, stride 1×2

conv6_x H
8
× W

16

[

3×3, 512

3×3, 512

]

×1

[

3×3, 512

3×3, 512

]

×1

[

3×3, 512

3×3, 512

]

×1

[

3×3, 512

3×3, 512

]

×1 [GateBlock(1024)]×3 [GateBlock(1024)]×4

D
ec

o
d

er

conv7_x L1 ×
W
32

interpolate bilinearly to L1 ×
W
32

[

3×3, 512

3×3, 512

]

×3

[

3×3, 512

3×3, 512

]

×3

[

3×3, 512

3×3, 512

]

×3

[

3×3, 512

3×3, 512

]

×1 [GateBlock(512)]×1 [GateBlock(512)]×1

L2 ×
W
64

interpolate bilinearly to L2 ×
W
64

conv8 L2 × w 1×1, C

L2 average pool over short dimension w

ln2 L2 static layer normalization

1 CTC

# Parameters ×106 38.2 61.9 63.05 10.6 9.9 16.4

Table 2: Architectural details of our evaluated CNN backbones (Encoder part), and how our module (Decoder part) is

attached to them. The table tries to abstract the architectures to their most common details. Although there is subtle difference

in the components of the basic building block (in brackets []) of every architecture, the overall organization of the network,

and how our module fits, is the same.

4.5. Final Width

Does the final shape need to have the largest possible as-

pect ratio? How would the final width, w (shorter output

dimension) affect the learning system? Table 4 presents ex-

periments using VGG and ResNet-26 on this regard. It is

clear that a large value like 62 deteriorates training signif-

icantly for ResNet-26, but small and medium values (<31)

are comparable in performance. On the other hand, a model

with limited receptive field and complexity like VGG can

generally make a lot of use from the added width.

4.6. End­to­end Layer Normalization

The idea of using parameter-less layer normalization as

the first and last layer of a model was proposed in [35], and

shown to increase performance and facilitate optimization.

The same idea was very effective for our module, as initially

some deep models that converged for single line recognition

completely diverged here. This is most probably due to the

large number of time-steps CTC works on for our case.

As can be seen in Table 5, end-to-end layer normaliza-

tion can bring significant increases in accuracy for models

that already worked well; more importantly, it makes it pos-

sible to train very deep models that were constantly diverg-

ing before, leading to state-of-art performance on the task.

4.7. Hard­to­segment text­lines

Due to the way IAM was collected [17], its lines are gen-

erally easy to segment. To study how our model would

handle harder cases, we carried out two separate experi-

ments, artificially modifying IAM to produce new variants

with hard-to-segment lines. Firstly, interline spacing is mas-

sively reduced via seam carving [1], resizing to 50% height,

creating heavily touching text lines, Fig. 4(b). GTR-12

achieved 6.5% CER on this dataset. Secondly, each para-

graph has random projective (rotating/resizing lines), and

random elastic transforms (like [32] but at the page level)

applied, creating wave-like non-straight lines, Fig. 4(c).

GTR-12 achieved 6.2% CER on this dataset.
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4.8. Comparison to state­of­the­art

For all the previous experiments, IAM paragraph images

were scaled down to 500 × 500 pixels before training, and

although we were already achieving state-of-the-art results,

we wanted to explore whether we can break even with sin-

gle line recognizers. As shown in Table 6, by increasing

image / model sizes, we were for the first time able to ex-

ceed the performance of state-of-the-art single line recog-

nizers using a segmentation free full page recognizer that

trains without any visual or textual localization ground-

truth. Note that we don’t include in the comparison methods

that use additional data, either in the form of training images

as in [34, 9] or language modeling as in [31].

For the ICDAR2017 HTR dataset we follow [30] and re-

port CER on the validation set proposed in [33] (the last

1000 pages of the 10,000 image training set), as the evalu-

ation server doesn’t provide CER or other character based

metrics. Results are in Table 7. Note that both [33, 30] re-

port results using CER normalized by GT length (nCER in

the table). We used author released pre-trained models from

[33] to compute their results without a language model. It

is very evident our method can get far superior performance

using weaker training signals.

4.9. Model Interpretability

Here we consider an important question: what does the

model actually learn? We can see that the model works well

in practice and we have a hypothesis of what it might be

doing, but it would very interesting if we can have a peek at

how our model is able to make its predictions.

To gain an understanding of what parts of the input bi-

ases the model towards a specific prediction, we utilize the

framework of Path-Integrated Gradients [29] ensembled us-

ing SmoothGrad [26]. Note that unlike typical classification

tasks, we predict L2 labels per image. Of those we discard

blanks and repeated consecutive labels (in CTC, represent-

ing continuation of the same state; we found their attribution

maps to be global and uninformative for these purposes).

For integrated gradients (IG), we change the baseline to

use an empty white image to designate no-signal, rather

than an empty black one (which would be an all-signal im-

age in our case) - as our data is black text over a white back-

ground. Using white baselines produced much sharper at-

tribution maps than black ones, showing how sensitive IG

is to the choice of the baseline (studied more in [28]). We

used 50 steps to approximate the integral in our tests.

Standard SmoothGrad produces attribution maps that are

very noisy (see [27]), but the SmoothGrad-Squared variant

often suppresses most of the signal (a direct consequence

of squaring fractions). After analysing the results of both,

we suggest the root cause of SmoothGrad problems is aver-

aging positive and negative signals together. The squaring

in SmoothGrad-Squared solves this problem, but at the cost

Final length (L2) 700 800 950 1100 1500

First stage length L1 = 450

VGG 43.14 34.32 34.55 34.55 30.34

ResNet-26 8.121 7.675 7.602 7.238 7.449

First stage length L1 = 225

VGG 37.5 39.6 37.5 36.46 34.75

Table 3: The IAM test set CER of VGG and ResNet-26 for

various values of L1 and L2.

Final width 62 31 15 8 3

VGG 25.98 17.41 37.4 34.55 24.21

ResNet-26 19.9 9.128 8.64 7.238 8.34

Table 4: The IAM test set CER of VGG and ResNet-26 for

various final widths. Here L1 = 450 and L2 = 1100

LN VGG ResNet-26 ResNet-66 ResNet-74 GTR-8

w/o 51.37 10.03 8.925 76.9 72.4

w 34.55 7.238 6.373 6.128 5.639

Table 5: The IAM test set CER for various models, with

and without layer-normalization

of suppressing some important parts of the signal. So we

propose SmoothGrad-Abs, which simply averages the abso-

lute value of the attribution maps. SmoothGrad-Abs strikes

a good balance between SmoothGrad and SmoothGrad-

Squared. For our experiments, we used 5 noisy images.

Fig. 2 shows the attribution maps of a single random

character from each line of the input image (computed from

the attribution of the corresponding output neuron in the 1D

prediction map fed to CTC). We see that the model does in-

deed implicitly learn good character-level localization from

the input 2D image to the output 1D prediction map.

Fig. 3 provides a holistic view that gathers all the maps

into one image. We took the one-character attribution map

from the previous step, apply Otsu thresholding to it (to

keep only the most important parts) then add a marker at

the position of the center of mass of the resulting binary im-

age. The marker is colored according to the transcription

text line it belongs to. As can be seen, the result represents

a very good implicit line segmentation of the original input.

4.10. Limitations

We also trained our network on a variant of IAM

with horizontally flipped images and line-level flipped

groundtruth transcription, where it managed to achieve
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Method Input Scale Test CER(%) Remarks

Single-line methods

[22] 128 × W 5.8 CNN+BLSTM+CTC

[18] 64 × W 5.24 Seq2Seq (CNN+BLSTM encoder)

[35] 32 × W 4.9 CNN+CTC

Multi-line methods

[4] 150 dpi 16.2
Requires pre-training the encoder

(MDLSTM) on segmented text lines
[3] 150 dpi 10.1

[3] 300 dpi 7.9

[5] 150 dpi 15.6
Requires fully segmented training data

[7] 8.5

[33] 6.4
Requires full line-break annotation and

partial visual localization

ResNet-74 OrigamiNet 500 × 500 6.1

GTR-8 OrigamiNet 500 × 500 5.6

GTR-8 OrigamiNet 750 × 750 5.5

GTR-12 OrigamiNet 750 × 750 4.7

Table 6: Comparison with the state-of-the-art on the IAM paragraph images, best result is highlighted.

THE F ourth Gospel was almost certainly writt e n in Greek. A modern text of the G ospel represents the work of generations of scholars who hav e compared the many manu-

scripts of John an d worked out the version which is most likely to have been the origina l wording. I t is not possible to establish any one t e xt with absolute precision.

Figure 2: Results of the interpretability experiment. For each of these 8 images (from left-right, top-down) we show the

attribution heat-map for a single character output (for each line in the image) overlaid over a faint version of the original

input image. The randomly chosen character is highlighted in green in the transcription below the image.

nearly the same CER. This verifies that the proposed

method is robust and can learn the reading order from data.

While the proposed method works well on paragraphs or

full pages of text, learning the flow of multiple columns is

not addressed directly. However, given that region / para-

graph segmentation is trivial compared to text line segmen-
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⇒ ⇒

Figure 3: The first and third columns represent two input images. The second and fourth columns are the corresponding

color coded scatter plot, where, for each character, the position of the center of mass for the attribution map associated with

that character is marked. Character markers belonging to the same line are given the same color. We can see that the model

learns a very good implicit segmentation of the input image into lines without any localization signal.

(a) Original Image.

(b) Compact lines.

(c) Rotated and warped.

Figure 4: Synthetic distortions applied to the IAM dataset to study the how our model handles hard to segment text-lines. (a)

original paragraph image. (b) touching text-lines. (c) rotated and wavy text-lines

Method CER nCER linebreaks Pre-train

SFR [30] 8.18 8.68 ✓ 50 fully

annotated pgsSFR-align [33] - 11.05 ✗

GTR-12 OrigamiNet 6.80 5.87 ✗ -

Table 7: Comparison on ICDAR2017 HTR, best result is

highlighted. nCER is CER normalized by GT length. line-

breaks indicates their presence or removal from the GT.

tation we think this is not a serious practical limitation.

5. Conclusion

In this paper we tackled the problem of multi-line / full

page text recognition without any visual or textual localiza-

tion ground-truth provided to the model during training. We

proposed a simple neural network sub-module, OrigamiNet,

that can be added to any existing fully convolutional single-

line recognizer and convert it into a multi-line recognizer by

providing the model with enough spatial capacity to be able

to properly unfold 2D input signals into 1D without losing

information.

We conducted an extensive set of experiments on the

IAM handwriting dataset to show the applicability and gen-

erality of our proposed module. We achieve state-of-the-art

CER on the ICDAR2017 HTR and IAM datasets surpassing

models that explicitly made use of line segmentation infor-

mation during training. We then concluded with a set of

interpretability experiments to investigate what the model

actually learns and demonstrated its implicit ability to lo-

calize characters on each line.
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