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Abstract

Datasets drive vision progress, yet existing driving

datasets are impoverished in terms of visual content and

supported tasks to study multitask learning for autonomous

driving. Researchers are usually constrained to study a

small set of problems on one dataset, while real-world com-

puter vision applications require performing tasks of var-

ious complexities. We construct BDD100K 1, the largest

driving video dataset with 100K videos and 10 tasks to eval-

uate the exciting progress of image recognition algorithms

on autonomous driving. The dataset possesses geographic,

environmental, and weather diversity, which is useful for

training models that are less likely to be surprised by new

conditions. Based on this diverse dataset, we build a bench-

mark for heterogeneous multitask learning and study how to

solve the tasks together. Our experiments show that special

training strategies are needed for existing models to per-

form such heterogeneous tasks. BDD100K opens the door

for future studies in this important venue.

1. Introduction

Diverse, large-scale annotated visual datasets, such as

ImageNet [8] and COCO [18], have been the driving force

behind recent advances in supervised learning tasks in com-

puter vision. Typical deep learning models can require mil-

lions of training examples to achieve state-of-the-art perfor-

mance for a task [16, 27, 15].

For autonomous driving applications, however, leverag-

ing the power of deep learning is not as simple due to the

lack of comprehensive datasets. Existing datasets for au-

tonomous driving [14, 7, 23] are limited in one or more sig-

nificant aspects, including the scene variation, the richness

of annotations, and the geographic distribution. Addition-

ally, models trained on existing datasets tend to overfit spe-

cific domain characteristics [25].

Real-world applications require performing a combina-

∗Work done at UC Berkeley.
1The data is available at https://bdd-data.berkeley.edu

tion of perception tasks with different complexities, instead

of only homogeneous multiple tasks with the same predic-

tion structure [26, 37, 1, 20]. Although it may be feasible

to label a large number of images with simple annotations

such as drivable areas and object bounding boxes [11, 18],

it remains challenging to obtain more complicated anno-

tations such as instance segmentation [3], not to mention

multi-object detection and segmentation tracking [30, 21].

As a result, even though a considerable amount of effort

has been put into constructing large-scale visual datasets,

research on those complicated tasks is still limited to small

datasets [7, 14]. In production environments, it is also un-

clear how to allocate resources for various annotations to

support the applications requiring heterogeneous tasks with

various output structures.

We aim to facilitate algorithmic study on large-scale di-

verse visual data and multiple tasks. We build BDD100K,

a new, diverse, and large-scale dataset of visual driving

scenes, together with various tasks, to overcome the limita-

tions. We have been able to collect and annotate the largest

available dataset of annotated driving scenes, consisting of

over 100K diverse video clips. BDD100K covers more real-

istic driving scenarios and captures more of the “long-tail”

of appearance variation and pose configuration of categories

of interest in diverse environmental domains. Our bench-

marks are comprised of ten tasks: image tagging, lane de-

tection, drivable area segmentation, road object detection,

semantic segmentation, instance segmentation, multi-object

detection tracking, multi-object segmentation tracking, do-

main adaptation, and imitation learning, as shown in Fig-

ure 1. These diverse tasks make the study of heterogeneous

multitask learning possible. In our benchmarks, the models

can perform a series of tasks with increasing complexities.

We conduct extensive evaluations of existing algorithms

on our new benchmarks. Special attention is paid to mul-

titask learning in homogeneous, cascaded, and heteroge-

neous settings. Our experiments present many new find-

ings, made possible by the diverse set of tasks on a single

dataset. Our benchmark models on heterogeneous multi-

task learning shed light on the challenges of designing one

single model to support multiple tasks.
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Figure 1: Overview of our dataset. Our dataset includes a diverse set of driving videos under various weather conditions, time, and scene

types. The dataset also comes with a rich set of annotations: scene tagging, object bounding box, lane marking, drivable area, full-frame

semantic and instance segmentation, multiple object tracking, and multiple object tracking with segmentation.

The major contributions of our paper are: 1) a compre-

hensive diverse 100K driving video dataset supporting tasks

of multiple complexities, which can serve as an evaluation

benchmark for computer vision research for autonomous

driving; 2) a benchmark for heterogeneous multitask learn-

ing and baseline studies to facilitate future study.

2. Related Works

Visual datasets are necessary for numerous recognition

tasks in computer vision. Especially with the advent of

deep learning methods, large scale visual datasets, such

as [8, 35, 39, 23], are essential for learning high-level image

representations. They are general-purpose and include mil-

lions of images with image-level categorical labels. These

large datasets are useful in learning representations for im-

age recognition, but most of the complex visual understand-

ing tasks in the real world require more fine-grained recog-

nition such as object localization and segmentation [11].

Our proposed dataset provides these multi-granularity an-

notations for more in-depth visual reasoning. In addition,

we provide these annotations in the context of videos, which

provides an additional dimension of visual information. Al-

though large video datasets exist [5, 2, 28], they usually are

restricted to image-level labels.

Driving datasets have received increasing attention in the

recent years, due to the popularity of autonomous vehicle

technology. The goal is to understand the challenge of com-

puter vision systems in the context of self-driving. Some

of the datasets focus on particular objects such as pedes-

trians [9, 38]. Cityscapes [7] provides instance-level se-

mantic segmentation on sampled frames of videos collected

by their own vehicle. RobotCar [19] and KITTI [14] also

provide data of multiple sources such as LiDAR scanned

points. Because it is very difficult to collect data that cov-

ers a broad range of time and location, the data diversity

of these datasets is limited. For a vehicle perception sys-

tem to be robust, it needs to learn from a variety of road

conditions in numerous cities. Our data was collected from

the same original source as the videos in [32]. However,

the primary contribution of our paper is the video annota-

tions with benchmarks on heterogeneous tasks. Mapillary

Vistas [23] provides fine-grained annotations for user up-

loaded data, which is much more diverse with respect to

location. However, these images are one-off frames that are

not placed in the context of videos with temporal structure.

Like Vistas, our data is crowdsourced, however, our dataset

is collected solely from drivers, with each annotated image

corresponding to a video sequence, which enables interest-

ing applications for modeling temporal dynamics.

Multitask Learning aims to improve generalization of a

certain task by learning from other tasks [6, 22]. It has

been widely studied in machine learning [6, 12]. The grow-

ing interests in learning the relationship between tasks gives

rise to a number of multitask and transfer learning training

benchmarks and challenges. Robust Vision Challenge [1]

features six vision challenges, where a single model is ex-

pected to produce results on multiple vision tasks. Za-

mir et al. [37] investigate the dependency structure among

twenty-six visual tasks by transfer learning. McCann et

al. [20] present a challenge with ten natural language pro-

cessing tasks, and proposes a model that solves all by for-

mulating each task as question answering. Similar to Mc-

Cann et al. [20], existing multitask and transfer learning se-

tups are homogeneous in output structures. The tasks can be
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Figure 2: Geographical distribution of our data sources. Each dot represents the starting location of every video clip. Our videos are from

many cities and regions in the populous areas in the US.
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Figure 3: Instance statistics of our object categories. (a) Number of instances of each category, which follows a long-tail distribution. (b)

Roughly half of the instances are occluded. (c) About 7% of the instances are truncated.

formulated as pixel-level or low-dimensional classification

and regression. BDD100K contains multiple tasks includ-

ing pixel-level, region-based, and temporally aware tasks,

opening the door for heterogeneous multitask learning.

3. BDD100K
We aim to provide a large-scale diverse driving video

dataset with comprehensive annotations that can expose the

challenges of street-scene understanding. To achieve good

diversity, we obtain our videos in a crowd-sourcing man-

ner uploaded by tens of thousands of drivers, supported

by Nexar 2. The dataset contains not only images with

high resolution (720p) and high frame rate (30fps), but also

GPS/IMU recordings to preserve the driving trajectories. In

total, we have 100K driving videos (40 seconds each) col-

lected from more than 50K rides, covering New York, San

Francisco Bay Area, and other regions as shown in Figure 2.

The dataset contains diverse scene types such as city

streets, residential areas, and highways. Furthermore, the

videos were recorded in diverse weather conditions at dif-

ferent times of the day. The videos are split into training

(70K), validation (10K) and testing (20K) sets. The frame

at the 10th second in each video is annotated for image tasks

and the entire sequences are used for tracking tasks.

3.1. Image Tagging

We have collected image-level annotation on six weather

conditions, six scene types, and three distinct times of day,

2https://www.getnexar.com

for each image. The videos contain large portions of ex-

treme weather conditions, such as snow and rain. They

also include a diverse number of different scenes across

the world. Notably, our dataset contains approximately an

equal number of day-time and night-time videos. Such di-

versity allows us to study domain transfer and generalize

our object detection model well on new test sets. Detailed

distributions of images with weather, scene, and day hours

tags are shown in the supplementary materials. We provide

image tagging classification results using DLA-34 [36] in

Figure 4. The average classification accuracy across differ-

ent weather and scenes are around 50 to 60%.
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Figure 4: Image tagging classification results using DLA-34.

3.2. Object Detection

Locating objects is a fundamental task for not only au-

tonomous driving but the general visual recognition. We

provide bounding box annotations of 10 categories for each

of the reference frames of 100K videos. The instance statis-

tics is shown in Figure 3a. We provide visibility attributes

including “occluded” and “truncated” in Figure 3b and Fig-

ure 3c.
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Figure 5: Examples of lane marking annotations. Red lanes are vertical and blue lanes are parallel. Left: we label all the visible lane

boundaries. Middle: not all marking edges are lanes for vehicles to follow, such as pedestrian crossing. Right: parallel lanes can also be

along the current driving direction.

Figure 6: Examples of drivable areas. Red regions are directly drivable and the blue ones are alternative. Although drivable areas can be

confined within lane markings, they are also related to locations of other vehicles shown in the right two columns.

3.3. Lane Marking

The lane marking detection is critical for vision-based

vehicle localization and trajectory planning. However,

available datasets are often limited in scale and diversity.

For example, the Caltech Lanes Dataset [4] only contains

1,224 images, and the Road Marking Dataset [31] has 1,443

images labeled in 11 classes of lane markings. The most re-

cent work, VPGNet [17], consists of about 20,000 images

taken during three weeks of driving in Seoul.

Our lane markings (Figure 5) are labeled with 8 main

categories: road curb, crosswalk, double white, double yel-

low, double other color, single white, single yellow, single

other color. The other categories are ignored during evalu-

ation. We label the attributes of continuity (full or dashed)

and direction (parallel or perpendicular). Shown in Table 1,

our lane marking annotations cover a diverse set of classes.

Detailed distributions of types of lane markings and driv-

able areas are shown in the supplementary materials.

Datasets Training Total Sequences

Caltech Lanes Dataset [4] - 1,224 4

Road Marking Dataset [31] - 1,443 29

KITTI-ROAD [13] 289 579 -

VPGNet [17] 14,783 21,097 -

BDD100K 70,000 100,000 100,000

Table 1: Lane marking statistics. Our lane marking annotations

are significantly richer and are more diverse.

3.4. Drivable Area

Lanes alone are not sufficient to decide road affordabil-

ity for driving. Although most of the time, the vehicle

should stay between the lanes, it is common that no clear

lane marking exists. In addition, the road area is shared

with all other vehicles, but a lane can not be driven on if

occupied. All these conditions beyond lane markings direct

our driving decisions and thus are relevant for designing au-

tonomous driving algorithms.

Our drivable areas are divided into two different cat-

egories: directly drivable area and alternatively drivable

area. The directly drivable area is what the driver is cur-

rently driving on – it is also the region where the driver has

priority over other cars or the right of the way. In contrast,

alternatively drivable area is a lane the driver is currently not

driving on, but able to do so via changing lanes. Although

the directly and alternatively drivable areas are visually in-

distinguishable, they are functionally different, and require

the algorithms to recognize blocking objects and scene con-

text. Some examples are shown in Figure 6. The distribu-

tion of drivable region annotations is shown in the supple-

mentary materials. Not surprisingly, on highways or city

streets, where traffic is closely regulated, drivable areas are

mostly within lanes and they do not overlap with the vehi-

cles or objects on the road. However, in residential areas,

the lanes are sparse. Our annotators can find the drivable

areas based on the surroundings.

3.5. Semantic Instance Segmentation

We provide fine-grained, pixel-level annotations for im-

ages from each of the 10,000 video clips randomly sam-

pled from the whole dataset. Each pixel is given a label and

a corresponding identifier denoting the instance number of

that object label in the image. Since many classes (e.g., sky)

are not amenable to being split into instances, only a small

subset of class labels are assigned instance identifiers. The

entire label set consists of 40 object classes, which are cho-

sen to capture the diversity of objects in road scenes as well

as maximizing the number of labeled pixels in each image.

Besides a large number of labels, our dataset exceeds previ-

ous efforts in terms of scene diversity and complexity. The
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Figure 7: Cumulative distributions of the box size (left), the ratio

between the max and min box size for each track (middle) and

track length (right). Our dataset is more diverse in object scale.

whole set is split into 3 parts: 7K images for training, 1K

images for validation, and 2K images for testing. The dis-

tribution of classes in the semantic instance segmentation

dataset is shown in the supplementary materials.

3.6. Multiple Object Tracking

To understand the temporal association of objects within

the videos, we provide a multiple object tracking (MOT)

dataset including 2,000 videos with about 400K frames.

Each video is approximately 40 seconds and annotated at

5 fps, resulting in approximately 200 frames per video.

We observe a total number of 130.6K track identities

and 3.3M bounding boxes in the training and validation

set. The dataset splits are 1400 videos for training, 200

videos for validation and 400 videos for testing. Table 2

shows the comparison of BDD100K with previous MOT

datasets. Our tracking benchmark provides one order-

of-magnitude bigger than the previously popular track-

ing dataset, MOT17 [21]. A recent dataset released by

Waymo [29] has fewer tracking sequences (1150 vs 2000)

and fewer frames (230K vs 398K) in total, compared to

ours. But Waymo data has more 2D boxes (9.9M vs 4.2M),

while ours has better diversity including different weather

conditions and more locations. Distributions of tracks and

bounding boxes by category are shown in the supplemen-

tary materials.

Datasets Frames Sequences Identities Boxes

KITTI [14] 8K 21 917 47K

MOT17 [21] 34K 21 1,638 337K

BDD100K 318K 1,600 131K 3.3M

Table 2: MOT datasets statistics of training and validation sets.

Our dataset has more sequences, frames, identities as well as more

box annotations.

BDD100K MOT is diverse in object scale. Figure 7

(left) plots the cumulative distribution of box size, defined

as
√
wh for a bounding box with width w and height h.

Figure 7 (middle) shows the cumulative distribution of the

ratio between the maximum box size and the minimum box
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Figure 8: Number of occlusions by track (left) and number of

occluded frames for each occlusion (right). Our dataset covers

complicated occlusion and reappearing patterns.

size along each track, and Figure 7 (right) shows that of the

length of each track. The distributions show that the MOT

dataset is not only diverse in visual scale among and within

tracks, but also in the temporal range of each track.

Objects in our tracking data also present complicated oc-

clusion and reappearing patterns are shown in Figure 8. An

object may be fully occluded or move out of the frame, and

then reappear later. We observe 49,418 occurrences of oc-

clusion in the dataset, or one occurrence of occlusion every

3.51 tracks. Our dataset shows the real challenges of object

re-identification for tracking in autonomous driving.

3.7. Multiple Object Tracking and Segmentation

We further provide a multiple object tracking and seg-

mentation (MOTS) dataset with 90 videos. We split the

dataset into 60 training videos, 10 validation videos, and

20 testing videos.

Datasets Frames Seq. Identities Ann. Ann. / Fr.

KITTI MOTS [30] 8K 21 749 38K 4.78

MOTS Challenge [30] 2.9K 4 228 27K 9.40

DAVIS 2017 [24] 6.2K 90 197 - -

YouTube VOS [33] 120K 4.5K 7.8K 197K 1.64

BDD100K MOTS 14K 70 6.3K 129K 9.20

Table 3: Comparisons with other MOTS and VOS datasets.

Table 3 shows the details of the BDD MOTS dataset

and the comparison with existing multiple object tracking

and segmentation (MOTS) and video object segmentation

(VOS) datasets. MOTS aims to perform segmentation and

tracking of multiple objects in crowded scenes. There-

fore, MOTS datasets like KITTI MOTS and MOTS Chal-

lenge [30] require denser annotations per frame and there-

fore are smaller in size than VOS datasets. BDD100K

MOTS provides a MOTS dataset that is larger than the

KITTI and MOTS Challenge datasets, with the number of

annotations comparable with the large-scale YouTube VOS

[33] dataset. Detailed distributions of the MOTS dataset by

category are shown in the supplementary materials.
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(a) Our Image (b) Trained on Cityscapes (c) Trained on Ours (d) Ground Truth

Figure 9: Visual comparisons of the same model (DRN [34]) trained on different datasets. We find that there is a dramatic domain shift

between Cityscapes and our new dataset. For example, due to infrastructure difference, the model trained on Cityscapes is confused by

some simple categories such as sky and traffic signs.

Train

Test
City Non-City Val

Train

Test
Daytime Non-Daytime Val

City-30K 29.5 26.5 28.8 Daytime-30K 30.6 23.6 28.1

Non-City-30K 24.9 24.3 24.9 Non-Daytime-30K 25.9 25.3 25.6

Random-30K 28.7 26.6 28.3 Random-30K 29.5 26.0 28.3

Table 4: Domain discrepancy experiments with object detection. We take the images from one domain and report testing results in AP on

the same domain or the opposite domain. We can observe significant domain discrepancies, especially between daytime and nighttime.

3.8. Imitation Learning

GPS/IMU recordings in our dataset show the human

driver action given the visual input and the driving trajec-

tories. We can use those recordings as a demonstration su-

pervision for the imitation learning algorithms and use per-

plexity to measure the similarity of driving behaviors on the

validation and testing set. We refer to Xu et al. [32] for de-

tails on the evaluation protocols. Visualizations of the driv-

ing trajectories are shown in the supplementary materials.

4. Diversity

One distinct feature of our data is diversity, besides video

and scale. We can study new challenges that the diversity

brings to existing algorithms and how our data complements

existing datasets. We conduct two sets of experiments on

object detection and semantic segmentation. In object de-

tection experiments, we study the different domains within

our dataset. While in semantic segmentation, we investigate

the domains between our data and Cityscapes [7].

4.1. Object Detection

Our dataset has an advantage in diversity, compared to

other popular driving datasets. We investigate the influ-

ence of domain differences on object detection. The whole

dataset is partitioned into several domains based on time

of day and scene types. City street and daytime are cho-

sen as validation domains. The training sets have the same

number of images (30K) in the training set. We then train

Faster-RCNN [27] based on ResNet-50 on those domains

and evaluate the result with COCO API [18].

We find that there is indeed a domain discrepancy be-

tween image sets from different conditions, as shown in Ta-

ble 4. The difference between city and non-city is signif-

icant, but the gap between daytime and nighttime is much

bigger. Although this is not completely surprising, the re-

sults indicate that more work is necessary to bridge the gap.

4.2. Semantic Segmentation

We also compare the models trained on Cityscapes and

ours, to understand the difference between our new datasets

and existing driving datasets. Cityscapes data is collected

in German cities, while our data is mainly from the US. We

observe that there is a dramatic domain shift between the

two datasets for semantic segmentation models. The mod-

els perform much worse when tested on a different dataset.

This suggests that even for the domain of other datasets,

our new dataset is complementary, which augments exist-

ing datasets. Figure 9 shows the discrepancy visually. We

can observe that the model trained on Cityscape can not rec-

ognize the traffic sign in the US.

5. Multitask Learning

BDD100K gives the opportunity to study joint solution

for the heterogeneous tasks. In this section, we investigate

the effects of modeling various tasks jointly with the same

base model. We study how to utilize diversity and quantity
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of simple labels to improve the accuracy of the complicated

tasks, such as from object detection to tracking.

5.1. Homogeneous Multitask Learning

We first investigate the effects of jointly performing tasks

with similar output structures. The BDD100K lane marking

and drivable area datasets share the same set of 70K training

images. Drivable area annotations consist of 2 foreground

classes and lane marking annotations have 3 attributes (di-

rection, continuity, and category). We formulate the de-

tection of drivable area as segmentation and lane marking

as contour detection. We evaluate drivable area segmenta-

tion by mean IoU, and lane marking by the Optimal Dataset

Scale F-measure (ODS-F) for each category of the three at-

tributes using the Structured Edge Detection Toolbox [10]

with tolerance τ = 1, 2, and 10 pixels. We employ morpho-

logical thinning for each score threshold during evaluation.

We employ DLA-34 [36] as the base model for the seg-

mentation tasks. We implement the segmentation head with

four 3× 3 convolution blocks followed by an 1× 1 convo-

lution to produce segmentation maps in a 4x down-sampled

scale, and use bilinear interpolation to upsample the out-

put to the original scale. For lane marking, we use three

segmentation heads for the three attributes. We employ

the weighted cross-entropy loss with foreground weight 10

for the lane marking heads, and the gradient-based non-

maximum suppression for post-processing. We construct

three train sets with 10K, 20K and the full 70K images and

report the evaluation results of models trained on individual

tasks and both tasks in Table 5. Full evaluation results for

lane marking are shown in the supplementary materials.

Training Set Lane ODS-F (τ = 10) (%) Drivable IoU (%)

dir. cont. cat. mean direct altern. mean

Lane 10K 49.29 47.85 39.08 45.41 - - -

Drive 10K - - - - 73.10 55.36 64.23

Lane+Drive 10K 53.97 52.59 44.65 50.40 74.69 54.06 64.37

Lane 20K 57.36 55.85 49.88 54.36 - - -

Drive 20K - - - - 79.00 63.27 71.13

Lane+Drive 20K 57.19 55.64 49.50 54.11 79.39 64.06 71.73

Lane 70K 57.50 55.87 50.08 54.48 - - -

Drive 70K - - - - 79.40 63.33 71.37

Lane+Drive 70K 57.35 55.76 49.63 54.24 79.72 64.70 72.21

Table 5: Evaluation results of homogeneous multitask learning

on lane marking and drivable area segmentation. We train lane

marking, drivable area segmentation and the joint training of both

on training splits with 10K, 20K, and the full 70K images.

We observe that when training with only 10K images,

the mean ODS-F score of lane marking prediction improves

from 45.41 to 50.40 when jointly training with the drivable

area task. However, the improvement of jointly training

on the drivable area detection task, from 64.23 to 64.37, is

marginal compared to the individual task. As we increase

the number of training images to 20K and 70K, the differ-

ence between jointly training and single-task training be-

comes insignificant, though the performance numbers are

generally higher than those trained on 10K images.

One hypothesis for the results is that the drivable area

detection task and the lane marking task share a similar pre-

diction structure, referred as the homogeneous tasks, and

therefore the additional supervision may fail to bring new

information to each individual task. These results further

motivate us to study multitask learning of heterogeneous

tasks with diverse prediction structure and annotation types

in this work.

5.2. Cascaded Multitask Learning

Certain tasks such as object tracking and instance seg-

mentation are more time-consuming to annotate. But they

can depend on predictions of simple tasks. This connection

has been studied as cascaded multitask learning. For ex-

ample, more accurate object detection can locate the object

candidates better for tracking. A natural question is whether

to spend all the annotation efforts for the complicated tasks,

or to allocate some resources for the basic tasks.

Training Set AP AP50 AP75

Inst-Seg 21.8 40.5 20.5

Inst-Seg + Det 24.5 45.4 21.6

Table 6: Evaluation results for instance segmentation when joint

training with the object detection set. Additional localization su-

pervision can improve instance segmentation significantly.

Training Set AP MOTA MOTP IDS

MOT 28.1 55.0 84.0 8386

MOT + Det 30.7 56.7 84.1 9098

Table 7: Evaluation results for multiple object tracking cascaded

with object detection. AP is the detection metric. Even though the

tracking set has much more boxes, the model can still benefit from

the diverse instance examples in the detection set.

Object detection and instance segmentation. The BDD

instance segmentation dataset contains 7K images, whereas

the detection dataset has 70K images. We first study

whether adding more object detection annotations can help

instance segmentation. We use Mask R-CNN [15] with

ResNet-50 [16] as the backbone, and train detection and in-

stance segmentation in a batch-level round-robin manner.

As shown in Table 6, AP increases from 21.8 to 24.5 with

joint training. The instance segmentation model is able

to learn better object appearance features and localization

from the detection set with a much richer diversity of im-

ages and object examples. Zhou et al. [40] explore the

shape priors in the detection supervision and improve the

semi-supervised instance segmentation results further.
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Sem-Seg + Det 94.3 62.5 85.2 24.5 41.1 51.5 63.1 57.9 86.2 47.4 95.5 64.6 28.1 90.8 52.9 70.7 0 43.4 48.9 58.3

Sem-Seg + Lane + Driv 94.8 65.8 84.1 22.6 40.2 49.3 51.9 49.7 85.8 46.2 95.3 60.8 7.1 89.9 47.8 66.9 0 27.5 27.5 53.3

Table 8: Evaluation results for semantic segmentation. We explore segmentation joint-training with different tasks. Detection can improve

the overall accuracy of segmentation, although their output structures are different. However, although Lane and Drivable area improve the

segmentation of road and sidewalk, the overall accuracy drops.

MOT and object detection. BDD100K MOT has 278K

training frames from 1,400 videos, whereas the detection

set contains 70K images sampled from 70K videos. For the

detection and MOT models, we use a modified version of

Faster R-CNN [27] with a shared DLA-34 [36] backbone.

The implementation details of the tracking model are shown

in the supplementary materials. Table 7 shows that joint

training of detection and multiple object tracking improves

the single-task MOT model with detection AP increasing

from 28.1 to 30.7 and MOTA from 55.0 to 56.7, with a slight

increase in identity switch.

Semantic segmentation with other tasks. Following a

similar manner, we fine-tune a base semantic segmentation

model by jointly training semantic segmentation with detec-

tion and lane marking/drivable area as shown in Table 8. We

observe that training with the additional 70K object detec-

tion dataset improves the overall mIoU from 56.9 to 58.3,

with the improvement mostly attributed to the object classes

that are present in the object detection dataset. When jointly

training with the lane marking and drivable area sets, the

IOU of the stuff classes (e.g., road and sidewalk) improves

though the overall IOU across all classes decreases.

To summarize, adding more annotations to the simple

tasks in the task cascade can help improve the performances

of the complicated tasks that require more expensive labels.

5.3. Heterogeneous Multitask Learning

The ultimate goal of our benchmark is to study how

to perform all the heterogeneous tasks together for au-

tonomous driving. To understand the potential and diffi-

culty, we study joint training for multiple object tracking

and segmentation, a downstream task to object detection,

instance segmentation, and multiple object tracking. Since

the MOTS dataset requires time-consuming instance seg-

mentation annotations at each frame, the dataset is relatively

limited in video diversity, with 12K frames from 60 videos

in the training set. We aim to improve the performance on

the task of MOTS by leveraging the diversity from the de-

tection set with 70K images from 70K videos, the MOT set

with 278K frames from 1,400 videos, and the instance seg-

mentation set with 7K images from 7K videos.

We report instance segmentation AP and multi-object

tracking and segmentation accuracy (MOTSA), precision

(MOTSP), and other metrics used by [30] in Table 9. We

first fine-tune the MOTS model from pre-trained models

of upstream tasks. Compared with training MOTS from

scratch, fine-tuning from the pre-trained instance segmen-

tation model improves segmentation AP and MOTSP. Fine-

tuning from the pre-trained MOT model, on the other hand,

reduces identity switch (IDSW). The extra training exam-

ples from the instance segmentation and MOT datasets im-

prove the segmentation and box propagation respectively,

thus improving the overall MOTSA results by a large mar-

gin. We finally fine-tune the jointly trained detection and

tracking model mentioned in Table 7 by jointly training the

four tasks together. We achieve an overall segmentation AP

of 23.3 and MOTSA of 41.4.

Training Set AP MOTSA MOTSP FN FP IDSW

MOTS (S) 13.0 30.4 81.8 8352 5116 566

InstSeg (I) + MOTS 18.7 33.7 81.9 6810 5611 965

MOT (T) + MOTS 19.7 40.3 79.8 5698 5967 390

Det + T + I + S 23.3 41.4 81.6 5132 6228 472

Table 9: MOTS evaluation results. Both instance segmentation

AP and MOTS evaluation metrics are reported. Instance segmen-

tation tracking is very hard to label, but we are able to use object

detection, tracking, and instance segmentation to improve segmen-

tation tracking accuracy significantly.

6. Conclusion

In this work, we presented BDD100K, a large-scale driv-

ing video dataset with extensive annotations for heteroge-

neous tasks. We built a benchmark for heterogeneous multi-

task learning where the tasks have various prediction struc-

tures and serve different aspects of a complete driving sys-

tem. Our experiments provided extensive analysis to dif-

ferent multitask learning scenarios: homogeneous multitask

learning and cascaded multitask learning. The results pre-

sented interesting findings about allocating the annotation

budgets in multitask learning. We hope our work can foster

future studies on heterogeneous multitask learning and shed

light on this important direction.
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