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Abstract

Recent works have widely explored the contextual de-

pendencies to achieve more accurate segmentation results.

However, most approaches rarely distinguish different types

of contextual dependencies, which may pollute the scene un-

derstanding. In this work, we directly supervise the fea-

ture aggregation to distinguish the intra-class and inter-

class context clearly. Specifically, we develop a Context

Prior with the supervision of the Affinity Loss. Given an

input image and corresponding ground truth, Affinity Loss

constructs an ideal affinity map to supervise the learning

of Context Prior. The learned Context Prior extracts the

pixels belonging to the same category, while the reversed

prior focuses on the pixels of different classes. Embedded

into a conventional deep CNN, the proposed Context Prior

Layer can selectively capture the intra-class and inter-class

contextual dependencies, leading to robust feature repre-

sentation. To validate the effectiveness, we design an effec-

tive Context Prior Network (CPNet). Extensive quantitative

and qualitative evaluations demonstrate that the proposed

model performs favorably against state-of-the-art seman-

tic segmentation approaches. More specifically, our algo-

rithm achieves 46.3% mIoU on ADE20K, 53.9% mIoU on

PASCAL-Context, and 81.3% mIoU on Cityscapes. Code is

available at https://git.io/ContextPrior.

1. Introduction

Scene segmentation is a long-standing and challenging

problem in computer vision with many downstream appli-

cations e.g., augmented reality, autonomous driving [8, 12],

human-machine interaction, and video content analysis.

The goal is to assign each pixel with a category label, which

provides comprehensive scene understanding.

Benefiting from the effective feature representation of

∗Corresponding author. Part of the work was done when C. Yu was

visiting The University of Adelaide.

(a) Input Image (b) Pyramid Method (c) CPNet

(d) Input Image (e) Attention Method (f) CPNet

Figure 1. Hard examples in scene segmentation. In the first row,

the central part of the sand in the red box is misclassified as the

sea, because the shadow part has a similar appearance with the

sea. With the pyramid-based aggregation method [3], aggrega-

tion of the confused spatial information may lead to undesirable

prediction as visualized in (b). In the second row, the table in

the green box has a similar appearance to the bottom part of the

bed. The attention-based method [50] fails to effectively distin-

guish the confused spatial information without prior knowledge,

leading to less correct prediction as shown in (e). In the proposed

CPNet, we aggregate the contextual dependencies with clear dis-

tinguishment. Notably, the Context Prior models the intra-class

and inter-class relationships as a context prior knowledge to cap-

ture the intra-class and inter-class contextual dependencies.

the Fully Convolutional Network (FCN), a few approaches

have obtained promising performance. However, limited

by the structure of convolutional layers, the FCN provides

insufficient contextual information, leaving room for im-

provement. Therefore, various methods [1, 3, 5, 32, 49, 43,

45, 35, 19] explore the contextual dependencies to obtain

more accurate segmentation results. There are mainly two

paths to aggregate the contextual information: 1) Pyramid-

based aggregation method. Several methods [49, 1, 3, 5]

adopt pyramid-based modules or global pooling to aggre-
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gate regional or global contextual details regularly. How-

ever, they capture the homogeneous contextual relation-

ship, ignoring the contextual dependencies of different cat-

egories, as shown in Figure 1(b). When there are con-

fused categories in the scene, these methods may result

in a less reliable context. 2) Attention-based aggregation

method. Recent attention-based methods learn channel at-

tention [45, 43], spatial attention [23], or point-wise atten-

tion [50, 11, 44] to aggregate the heterogeneous contextual

information selectively. Nevertheless, due to the lack of ex-

plicit regularization, the relationship description of the at-

tention mechanism is less clear. Therefore, it may select

undesirable contextual dependencies, as visualized in Fig-

ure 1(e). Overall, both paths aggregate contextual informa-

tion without explicit distinction, causing a mixture of dif-

ferent contextual relationships.

We notice that the identified contextual dependencies

help the network understand the scene. The correlation of

the same category (intra-class context) and the difference

between the different classes (inter-class context) make the

feature representation more robust and reduce the search

space of possible categories. Therefore, we model the con-

textual relationships among categories as prior knowledge

to obtain more accurate prediction, which is of great impor-

tance to the scene segmentation.

In this paper, we construct a Context Prior to model the

intra-class and inter-class dependencies as the prior knowl-

edge. We formulate the context prior as a binary classifier to

distinguish which pixels belong to the same category for the

current pixel, while the reversed prior can focus on the pix-

els of different classes. Specifically, we first use a fully con-

volutional network to generate the feature map and the cor-

responding prior map. For each pixel in the feature map, the

prior map can selectively highlight other pixels belonging to

the same category to aggregate the intra-class context, while

the reversed prior can aggregate the inter-class context. To

embed the prior into the network, we develop a Context

Prior Layer incorporating an Affinity Loss, which directly

supervises the learning of the prior. Meanwhile, Context

Prior also requires spatial information to reason the rela-

tionships. To this end, we design an Aggregation Module,

which adopts the fully separable convolution (separate on

both the spatial and depth dimensions) [32, 7, 48, 29] to

efficiently aggregate spatial information.

To demonstrate the effectiveness of the proposed Con-

text Prior, we design a simple fully convolutional network

called Context Prior Network (CPNet). Based on the out-

put features of the backbone network [1, 3, 36], the Context

Prior Layer uses the Aggregation Module to aggregate the

spatial information to generate a Context Prior Map. With

the supervision of Affinity Loss, the Context Prior Map can

capture intra-class context and inter-class context to refine

the prediction. Extensive evaluations demonstrate that the

proposed method performs favorably against several recent

state-of-the-art semantic segmentation approaches.

The main contributions of this work are summarized as

follows.

• We construct a Context Prior with supervision of an

Affinity Loss embedded in a Context Prior Layer to

capture the intra-class and inter-class contextual de-

pendencies explicitly.

• We design an effective Context Prior Network (CP-

Net) for scene segmentation, which contains a back-

bone network and a Context Prior Layer.

• We demonstrate the proposed method performs favor-

ably against state-of-the-art approaches on the bench-

marks of ADE20K, Pascal-Context, and Cityscapes.

More specifically, our single model achieves 46.3% on

the ADE20K validation set, 53.9% on the PASCAL-

Context validation set and 81.3% on the Cityscapes

test set.

2. Related Work

Context Aggregation. In recent years, various methods

have explored contextual information, which is crucial to

scene understanding [1, 5, 32, 49, 43, 45, 44, 19, 26, 41].

There are mainly two paths to capture contextual dependen-

cies. 1) PSPNet [49] adopts the pyramid pooling module to

partition the feature map into different scale regions. It av-

erages the pixels of each area as the local context of each

pixel in this region. Meanwhile, Deeplab [1, 3, 5] methods

employ atrous spatial pyramid pooling to sample the dif-

ferent range of pixels as the local context. 2) DANet [11],

OCNet [44], and CCNet [18] take advantage of the self-

similarity manner [37] to aggregate long-range spatial infor-

mation. Besides, EncNet [45], DFN [43], and ParseNet [27]

use global pooling to harvest the global context.

Despite the success of these attention mechanisms, they

maybe capture undesirable contextual dependencies with-

out explicitly distinguishing the difference of different con-

textual relationships. Therefore, in the proposed approach,

we explicitly regularize the model to obtain the intra-class

and inter-class contextual dependencies.

Attention Mechanism. Recent years have witnessed the

broad application of the attention mechanism. It can be

used for various tasks such as machine translation [34], im-

age/action recognition [37, 6, 16], object detection [15] and

semantic segmentation [43, 45, 42, 50, 11, 44].

For the semantic segmentation task, [4] learns an atten-

tion mechanism to weight the multi-scale features softly. In-

spired by SENet [16], some methods such as EncNet [45],

DFN [43], and BiSeNet [42] adopt the channel attention

to select the desired feature map. Following [34, 37],

DANet [11] and OCNet [44] use the self-attention to cap-

ture the long-range dependency, while PSANet [50] adap-
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Figure 2. Overview of the proposed Context Prior Layer. The Context Prior Layer contains an Aggregation Module and a Context

Prior Map supervised by Affinity Loss. With the extracted input features, the Aggregation Module aggregates the spatial information to

reason the contextual relationship. We generate a point-wise Context Prior Map with the supervision of an Affinity Loss. The Affinity Loss

constructs an Ideal Affinity Map which indicates the pixels of the same category to supervise the learning of the Context Prior Map. Based

on the Context Prior Map, we can obtain the intra-prior (P ) and inter-prior (1 − P ). The original feature map is reshaped to N × C1

size, where N = H ×W . We conduct matrix multiplication on the reshaped feature map with P and (1 − P ) to capture the intra-class

and inter-class context. Finally, we feed the representation of the Context Prior Layer into the last convolutional layer to generate a per-

pixel prediction. (Notation: Aggregation Aggregation Module, Conv convolutional layer,
⊗

matrix multiplication, P Context Prior Map,

Concat concatenate operation).

tively learns point-wise attention to harvest the long-range

information. However, these effective methods lack the ex-

plicit regularization, maybe leading to an undesirable con-

text aggregation. Therefore, in our work, we propose a Con-

text Prior embedded in the Context Prior Layer with an ex-

plicit Affinity Loss to supervise the learning process.

3. Context Prior

Contextual dependencies play a crucial role in scene

understanding, which is widely explored in various meth-

ods [49, 32, 27, 45, 3, 43]. However, these methods ag-

gregate different contextual dependencies as a mixture. As

discussed in Section 1, the clear distinguished contextual

relationships are desirable to the scene understanding.

In our study, we propose a Context Prior to model

the relationships between pixels of the same category

(intra-context) and pixels of the different categories (inter-

context). Based on the Context Prior, we propose a Context

Prior Network, incorporating a Context Prior Layer with the

supervision of an Affinity Loss, as shown in Figure 2. In

this section, we first introduce the Affinity Loss, which su-

pervises the layer to learn a Context Prior Map. Next, we

demonstrate the Context Prior Layer, which uses the learned

Context Prior Map to aggregate the intra-context and inter-

context for each pixel. The Aggregation Module is designed

to aggregate the spatial information for reasoning. Finally,

we elaborate on our complete network structure.
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Figure 3. Illustration of the construction of the Ideal Affinity

Map. The downsampled ground truth L̃ is first encoded with the

one-hot encoding. The size of the ground truth L̂ becomes H ×
W × C, where C is the number of the classes. Each vector in L̂

is composed of a single high value (1) and all the others low (0).

We conduct A = L̂L̂
⊤ to generate the Ideal Affinity Map. In this

map, the green box and blue box represent 1 and 0, respectively.

3.1. Affinity Loss

In the scene segmentation task, for each image, we have

one ground truth, which assigns a semantic category for

each pixel. It is hard for the network to model the con-

textual information from isolated pixels. To explicitly reg-

ularize the network to model the relationship between cate-

gories, we introduce an Affinity Loss. For each pixel in the

image, this loss forces the network to consider the pixels of

the same category (intra-context) and the pixels among the

different categories (inter-context).

Given a ground truth for an input, we can know the “con-

text prior” of each pixel (i.e., which pixels belong to the

same category and which pixels do not). Therefore, we
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can learn a Context Prior to guiding the network accord-

ing to the ground truth. To this end, we first construct an

Ideal Affinity Map from the ground truth as the supervision.

Given an input image I and the ground truth L, we feed the

input image I to the network, obtaining a feature map X of

size H ×W . As shown in Figure 3, we first down-sample

the ground truth L into the same size of the feature map

X , yielding a smaller ground truth L̃. We use a one-of-K

scheme (one-hot encoding) to encode each categorical in-

teger label in the ground truth L̃, leading to a matrix L̂ of

H×W×C size, where C is the number of classes. Next, we

reshape the encoded ground truth to N × C size, in which

N = H×W . Finally, we conduct the matrix multiplication:

A = L̂L̂
⊤. A is our desired Ideal Affinity Map with size

N×N , which encodes which pixels belong to the same cat-

egory. We employ the Ideal Affinity Map to supervise the

learning of Context Prior Map.

For each pixel in the prior map, it is a binary clas-

sification problem. A conventional method for address-

ing this problem is to use the binary cross entropy loss.

Given the predicted Prior Map P of size N × N , where

{pn ∈ P , n ∈ [1, N2]} and the reference Ideal Affinity

Map A, where {an ∈ A, n ∈ [1, N2]}, the binary cross

entropy loss can be denoted as:

Lu = −
1

N2

N2∑

n=1

(an log pn + (1− an) log (1− pn)). (1)

However, such a unary loss only considers the isolated pixel

in the prior map ignoring the semantic correlation with other

pixels. The pixels of each row of the Prior Map P is corre-

sponding to the pixels of the feature map X . We can divide

them into intra-class pixels and inter-class pixels, the rela-

tionships of which are helpful to reason the semantic corre-

lation and scene structure. Therefore, we can consider the

intra-class pixels and inter-class pixels as two wholes to en-

code the relationships respectively. To this end, we devise

the global term based on the binary cross entropy loss:

T p
j = log

∑N

i=1
aijpij∑N

i=1
pij

, (2)

T r
j = log

∑N

i=1
aijpij∑N

i=1
aij

, (3)

T s
j = log

∑N

i=1
(1− aij)(1− pij)∑N

i=1
(1− aij)

, (4)

Lg = −
1

N

N∑

j=1

(T p
j + T r

j + T s
j ), (5)

where T p
j , T r

j , and T s
j represent the intra-class predictive

value (precision), true intra-class rate (recall), and true inter-

class rate (specificity) at jth row of P , respectively. Finally,
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Figure 4. Illustration of the Aggregation Module and its recep-

tive field. (a) We use two asymmetric fully separable convolutions

to aggregate the spatial information, the output of which has the

same channels with the input features. (b) The Aggregation Mod-

ule has the same size of receptive field with the standard convolu-

tion. However, our Aggregation Module leads to less computation.

(Notation: Conv standard convolution, DWConv depthwise convo-

lution FSConv fully separable convolution, k the filter size of the

fully separable convolution, BN batch normalization, ReLU relu

non-linear activation function.)

based on both the unary term and global term, the complete

Affinity Loss can be denoted as follows:

Lp = λuLu + λgLg, (6)

where Lp, Lu, and Lg represent the affinity loss, unary loss

(binary cross entropy loss), and global loss functions, re-

spectively. In addition, λu and λg are the balance weights

for the unary loss and global loss, respectively. We empiri-

cally set the weights as: λu = 1 and λg = 1.

3.2. Context Prior Layer

Context Prior Layer considers an input feature X with

the shape of H × W × C0, as illustrated in Figure 2. We

adopt an aggregation module to adapt X to X̃ with the

shape of H × W × C1. Given X̃ , one 1 × 1 convo-

lution layer followed by a BN layer [20] and a Sigmoid

function is applied to learn a prior map P with the size

H × W × N(N = H × W ). With the explicit super-

vision of the Affinity Loss, Context Prior Map P can en-

code the relationship between intra-class pixels and inter-

class pixels. The intra-class is given by Y = PX̃ , where

X̃ is reshaped into N × C1 size. In this operator, the

prior map can adaptively select the intra-class pixels as the

intra-class context for each pixel in the feature map. On

the other hand, the reversed prior map is applied to selec-

tively highlight the inter-class pixels as the inter-class con-

text: Y = (1 − P )X̃ , where 1 is an all-ones matrix with

the same size of P . Finally, we concatenate the original fea-

ture and both kinds of context to output the final prediction:

F = Concat(X,Y ,Y ). With both context, we can reason

the semantic correlation and scene structure for each pixel.
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3.3. Aggregation Module

As discussed in Section 1, the Context Prior Map re-

quires some local spatial information to reason the seman-

tic correlation. Therefore, we devise an efficient Aggrega-

tion Module with the fully separable convolution (separate

on both the spatial and depth dimensions) to aggregate the

spatial information. The convolution layer can inherently

aggregate nearby spatial information. A natural method to

aggregate more spatial information is to use the a large fil-

ter size convolutions. However, convolutions with large fil-

ter size are computationally expensive. Therefore, similar

to [33, 32], we factorize the standard convolution into two

asymmetric convolutions spatially. For a k×k convolution,

we can use a k×1 convolution followed by a 1×k convolu-

tion as the alternative, termed spatial separable convolution.

It can decrease k
2

computation and keep the equal size of

receptive filed in comparison to the standard convolution.

Meanwhile, each spatial separable convolution adopts the

depth-wise convolution [7, 48, 14], further leading to the

computation decrease. We call this separable convolution

as Fully Separable Convolution with consideration both the

spatial and depth dimensions. Figure 4 demonstrates the

complete structure of the Aggregation Module.

3.4. Network Architecture

The Context Prior Network (CPNet) is a fully convolu-

tional network composed of a backbone network and a Con-

text Prior Layer, as shown in Figure 2. The backbone net-

work is an off-the-shelf convolutional network [13, 48, 35],

e.g., ResNet [13], with the dilation strategy [49, 50, 45].

In the Context Prior Layer, the Aggregation Module first

aggregates some spatial information efficiently. Based on

the aggregated spatial information, the Context Prior Layer

learns a context prior map to capture intra-class context and

inter-class context. Meanwhile, the Affinity Loss regular-

izes the learning of Context Prior, while the cross-entropy

loss function is the segmentation supervision. Following

the pioneering work [49, 50, 45], we employ the auxiliary

loss on stage 4 of the backbone network, which is also a

cross-entropy loss. The final loss function is as follows:

L = λsLs + λaLa + λpLp, (7)

where Ls, La, and Lp represent the main segmentation loss,

auxiliary loss, and affinity loss functions, respectively. In

addition, λs, λa, and λp are the weights to balance the seg-

mentation loss, auxiliary loss, and affinity loss, respectively.

We empirically set the weights as: λs = 1 and λp = 1.

Similar to [49, 50, 45], we set the weight: λa = 0.4,

4. Experimental Results

In this section, we first introduce the implementation and

training details of the proposed network. Next, we eval-

uate the proposed method and compare it with state-of-

the-art approaches on three challenging scene segmentation

datasets, including ADE20K [52], PASCAL-Context [30],

and Cityscapes [8]. We implement the proposed model us-

ing PyTorch [31] toolbox.

4.1. Implementation Details

Network. We adopt the ResNet [13] as our pre-trained

model with dilation strategy [1, 3, 5]. Then we adopt the bi-

linear interpolation to up-sample the prediction eight times

to compute the segmentation loss. Following [49, 50, 45],

we integrate the auxiliary loss on stage 4 of the backbone

network. We set the filter size of the fully separable convo-

lution in the Aggregation Module as 11.

Data Augmentation. In the training phase, we apply the

mean subtraction, random horizontal flip and random scale,

which contains {0.5, 0.75, 1.0, 1.5, 1.75, 2.0}, on the in-

put images in avoiding of overfitting. Finally, we randomly

crop the large image or pad the small image into a fix

size for training (480 × 480 for ADE20K, 512 × 512 for

PASCAL-Context and 768× 768 for Cityscapes).

Optimization. We fine-tune the CPNet model using the

stochastic gradient descent (SGD) algorithm [22] with 0.9

momentum, 10−4 weight decay and 16 batch size. No-

tably, we set the weight decay as 5 × 10−4 when train-

ing on the Cityscapes dataset. Following the pioneering

work [2, 3, 43, 42], we adopt the “poly” learning rate strat-

egy γ = γ0 × (1− Niter

Ntotal

)p, where Niter and Ntotal repre-

sent the current iteration number and total iteration number,

and p = 0.9. We set the base learning rate γ0 as 2×10−2 for

the experiments on ADE20K, while 1×10−2 for the exper-

iments on PASCAL-Context and Cityscapes. Meanwhile,

we train the model for 80K iterations on ADE20K, 25K for

PASCAL-Context and 60K for Cityscapes. We use the stan-

dard cross entropy loss when training on the ADE20K and

PASCAL-Context dataset. While training on Cityscapes,

similar to [38, 42, 44], we adopt the bootstrapped cross-

entropy loss [38] to mitigate the class imbalance problem in

this dataset.

Inference. In the inference phase, following [49, 32, 43,

45], we average the predictions of multiple scaled and

flipped inputs to further improve the performance. We

use the scales including {0.5, 0.75, 1.0, 1.5, 1.75} for the

ADE20K and PASCAL-Context datasets, while {0.5, 0.75,

1, 1.5} for the Cityscapes dataset. In addition, we adopt

the pixel accuracy (pixAcc) and mean intersection of union

(mIoU) as the evaluation metrics.

4.2. Evaluations on the ADE20K Dataset

Dataset description. ADE20K is a challenging scene pars-

ing benchmark due to its complex scene and up to 150 cat-

egory labels. This dataset can be divided into 20K/2K/3K
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model mIoU pixAcc

ResNet-50 (Dilation) 34.38 76.51

ResNet-50 + Aux (Baseline) 36.24 77.37

ResNet-50 + ASPP 40.39 79.71

ResNet-50 + PSP 41.49 79.61

ResNet-50 + NonLocal 40.96 79.98

ResNet-50 + PSA 41.92 80.17

ResNet-50 + Aggregation Module 41.51 79.93

ResNet-50 + IntraPrior (BCE) 42.34 80.15

ResNet-50 + InterPrior (BCE) 41.88 79.96

ResNet-50 + IntraPrior (AL) 42.74 80.30

ResNet-50 + InterPrior (AL) 42.43 80.21

ResNet-50 + ContextPriorLayer 43.92 80.77

ResNet-50 + ContextPriorLayer MS 44.46 81.38

ResNet-101 + ContextPriorLayer 45.39 81.04

ResNet-101 + ContextPriorLayer MS 46.27 81.85

Table 1. Ablative studies on the ADE20K [52] validation set

in comparison to other contextual information aggregation ap-

proaches. (Notation: Aux auxiliary loss, BCE binary cross entropy

loss, AL Affinity Loss, MS multi-scale and flip testing strategy.)

for training, validation and testing respectively. We report

the results on the validation set using pixAcc and mIoU.

Ablation studies. To demonstrate the effectiveness of our

Context Prior and CPNet, we conduct the experiments with

different settings and compared with other spatial informa-

tion aggregation module, as shown in Table 1.

First, we introduce our baseline model. We evaluate

the FCN [28] model with dilated convolution [1] based on

ResNet-50 [13] on the validation set. Following [49, 45,

50], we add the auxiliary loss on stage 4 of the ResNet

backbone. This can improve mIoU by 1.86% (34.38% →
36.24%) and pixAcc by 0.86% (76.51% → 77.37%). We

adopt this model as our baseline.

Based on the features extracted by FCN, various meth-

ods aggregate contextual information to improve the per-

formance. The pyramid-based methods (e.g., PSP and

ASPP) adopts pyramid pooling or pyramid dilation rates

to aggregate multi-range spatial information. Recent ap-

proaches [44, 11] apply the self-attention [37] method to

aggregate the long-range spatial information, while the PSA

module [50] learns over-parametric point-wise attention.

Table 1 lists our reimplement results with different spatial

information aggregation modules. While these methods can

improve the performance over the baseline, they aggregate

the spatial information as a mixture of the intra-class and

inter-class context, maybe making the network confused,

as discussed in Section 1. Therefore, different from these

methods, the proposed CPNet considers the contextual de-

pendencies as a Context Prior to encoding the identified

contextual relationship. Specifically, for each pixel, we cap-

ture the intra-class context and inter-class context with the

Context Prior Layer. With the same backbone ResNet-50

and without other testing tricks, our method performs fa-

vorably against these methods.

k 3 5 7 9 11 13 15

w/o CP 42.06 41.86 41.87 42.32 41.51 42.34 42.23

w/ CP 42.26 42.81 43.38 43.14 43.92 42.54 42.59

∆ 0.2 0.95 1.51 0.82 2.41 0.2 0.36

Table 2. Experimental results (mIoU) w/ or w/o Context Prior

based on different kernel sizes. (Notation: k the kernel size of

the fully separable convolution, ∆ the improvement of introduc-

ing the Context Prior, CP Context Prior.)

PPM ASPP AM

w/o CP 41.49 40.39 41.51

w/ CP 42.55 42.69 43.92

∆ ↑1.06 ↑2.3 ↑2.41

Table 3. Generalization to the PPM and ASPP module. The evalu-

ation metric is mIoU (%). (Notation: PPM pyramid pooling mod-

ule, ASPP atrous spatial pyramid pooling, CP Context Prior, AM:

Aggregation Module.)

We also investigate the effectiveness of the Aggregation

Module, IntraPrior branch, InterPrior branch and Affinity

Loss in our CPNet model. We use the Aggregation Module

with filter size 11 to aggregate the local spatial information.

Similar to [50], the Aggregation Module generates an atten-

tion mask with the resolution of N × N(N = H × W )
to refine the prediction. As shown in Table 1, the Aggre-

gation Module improves the mIoU and pixAcc by 5.27% /

2.56% over the baseline model. With the IntraPrior branch

based on the binary cross entropy loss, our single scale test-

ing results obtain 42.34% / 80.15% in terms of mIoU and

pixAcc, surpassing the baseline by 6.1% / 2.78%. On the

other hand, the InterPrior branch achieves 42.88% / 79.96%
with the same setting. Both of the significant improvements

demonstrate the effectiveness of the proposed Context Prior.

To further improve the quality of the context prior map,

we devise an Affinity Loss. Table 1 indicates that the

Affinity Loss can improve the mIoU and pixAcc by 0.4%
/ 0.15% based on IntraPrior branch, while boosting 0.55%
/ 0.25% based on InterPrior branch. We integrate both

IntraPrior branch and InterPrior branch with the Affinity

Loss to achieve 43.92% mIoU and 80.77% pixAcc, which

demonstrates that both priors can be complementary. To

further improve the performance, we apply the multi-scale

and flipped testing strategy to achieve 44.46% mIoU and

81.38% pixAcc. Deeper network leading to better fea-

ture representation, our CPNet obtains 45.39% mIoU and

81.04% pixAcc with the ResNet-101. With the testing

strategy, our model based on ResNet-101 achieves 46.27%
mIoU and 81.85% pixAcc. Figure 5 provides some visual-

ization examples.

Analysis and discussion. In Table 1, the proposed CPNet

achieves considerable improvement on the ADE20K bench-

mark. Someone may argue that the large filter size of the

Aggregation Module leads to the performance gain. Or
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(a) Input Image (b) Ground Truth (c) FCN (d) CPNet (ours)

Figure 5. Visual improvement on validation set of ADE20K.

Harvesting the intra-class context and inter-class context is helpful

to the scene understanding.

one may question whether the Context Prior can general-

ize to other algorithms. We thus provide more evidence to

thoroughly understand the Context Prior. We conduct the

discussion experiments on the ADE20K validation set with

ResNet-50 backbone. The results reported in Table 2 and

Table 3 are the single scale testing results.

(1) The influence between the spatial information and

Context Prior. As discussed in Section 3, the distinguished

contextual dependencies are helpful to scene understanding.

Therefore, we propose a Context Prior to model the intra-

context and inter-context. Meanwhile, the Context Prior re-

quires some spatial information to reason the relationship.

To this end, we integrate an Aggregation Module in the

Context Prior Layer.

Table 2 indicates that with the increasing filter size, the

models without Context Prior obtain the close results. How-

ever, with Context Prior, each model achieves improve-

ments steadily. Meanwhile, the improvements gradually in-

crease with the increasing filter size. When the filter size is

11, the performance (43.92% mIoU) and the relative gain

(2.41%) reach the peak. If we continue to increase the filter

size, the performance and the corresponding improvement

both drop. In other words, Context Prior requries appropri-

ate local spatial information to reason the relationships.

(2) Generalization to other spatial information aggrega-

tion module. To validate the generalization ability of the

proposed Context Prior, we further replace the Aggregation

Module with PPM or ASPP module to generate Context

Prior Map with the supervision of Affinity Loss. As shown

in Table 3, Context Prior can further improve the mIoU

by 1.06% over the PPM without Context Prior, 2.3% over

(a) Attention Map (b) Learned Prior Map (c) Ideal Affinity Map

Figure 6. Visualization of the Prior Map predicted by our CP-

Net. (a) We only use the Aggregation Module to generate an atten-

tion map without the supervision of the Affinity Loss. (b) With the

guidance of the Affinity Loss, the Context Prior Layer can capture

the intra-class context and inter-class context. (c) The Ideal Affin-

ity Map is constructed from the ground truth. Deeper color denotes

higher response.

the ASPP module and 2.41% over our Aggregation Mod-

ule. This improvement demonstrates the effectiveness and

generalization ability of our Context Prior. Besides, with-

out Context Prior, our Aggregation Module also achieves

the highest performance comparing to the PPM and ASPP

module.

Visualization of prior maps. To get a deeper understand-

ing of our Context Prior, we randomly choose some ex-

amples from the ADE20K validation set and visualize the

learned Context Prior Maps in Figure 6. We use the Ag-

gregation Module to generate the attention map without the

guidance of the Affinity Loss. Compared with the Ideal

Affinity Map, we observe this attention map actually has

a rough trend to learn this relationship. With the Affinity

Loss, our Context Prior Layer can learn a prior map with

more explicit structure information, which helps to refine

the prediction.

Comparison with state-of-the-art. We conduct the com-

parison experiments with other state-of-the-art algorithms

on Table 4. The proposed CPNet achieves 46.27% mIoU

and 81.85% pixAcc, which performs favorably against pre-

vious state-of-the-art methods, even exceeds the winner en-

try of the COCO-Place Challenge 2017 based on ResNet-

269. Our CPNet50 (with ResNet-50 as the backbone)

achieves 44.46% mIoU and 81.38% pixAcc, even outper-

forms PSPNet [49], PSANet [50] and SAC [47] with deeper

ResNet-101 and RefineNet with much deeper ResNet-152
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model reference backbone mIoU picAcc

RefineNet [25] CVPR2017 ResNet-101 40.2 -

RefineNet [25] CVPR2017 ResNet-152 40.7 -

UperNet [39] ECCV2018 ResNet-101 42.66 81.01

PSPNet [49] CVPR2017 ResNet-101 43.29 81.39

PSPNet [49] CVPR2017 ResNet-269 44.94 81.69

DSSPN [24] CVPR2018 ResNet-101 43.68 81.13

PSANet [50] ECCV2018 ResNet-101 43.77 81.51

SAC [47] ICCV2017 ResNet-101 44.30 81.86

EncNet [45] CVPR2018 ResNet-101 44.65 81.69

CFNet [46] CVPR2019 ResNet-101 44.89 -

ANL [53] ICCV2019 ResNet-101 45.24 -

CPNet50 - ResNet-50 44.46 81.38

CPNet101 - ResNet-101 46.27 81.85

Table 4. Quantitative evaluations on the ADE20K validation set.

The proposed CPNet performs favorably against state-of-the-art

segmentation algorithms.

model reference backbone mIoU

FCN-8S [28] CVPR2015 VGG16 37.8

CRF-RNN [51] ICCV2015 VGG16 39.3

BoxSup [9] ICCV2015 VGG16 40.5

Deeplabv2† [1] ICLR2016 ResNet101 45.7

RefineNet [25] CVPR2017 ResNet-152 47.3

PSPNet [49] CVPR2017 ResNet-101 47.8

CCL [10] CVPR2018 ResNet-101 51.6

EncNet [45] CVPR2018 ResNet-101 51.7

DANet [11] CVPR2019 ResNet-101 52.6

ANL [53] ICCV2019 ResNet-101 52.8

CPNet101 - ResNet-101 53.9

Table 5. Quantitative evaluations on the PASCAL-Context vali-

dation set. The proposed CPNet performs favorably against state-

of-the-art segmentation methods. † means the method uses extra

dataset.

as the backbone. This significant improvement manifests

the effectiveness of our Context Prior.

4.3. Evaluations on PASCAL­Context

Dataset description. PASCAL-Context [30] is a scene un-

derstanding dataset which contains 10, 103 images from

PASCAL VOC 2010. These images are re-annotated as

pixel-wise segmentation maps with consideration of both

the stuff and thing categories. This dataset can be divided

into 4, 998 images for training and 5, 105 images for testing.

The most common 59 categories are used for evaluation.

Comparison with state-of-the-art. Table 5 shows the

performance comparison with other state-of-the-art ap-

proaches. Our algorithm achieves 53.9% mIoU on valida-

tion set and outperforms state-of-the-art EncNet by over 1.0
point. Similar to [1, 25, 49, 10, 45, 11], we evaluate the

model with the multi-scale and flipped testing strategy. The

scales contain {0.5, 0.75, 1, 1.5, 1.75}.

model reference backbone mIoU

RefineNet [25] CVPR2017 ResNet-101 73.6

GCN [32] CVPR2017 ResNet-101 76.9

DUC [36] WACV2018 ResNet-101 77.6

DSSPN [24] CVPR2018 ResNet-101 77.8

SAC [47] ICCV2017 ResNet-101 78.1

PSPNet [49] CVPR2017 ResNet-101 78.4

BiSeNet [42] ECCV2018 ResNet-101 78.9

AAF [21] ECCV2018 ResNet-101 79.1

DFN [43] CVPR2018 ResNet-101 79.3

PSANet [50] ECCV2018 ResNet-101 80.1

DenseASPP [40] CVPR2018 DenseNet-161 80.6

ANL [53] ICCV2019 ResNet-101 81.3

CPNet101 - ResNet-101 81.3

Table 6. Quantitative evaluations on the Cityscapes test set. The

proposed CPNet performs favorably against state-of-the-art seg-

mentation methods. We only list the methods training with merely

the fine dataset.

4.4. Evaluations on Cityscapes

Dataset description. Cityscapes [8] is a large urban street

scene parsing benchmark. It contains 2, 975 fine annota-

tion images for training, 500 images for validation, 1, 525
images for testing and extra 20, 000 coarsely annotated im-

ages for training. We only use the fine annotation set in our

experiments. It includes 19 categories for evaluation.

Comparison with state-of-the-art. Table 6 lists the per-

formance results of other state-of-the-art methods and our

CPNet. We adopt the multi-scale and flipped testing strat-

egy on our experiments. Following the pioneering work [32,

43, 42], we train our model with both the train-fine set and

val-fine set to improve the performance on the test set. Our

CPNet achieves 81.3% mIoU on the Cityscapes test set only

with the fine dataset, which outperforms the DenseASPP

based on DenseNet-161 [17] by 0.9 point.

5. Concluding Remarks

In this work, we construct an effective Context Prior for

scene segmentation. It distinguishes the different contextual

dependencies with the supervision of the proposed Affin-

ity Loss. To embed the Context Prior into the network,

we present a Context Prior Network, composed of a back-

bone network and a Context Prior Layer. The Aggregation

Module is applied to aggregate spatial information for rea-

soning the contextual relationship and embedded into the

Context Prior Layer. Extensive quantitative and qualita-

tive comparison shows that the proposed CPNet performs

favorably against recent state-of-the-art scene segmentation

approaches.
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