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Abstract

Motion estimation of cardiac MRI videos is crucial for the

evaluation of human heart anatomy and function. Recent

researches show promising results with deep learning-

based methods. In clinical deployment, however, they suffer

dramatic performance drops due to mismatched distri-

butions between training and testing datasets, commonly

encountered in the clinical environment. On the other

hand, it is arguably impossible to collect all representative

datasets and to train a universal tracker before deployment.

In this context, we proposed a novel fast online adaptive

learning (FOAL) framework: an online gradient descent

based optimizer that is optimized by a meta-learner. The

meta-learner enables the online optimizer to perform a fast

and robust adaptation. We evaluated our method through

extensive experiments on two public clinical datasets.

The results showed the superior performance of FOAL in

accuracy compared to the offline-trained tracking method.

On average, the FOAL took only 0.4 second per video for

online optimization.

1. Introduction

Video dense tracking and motion estimation using deep

learning has gained great progress for natural image appli-

cations in recent research [35, 12, 22, 46, 49, 16, 11, 41, 18,

27, 51, 21]. In medical imaging, videos, compared to static

images, are ideal for dynamically changing physiological

processes such as the beating heart and are commonly used

in clinical settings. Feature tracking of dynamic cardiac im-

ages can provide precise and comprehensive assessments of

the cardiac motion and has been proved valuable for cardiac

disease management [34, 28, 44, 24]. Motion estimation

can also benefit other tasks in cardiac imaging, such as im-

age reconstruction [10, 31] and semi-supervised segmenta-

tion [26, 38, 50, 17, 45, 42]. Recently, deep learning-based

methods show promising results in cardiac motion estima-

tion [26, 50, 15, 23]. However, most studies have been de-
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signed in a research environment: the proposed models are

trained and tested on the data with similar distributions. In

a clinical environment, however, the imaged objects may

present various anatomies (abnormally thin or thick heart

muscle) and/or dynamics (irregularly beating heart) for dif-

ferent diseases. On top of that, the imaging process itself

commonly introduces many, if not more, variations. This

is especially true for cardiac magnetic resonance (CMR)

imaging, which provides superior video quality over ultra-

sound, but the image appearances are influenced by multi-

ple factors including scanner vendors, main magnetic fields,

different scanning protocols and technicians’ operations. It

is arguably impossible to build a dataset that includes every

combination of the variations and train a universal tracker

on it. It is also not ideal and sometimes impossible in a

clinical setting that the pre-trained network gets fine-tuned

on the data from a different distribution, given the scarce

nature of medical data. In other words, for a clinically suit-

able deep-trained tracker, the neural network needs to pos-

sess the capability to quickly adapt to new data from un-

seen distributions. Towards this end, we propose a fast on-

line adaptive learning (FOAL) mechanism for dense video

tracking applied to cardiac motion estimation. The pro-

posed framework consists of an online adaptive stage and

an offline meta-learning stage. The offline meta-learning

trains the model to gain the adaptation capability and the

online stage will apply this adaptation to adjust the model

parameters using very few and unseen data. We have de-

signed a unique module for video tracking used in both

stages to train an adaptive tracker. The tracker trained using

the proposed FOAL achieves the state-of-the-art (SOTA) re-

sults compared to strong baselines. The contributions of our

work are summarized as follows.

• In the context of dense motion estimation, we proposed

a novel online model adaptation method, which adapts

a trained baseline model to a new video using a gradi-

ent descent optimization.

• We proposed a meta-learning method optimizing the

proposed online optimizer. The meta-learner enables
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the online optimizer to perform a fast and robust adap-

tion.

• We proposed practical solutions for training meta

learner in dense motion estimation task.

• Our proposed method is not limited to the network

structure of the baseline dense motion estimation. The

extensive experiments consistently demonstrated supe-

rior performance improvement of our method in accu-

racy comparing to the baseline model.

End diastole Systole End systole Diastole End diastole

MYO

LV

RV

Figure 1. A typical cardiac cycle of a healthy subject recorded by

CMR. The cycle indicates the heart relaxation and contraction pro-

cess. The myocardium (MYO) appears as a dark ring in the im-

age. The left ventricle (LV) is filled with a hyperintense blood

signal contained inside the ring. The right ventricle (RV) cavity is

indicated via the red line.

2. Related Work

Section 2.1 discusses state-of-the-arts in the literature for

motion estimation in the computer vision field. Section 2.2

introduces the task of cardiac motion estimation and exist-

ing studies on this topic. Section 2.3 introduces the model-

agnostic meta-learning which has inspired our method.

2.1. Motion Estimation for Camera Videos

Motion estimation is one of the fundamental problems

in the computer vision field. In the literature, there are a

few deep learning-based approaches solving motion estima-

tion such as reported works in [2, 5, 12, 35, 22]. Doso-

vitskiy et al. [5] proposed two optical flow estimation net-

works (Flownets): FlownetSimple and FlownetCorr. The

former is a generic architecture and the latter includes a

correlation layer to fuse feature vectors at different image

locations. Flownet 2.0 in the work [12] further adds an ex-

tra branch to deal with pairs with small displacement and

uses the original Flownet to deal with large displacement.

Sun et al. [35] proposed a smaller and more efficient neural

network structure utilizing feature pyramid as well as cost

volume to get a more accurate motion. Most of these above

works used a supervised learning approach with true motion

fields. In contrast to these supervised methods, Meister et

al. [22] proposed an unsupervised framework where the

flow was predicted and used to warp the source image to the

reference image. The model is optimized to minimize the

difference between the warped image and the reference im-

age. Besides, an occlusion-aware forward-backward con-

sistency loss is used with the census transform to improve

the tracking results. Note that our baseline model utilized a

similar self-supervision idea as [22].

2.2. Cardiac Motion Estimation

Cardiac motion estimation takes a time series (video) of

CMR images as input and predicts the heart motion through

time. Motion fields are usually estimated at a pixel level due

to the non-rigid nature of cardiac contraction. Normally the

video records a complete cardiac contraction cycle: from

the onset of contraction (end-diastolic ED), then to maxi-

mum contraction (end-systolic ES) and back to relaxation.

Fig. 1 shows example CMR frames from a video of a normal

subject. The motion of a frame is usually estimated relative

to a reference frame that is commonly chosen as the ED or

ES frame. Let frame at time t be I(x, y, t), and I(x, y, tref )
as the reference image. The goal of motion estimation is to

find the mapping Fθ such that

Fθ : (I(x, y, tref ), I(x, y, t)) −→ Vx(x, y, t), Vy(x, y, t)
(1)

where Fθ is the mapping function with parameter θ and

Vx, Vy are the motion fields along x and y directions, re-

spectively. Motion tracking methods can be generally cat-

egorized according to different formulations of Fθ: optical

flow based, conventional image registration based, and deep

learning based.

The optical flow based method is built on several pre-

sumptions on image appearance and motion strength, such

as brightness consistency and small motion between the

source and reference frames. The problem of applying op-

tical flow based methods to CMR motion estimation is that

the presumptions are violated in CMR videos [6]. Fig. 2

shows some example images, illustrating the challenges

of CMR. Wang et al. [40] proposed a novel gradient-flow

based method that uses a local shape model to keep the lo-

cal intensity and shape features invariance.

(a) (b) (c) (d)

Figure 2. Examples of challenges in CMR motion estimation. (a)

and (b) are from one CMR video, where the upper part of the

LV myocardium (anterior wall) has a big intensity drop due to

the changes in MR coil detection sensitivity. (c) and (d) are from

another CMR video, where large motion occurs between an end-

diastolic frame (source) and an end-systolic frame (reference).

In addition to the optical flow based approaches, image

registration based methods [25, 29, 4, 32, 33, 37, 15, 47]
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were applied to solve cardiac motion estimation. Craene

et al. [4] utilized B-spline velocity fields with physical

constraints to compute the trajectories of feature points

and performed the tracking. Rueckert et al. [29] pro-

posed a free form deformation (FFD) method solving a

general deformable image registration problem and recent

work [25, 32, 33, 37] utilize this method to estimate the car-

diac motion. It is known that FFD-like methods suffer from

the computation efficiency problem. To address this issue,

Vigneault et al. [39] proposed a coarse-to-fine registration

framework to track cardiac boundary points. This solution

improved the time efficiency but an extra segmentation step

was required. In addition, this sparse tracking lost motion

understanding in the heart muscle region.

Recent success in deep neural network solving many

computer vision problems has inspired efforts to explore

deep learning based cardiac motion estimation. Qin et

al. [26] proposed a multi-task framework that combines

segmentation and motion estimation tasks. The learned car-

diac motion field is used to warp the segmentation mask

and guide the segmentation module in a semi-supervised

manner. The results show that both segmentation and mo-

tion estimation performance is improved compared to a sin-

gle task. Zheng et al. [50] proposed the apparent flow net

which is a modified U-net. The segmentation masks were

used in the apparent flow net to improve motion estimation.

In work [15], a conditional variational autoencoder (VAE)

based method was presented to estimate the cardiac motion.

The VAE encoder is used to map deformations to latent vari-

ables, which is regularized via Gaussian distribution and de-

code to a deformation filed via VAE decoder. Note that it is

generally hard to obtain true cardiac motion and thus above

works were quantitatively evaluated using the segmentation

masks. In this work, we also use this type of evaluation.

2.3. Model Agnostic Meta Learning

Meta-learning, or learning to learn, aims to build a uni-

versal meta-model that could make fast adaptation to new

tasks [30]. Model-agnostic meta-learning (MAML) [7] is a

general strategy that searches for good model-agnostic ini-

tialization parameters that are trained through training tasks

and can quickly adapt to new tasks. Given the initial model

parameters θ, for every task Ti in the training set, the task-

specific parameters θi are independently updated within the

task dataset using gradient descent with a differentiable loss

function L:

θi ← θ − α∇θL(Ti; θ). (2)

Then the original model parameters θ are updated over

all the training tasks:

θ ← θ − β∇θ

∑

i

L(Ti; θi). (3)

Through these meta-training processes, the optimal “ini-

tialization” parameters are supposed to be sensitive to

new task adaptation within a limited number of adaptation

steps. MAML has been widely used in few-shot learn-

ing [8, 36, 9], neural architecture search [20], graphical neu-

ral network [9], compressed sensing [43] and transfer learn-

ing [48]. Most applications using MAML are to solve high-

level vision tasks such as classification and recognition. The

MAML method inspired us to utilize a meta learner which

teaches the model to learn how to adapt to a new video.

3. Method

We proposed an online adaptive tracking framework in

the context of dense motion tracking utilizing a deep neural

network. The proposed method is a general video tracking

framework that is not limited to motion estimation in CMR.

Nevertheless, without loss of generality, the method is pre-

sented in the CMR context.

STN

Encoder-DecoderIref

Is

Motion Field
Warping

I'ref

Dense Motion Tracker

Figure 3. Overview of the dense tracking framework. The encoder

is a Siamese structure that takes source and reference images as

input. The feature maps produced by the Siamese encoder are

concatenated and fed into the decoder.

3.1. Dense Motion Tracking

Fig. 3 depicts the architecture of our dense tracking

framework. The overall idea of the dense motion tracking is

an end-to-end unsupervised learning approach that inspired

from [22]. Annotating the motion field for the heart is an

intractable task and unsupervised learning avoids the neces-

sity of the ground truth. In our work we used a lightweight

backbone of the network: the inputs are source image and

reference image (e.g. two frames in the same video). The

encoder is a Siamese [3] structure. The decoder is a series

of convolution and transpose convolution operators used to

decode the features and restore the output to the original

image size. The output is the predicted motion field. To

perform unsupervised learning, the spatial transformer net-

work [13] is utilized to deform/warp the source image to

the reference image and image reconstruction loss Lmse is

used to minimize the difference between the warped source

image and the reference image. Lmse is the mean square

error (MSE). In addition to Lmse, motion field smoothness

Lsmooth proposed in [26] is used to avoid abrupt motion

change and a bidirectional (forward-backward) flow consis-

tency loss Lcon proposed in [22] is used. The total loss
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Ltotal is thus defined as follows:

Ltotal = Lmse + αsLsmooth + βcLcon, (4)

where αs and βc are used to balance the three losses.

3.2. Online Optimizer

The unsupervised dense tracking (Section 3.1) mitigates

the need for ground truth motion fields. However, the dis-

tribution mismatch between training and test datasets is a

continuous challenge, particularly the long tail problem in

the medical image domain. The clinical deployment of a

deep learning model suffers the domain mismatch problem.

It is a challenge to collect sufficient samples to train a uni-

versal tracker. In this section, in the context of the proposed

dense tracking, we extend the tracker to address the dataset

distribution mismatch problem. Instead of training such a

universal tracker offline, we make the tracker being aware

of the test data online. The idea behind this is to enable a

given tracker to automatically adapt to a new video x. Sup-

pose we have a model fθ using the proposed dense tracker

trained on dataset Da with a distribution p(Da). The on-

line adaptive learning on video x is an online optimization

algorithm and is realized via back-propagating through the

stochastic gradient descent steps as follows:

θ′ ← θ′ − α∇θ′L(fθ′), (5)

where θ′ represents the model parameters and is initialized

from θ. α is the learning rate. We utilized the same loss

function L defined in Eq.(4). The overview of the online

adaptive algorithm is outlined in the Algorithm 1.

Algorithm 1 FOAL online optimization

Input: Single video k: xk, learning rate: α, trained model:

fθ, number of online tracking optimization steps: M

θ′k ← θ

Sample K pairs Dk = {a
(j)
k , b

(j)
k } from video xk

for m from 1 to M do

Evaluate loss Lm(fθ′

k
) using Dk

Compute parameters with gradient descent:

θ′k ← θ′k − α∇θ′

k
Lm(fθ′

k
)

end for

Output: updated network weights: θ′k

It is worth pointing out that the gradient descent steps

are performed over all parameters of the network at the on-

line stage. Thus, it is computationally expensive to opti-

mize them on all image pairs (source and reference) with

too many steps. We aim to adapt the offline model in just a

few steps using only a small number of online samples. We

realize this by utilizing meta-learning to optimize this op-

timization procedure. This idea is inspired by MAML [7],

which is used to learn good initial model parameters via

Algorithm 2 FOAL offline meta-learning

Input: video set: X , learning rate: α, β, initial model: fθ,

number of online tracking optimization steps: m

while not done do

Sample N videos {x1, x2, ..., xN} from X

for i from 1 to N do

θ′i ← θ

Sample K pairs Di = {a
(j)
i , b

(j)
i } from video xi

for t from 1 to m do

Evaluate loss Li(fθ′

i
) using Di

Compute parameters with gradient descent:

θ′i ← θ′i − α∇θ′

i
Li(fθ′

i
)

end for

Sample K pairs D′
i = {a

(k)
i , b

(k)
i } from video xi

end for

Model update: θ ← θ − β∇θ
1
N

∑N

i Li(fθ′

i
) using

each D′
i and video-specific loss Li(fθ′

i
)

end while

Output: updated model θ

meta-learning. Like in MAML, we perform a second-order

optimization by back-propagation using stochastic gradient

descent through the online optimization Eq. (5).

3.3. Meta­learning

We utilized a meta leaner to re-train the model fθ on the

dataset Dmeta from parameters θ in order to teach the on-

line optimizer in Eq. (5). The optimizer learns to adapt fθ
for a given video x. Note that Dmeta is either p(Da) or

a new distribution p(Db), where Db is a new dataset, and

p(Db) may mismatch domain p(Da). The full algorithm is

outlined in Algorithm 2. There are two For-loops in Algo-

rithm 2. The inner For-loop is the proposed optimization

algorithm in Algorithm 1 to optimize the online optimizer

Eq. (5). The outer For-loop is the meta-leaner and the meta

optimizer is defined as follows.

θ ← θ − β∇θ

1

N

N∑

i

Li(fθ′

i
), (6)

where i is ith video in the training procedure. N is the

number of videos in a batch size for optimizing the meta

learner. β is the learning rate of the meta-learner. Li is the

loss (Eq. 4) evaluated on the ith video. fθ′

i
is the model

parameters for the ith video.

3.4. Practical Version of the Meta­Learning

Memory limitation and solution: In contrast to

few-shot learning (a classification problem) discussed in

MAML [7], dense motion tracker need store a larger num-

ber of feature maps (i.e. requiring a large amount of GPU

memory) given a larger image size (e.g. 192 × 192). The
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Table 1. Inside distribution v.s. outside distribution Dice coef-

ficient results for the baseline model, proposed FOAL without

meta-learning (FOAL w/o meta) and proposed FOAL with meta-

learning (FOAL + meta). Averaged Dice coefficient with standard

deviation is given among five-fold leave-one-disease-out cross-

validation.

Method
LV RV MYO

Inside Distribution Test Set

Baseline 0.838(0.024) 0.825(0.013) 0.797(0.014)

FOAL w/o meta 0.856(0.021) 0.842(0.013) 0.820(0.008)

FOAL + meta 0.873(0.019) 0.859(0.013) 0.840(0.007)

Outside Distribution Test Set

Baseline 0.840(0.094) 0.775(0.096) 0.803(0.045)

FOAL w/o meta 0.863(0.077) 0.801(0.085) 0.828(0.031)

FOAL + meta 0.880(0.065) 0.806(0.086) 0.846(0.027)

Table 2. Inside distribution v.s. outside distribution Hausdorff dis-

tance (mm) results for the baseline model, proposed FOAL with-

out meta-learning (FOAL w/o meta) and proposed FOAL with

meta-learning (FOAL + meta). Averaged Hausdorff distance with

standard deviation is given among five-fold leave-one-disease-out

cross-validation.

Method
LV RV MYO

Inside Distribution Test Set

Baseline 7.265(0.779) 8.782(0.422) 6.930(0.548)

FOAL w/o meta 6.417(0.627) 8.141(0.329) 6.286(0.469)

FOAL + meta 6.012(0.580) 7.731(0.303) 6.157(0.489)

Outside Distribution Test Set

Baseline 6.921(2.147) 10.173(1.436) 6.716(1.803)

FOAL w/o meta 6.158(1.727) 9.320(1.422) 6.107(1.506)

FOAL + meta 5.832(1.534) 9.378(1.417) 5.987(1.437)

meta optimizer (Eq. 6) requires computing derivatives of

each independent model associated with a specific video.

To tackle this problem, by employing the property that the

gradient operator and the average operator are commutative

in Eq. 6, we swap the two operators as shown in Eq. (7).

∇θ

1

N

N∑

i

Li(fθ′

i
)⇔

1

N

N∑

i

∇θLi(fθ′

i
) (7)

which enables computing gradients on GPU and transfer-

ring them to CPU.

First order derivative approximation: Note that

in Eq. (7), second-order derivative is needed in back-

propagation. This involves calculating the second-order

Hessian matrix, which is computationally costly. As a

workaround, we use first-order approximation, whose effec-

tiveness is demonstrated in MAML [7]. In [7], the approx-

imation rendered comparable results to the second-order

derivatives.

4. Evaluation Methodology

In this section, we present evaluation methodology

on compared tracking methods: tracking performed us-

ing proposed dense motion tracking method (baseline

model), tracking performed using online optimization from

the baseline model without meta-learning (FOAL without

meta-learning), and tracking performed using online opti-

mization with meta-learning (FOAL with meta-learning).

4.1. Datasets and Evaluation Reference

In our study, two public CMR datasets were utilized:

ACDC dataset [1] and Kaggle Data Science Bowl Car-

diac Challenge Data [14]. All data acquisitions were per-

formed using breath-holding so that only cardiac motion is

observed in the videos. It is arguably impossible to make an

independent reference standard of the cardiac motion man-

ually. To perform quantitative analysis, we utilized segmen-

tation masks as the independent reference standard. In the

test dataset of the study, we have heart segmentation ref-

erences at both the first frame and the evaluated reference

frame. We generate the segmentation masks via warping

source segmentation to the reference and compare it to the

annotation using quantitative indices defined in section 4.4.

ACDC Dataset: It includes short-axis view CMR videos

from 100 subjects (healthy and diseased cases). Each sub-

ject contains multiple slices (9-10) and each slice is a video

sequence covering at least one heartbeat cycle. Overall,

there are 951 videos in this dataset. Each video provides

two heart segmentation masks: one for the ED phase and

one for the ES phase. The segmentation labels are right

ventricle (RV) cavity, myocardium (MYO) and left ventricle

(LV) cavity. In addition, the 100 subjects are evenly divided

into 5 categories with 20 subjects each. These are diag-

nosed into: normal cases (NOR), systolic heart failure with

infarction (MINF), dilated cardiomyopathy (DCM), hyper-

trophic cardiomyopathy (HCM), abnormal right ventricle

(ARV). The CMR videos were collected over 6 years using

two MRI scanners of different main magnetic fields: 1.5 T

Siemens Area and 3.0 T Siemens Trio Tim (Siemens Medi-

cal Solutions, Germany) [1].

Kaggle Data Science Bowl Cardiac Challenge Dataset:

It includes short-axis view CMR videos from 1100 sub-

jects. Each subject contains multiple slices (8-10) and each

slice is a video sequence covering at least one cardiac cycle.

Overall, there are 11202 videos in this dataset. The original

challenge is to predict the ejection fraction from the videos.

Ejection fraction ground truth was provided but irrelevant

to our study. The subjects have a large health and age range

and the images were collected from numerous sites [14].

However detailed information such as disease types is not

disclosed nor there are segmentation labels. Nevertheless,

this large real clinical dataset can be used to train the base-

line dense motion model.
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Figure 4. The bar-plots of inside distribution v.s. outside distribution Dice coefficient results for the baseline model, proposed FOAL

without meta-learning (FOAL w/o meta) and FOAL with meta-learning (FOAL with meta) for all five folds. Different diseases as outside

distributions are presented in different columns. The top row is the inside distribution test and the bottom row is the outside distribution

test. The data of the outside distribution disease were excluded in the baseline training and meta-training. Averaged values and standard

deviations are presented.

4.2. Implementation Details

For image preprocessing, we normalized the gray value

to 0-255 and we applied center cropping and zero padding

to adjust image size to 192 × 192. All models are trained

and tested on a Tesla V100 workstation. The other imple-

mentation details are presented as following.

Dense motion tracker: As for the baseline model, we

adopted a lightweight (shallower and narrower) version of

the motion prediction network proposed by Qin et al. [26].

We halved the number of feature maps of each layer and the

number of layers. We set αs = 5 × 10−5 and βc = 10−6

in Eq. (4). The batch size is 20 images. We utilized Adam

optimizer with an initial learning rate 10−3.

Online optimizer: The number of update steps m = 3 and

the number of sampled pairs K = 24 in Algorithm 1. We

used Adam optimizer with learning rate α = 10−4.

Meta learner: We used the number of sampled videos

n = 2, the number of update steps m = 5, and the number

of sampled pairs K = 24 in the online optimization in Al-

gorithm 2. SGD optimizer is used for online optimizer with

a fixed learning rate α = 10−5. Adam optimizer is used for

the meta-learner with an initial learning rate β = 10−5 in

Algorithm 2. The meta training steps are 6,000.

4.3. Experiment Setups

Inside distribution vs Outside distribution: In data-

driven machine learning, we always hypothesize that train-

ing samples and testing samples are drawn from the same

distribution (inside distribution). The violation of the hy-

pothesis (outside distribution in the testing set) usually gives

poor model generalization on the testing set. In this study,

we performed five-fold cross-validations in light of the

leaving-one-disease-out method on the ACDC dataset. The

idea behind this is to separate inside distribution (Pin) and

outside distribution (Pout) in terms of known diseases. Due

to the significant cardiac anatomy and dynamic differences

between different diseases, one disease category could be

viewed as an outside distribution compared to the other 4

diseases. For subjects in the inside distribution set, we sep-

arate them into train set (80×80% = 64 subjects) as p(Da)
and p(Dmeta), and test set (80 × 20% = 16 subjects) as

p(Dtinside
). 100% subjects in the outside distribution (20

subjects) set were used in the test set as p(Dtoutside
). In this

experiment, we trained and evaluated all three compared

methods on the ACDC dataset.

Fine-tuning and Generalization: We observed that the

proposed FOAL with meta-learning needs to train the meta-

learner from a baseline model. In the dense tracking con-

text, it is difficult to train the meta-learner from scratch.

However, our idea behind the FOAL is to enable any dense

tracker to boost their performance via online optimization

through meta-learning. To validate the generalizability, we

utilized the Kaggle dataset that is without any meta infor-

mation. Specifically, we used the 30% subjects of the en-

tire Kaggle dataset as p(Da) to train the baseline model.

We then performed leave-one-disease-out cross-validation

on the ACDC dataset. Note that the Kaggle data are

only used for training the baseline model while p(Dmeta),
p(Dtinside

) and p(Dtoutside
) are all from ACDC with the
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same split in the first experiment. In addition to the leave-

one-disease-out cross-validation, starting from the baseline

model trained on Kaggle, we also compared a vanilla fine-

tuning model to FOAL with meta-learning using 20% of the

entire ACDC dataset (100× 20% = 20 subjects). 100% or

10% of the rest ACDC data were used to train the two mod-

els. All 5 categories were mixed.

The vanilla fine-tuning model used the same training pa-

rameters as the baseline model except that we changed the

learning rate to 10−5 to prevent large parameter drift [19].

4.4. Quantitative Metrics

We used the DICE coefficient (Eq. (8)) and Hausdorff

distance error (Eq. (9)) as quantitative metrics to evalu-

ate the compared tracking methods on segmentation masks.

The metrics are defined as:

DICE =
2× |SA ∩ SB |

|SA|+ |SB |
, (8)

where SA and SB are the segmentation mask A and the

segmentation mask B, respectively.

H(CA, CB) = max
a∈CA

{min
b∈CB

||a− b||2}, (9)

where a and b are the points on the contour A and the con-

tour B, respectively. || · ||2 is the Euclidean distance.

5. Results and Discussion

Inside distribution vs outside distribution on ACDC

data: The five-fold cross-validation experiment in this part

is described in Section 4.3. Fig. 4 depicts all three compared

methods (baseline model, FOAL without meta-learning and

FOAL with meta-learning) in every cross-validation with

test samples drawn from inside or outside distribution. Ta-

ble 1 and Table 2 summarize Dice and Hausdorff distance

results, respectively, for both inside and outside distribu-

tions averaged over the five folds. Fig. 4, Table 1 and

Table 2 show that the proposed FOAL with meta-learning

approach outperforms the baseline tracker. For the inside

distribution test, our FOAL with meta-learning increased

the Dice by 3.7% and reduced Hausdorff distance error by

1.0 mm on average. It is worth pointing out that even the

training and testing are within the same disease distribution,

the variations from patients, scanner types, scanner settings,

etc. are still large, which can explain the reduced errors

from our method compared to the baseline. The largest ac-

curacy improvement occurs on MYO with 4.3% on Dice

for both inside distribution and outside distribution. On

the zero-shot (outside distribution) dataset, our FOAL with

meta-learning achieves superior performance (e.g. on av-

erage 3.8% increase on Dice) compared to the baseline.

Besides, we observed that FOAL with meta-learning out-

performs FOAL without meta-learning consistently. This

Table 3. Finetuning experiment with Kaggle baseline training and

ACDC inside and outside distribution test sets. Dice coefficients

are averaged over the five-fold cross-validation for baseline model

trained on Kaggle data (Baseline), fine-tuned model on the ACDC

dataset (Finetune) and FOAL with meta-learning (FOAL + meta)

on the ACDC dataset. Numbers are shown in mean(std).

Method
LV RV MYO

Inside Distribution Test Set

Baseline 0.864(0.019) 0.847(0.013) 0.830(0.010)

Finetune 0.861(0.023) 0.850(0.012) 0.827(0.014)

FOAL + meta 0.880(0.017) 0.866(0.010) 0.847(0.009)

Outside Distribution Test Set

Baseline 0.874(0.070) 0.796(0.093) 0.841(0.024)

Finetune 0.870(0.070) 0.792(0.094) 0.833(0.031)

FOAL + meta 0.885(0.059) 0.804(0.091) 0.849(0.023)

demonstrates the effectiveness of meta-learning to enhance

the adaptation capability of the online optimizer. This result

is not surprising because the online optimizer learns how to

adapt to a new video using offline meta training on a large

number of videos. This capability teaches the online opti-

mizer to find a sub-optimal path to a better solution than the

optimizer without meta-learning can.

Fig. 5 depicts the warped segmentation results using cor-

responding deformation fields which were generated by the

baseline model and FOAL with meta-learning. In Fig. 5,

ED and ES frames in the video are also illustrated. We ob-

served a significant appearance and shape difference inside

the heart region. Referring to annotations, our method im-

proved LV (blue color) and MYO (green color) comparing

to the baseline method. Note that the result can not be com-

pared directly with the results in supervised segmentation

[26] since our task is unsupervised motion tracking.

Table 4. Finetuning experiment with Kaggle baseline training

and 100% and 10% ACDC training dataset. Dice coefficients

(mean(std)) for baseline model trained on Kaggle data (Baseline),

vanilla fine-tuned model on the ACDC (Finetune) and FOAL with

meta-learning on the ACDC (FOAL + meta) are reported.

Method
LV RV MYO

100% of ACDC training data

Baseline 0.865(0.103) 0.845(0.080) 0.829(0.065)

Finetune 0.865(0.104) 0.854(0.079) 0.831(0.063)

FOAL 0.881(0.086) 0.865(0.070) 0.845(0.051)

10% of ACDC training data

Baseline 0.865(0.103) 0.845(0.080) 0.829(0.065)

Finetune 0.864(0.104) 0.845(0.082) 0.824(0.073)

FOAL +meta 0.882(0.086) 0.863(0.071) 0.845(0.051)

Fine-tuning and Generalization: The experiment setup

in this part is discussed in Section 4.3. We compared the

baseline model trained on Kaggle data (Baseline), a model

fine-tuned on ACDC data from the baseline model (Fine-
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Figure 5. Examples of the tracking results of the mask overlay warped from ED heart phase to ES heart phase. The warp operation utilized

deformation fields which were generated from the compared methods. From left to right: the starting frame (ED phase), the final frame (ES

phase), baseline model, FOAL with meta-learning and the expert mask annotations. Note that the red mask represents RV, green represents

MYO and blue represents LV.

tune) and our proposed FOAL with meta-learning from the

baseline model (FOAL+meta). Averaged Dice coefficients

among five folds for both inside distribution and outside

distribution can be found in Table 3. The baseline model

performs comparably well on both distributions except RV.

This might be because the Kaggle dataset consists of a va-

riety of cardiac diseases and it has distribution overlaps

with both the inside distribution and the outside distribu-

tion datasets but not for RV. Fine-tuning the model on the

ACDC dataset does not improve the performance. Compar-

ing to the baseline model, our method improved 2.7% on the

inside distribution test and 2.4% on the outside distribution

test in terms of Dice. Though we test the generalization of

the method on CMR datasets, FOAL may have the potential

of generalization to other motion(flow) estimation datasets

like the KITTI and Sintel Final.

Table 4 shows Dice results for vanilla fine-tuning model

and our FOAL with meta-learning using 10% or 100%
ACDC training samples. In contrast to the leave-one-

disease-out experiments, we did not isolate any disease in

the training samples in this experiment and the models were

tested on the entire ACDC test set. Vanilla fine-tuning

model made the performance slightly worse in the 10%
experiment while it slightly improved the accuracy in the

100% experiment comparing to the baseline model. Mean-

while, FOAL with meta-learning gave 1.68% and 1.71%
Dice increases on average for both 10% and 100% experi-

ments, respectively. This result is consistent with the above

fivefold cross-validation test. In addition, Fig. 4 demon-

strates that our FOAL performs comparably well using a

small amount of data when it is meta-trained from a strong

baseline model.

Our FOAL online optimization algorithm requires 413±
8 milliseconds (mean±standard deviation), which we find

it completely durable for most current clinical applications.

6. Conclusion

In this work, we proposed a novel online adaptive learn-

ing method to minimize the domain mismatch problem in

the context of dense cardiac motion estimation. The online

adaptor is a gradient descent based optimizer which itself is

also optimized by a meta-learner. The meta-learning strat-

egy allows the online optimizer to perform a fast adaption

using a limited number of model updates and a small num-

ber of image pairs from a single video. The tracking per-

formance is significantly improved in all the zero-shot (out-

side distribution comparing to the training samples) exper-

imental setups. Also, it is observed that the online adaptor

can minimize the tracking errors in the inside distribution

tests. Experimental results demonstrate that our methods

obtain superior performance compared to the model with-

out online adaption. The pilot study shows the feasibility of

applying the method in the context of unsupervised dense

motion tracking or deformable image registration. The pro-

posed method provides a practical and elegant approach to

an often overlooked problem in existing art. We hope to

inspire more discussions and work to benefit other clinical

applications suffering from similar issues.
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